姓名: 卢运虎
职称: 教授、博导
教育与工作经历:
2002-2006 长江大学(原江汉石油学院) 本科
2006-2011 中国石油大学(北京)硕博连读 博士
2011-2013 塔里木油田博士后工作站 师资博士后
2013-2015 中国石油大学(北京) 教师
2015-至今 中国石油大学(北京) 副教授
2019.2-12 Curtin University 访问学者
电子邮箱: luyh@cup.edu.cn/luyunhu20021768@163.com
联系电话: 010-89732165
所在系所: 油气井工程系
研究方向: 石油工程岩石力学、井壁稳定、水力压裂、井筒完整性等
教学情况:本科生《钻井工程》、研究生《石油工程岩石力学》、《钻井工程实践与案列分析》
论文著作:
(一)期刊论文:
[1]Role of brine composition on rock surface energy and its implications for subcritical crack growth in calcite[J]. Journal of Molecular Liquids, 2020,303: 112638.
[2]Wetting Behavior of Shale Rocks and Its Relationship to Oil Composition[J]. Energy & Fuels, 2019, 33(12): 12270-12277.
[3]Characterization of Shale Softening by Large Volume-Based Nanoindentation[J]. Rock Mechanics and Rock Engineering, 2019: 1-17.
[4]Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs[J]. Fuel, 2019, 249: 434-440.
[5]Effect of Shale Anisotropy on Hydration and Its Implications for Water Uptake[J]. Energies, 2019, 12(22): 4225.
[6]Predicting seismic-based risk of lost circulation using machine learning[J]. Journal of Petroleum Science and Engineering, 2019, 176: 679-688.
[7]The influence of barrier coastal sedimentary system lost circulation in sandstone[J]. Journal of Petroleum Science and Engineering, 2019: 106654
[8]Comments on the mode II fracture from disk-type specimens for rock-type materials[J]. Engineering Fracture Mechanics, 2019, 211: 303-320.
[9]Nonlinear Stress-Strain Model for Confined Well Cement[J]. Materials, 2019, 12(16): 2626.
[10]Unifying acoustic emission and digital imaging observations of quasi-brittle fracture[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102301.
[11]Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure[J]. Energy & Fuels, 2019, 33(9): 8250-8258.
[12]Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J]. Applied Thermal Engineering, 2018, 142: 166-183.
[13]An Analytical Solution for Pseudosteady-State Flow in a Hydraulically Fractured Stratified Reservoir With Interlayer Crossflows[J]. SPE Journal, 2017, 22(04): 1,103-1,111.
[14]Dynamic analysis of a cylindrical casing–cement structure in a poroelastic stratum[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(12): 1362-1389.
[15]Productivity-Index optimization for hydraulically fractured vertical wells in a circular reservoir: a comparative study with analytical solutions[J]. SPE Journal, 2016, 21(06): 2,208-2,219.
[16]Experimental study and artificial neural network simulation of the wettability of tight gas sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 387-400.
[17]A wellbore stability model for a deviated well in a transversely isotropic formation considering poroelastic effects[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3671-3686.
[18]Theoretical and experimental study on the penetration rate for roller cone bits based on the rock dynamic strength and drilling parameters[J]. Journal of natural gas science and engineering, 2016, 36: 117-123.
[19]Oil-based critical mud weight window analyses in HTHP fractured tight formation[J]. Journal of Petroleum Science and Engineering, 2015, 135: 750-764.
[20]Calculation model for borehole collapse volume in horizontal openhole in formation with multiple weak planes[J]. Petroleum Exploration and Development, 2014, 41(1): 102-107.
[21]Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 364-378.
[22]Multilayer pressure containment model and its application in deep well fractured formation[J]. Rock mechanics and rock engineering, 2013, 46(5): 1255-1266.
[23]A Mechanical Model of Borehole Stability for Weak Plane Formation under Porous Flow. Petroleum Science & Technology[J],2012,30(15):1629-1638.
[24]Influence of Porous Flow on Wellbore Stability for Inclined Well in Weak Plane Formation Petroleum science & Technology[J],2012,30(17):616-624.
[25]The Development and Application of an Environmentally Friendly Encapsulator EBA-20. Petroleum Science & Technology[J],2012,30(21): 2227-2235
[26]The study on instability mechanism of fractured reservoir during well test for horizontal well[J]. Petroleum science & Technology, 2012,30(22):637-643.
[27]Experimental study on the performance of sand control screens for gas wells[J]. Journal of petroleum exploration and production technology, 2012, 2(1): 37-47.EI
[28]Analysis of the vertical borehole stability in anisotropic rock formations[J]. Journal of Petroleum Exploration and Production Technology, 2012, 2(4): 197-207.EI
[29]Salt-gypsum bed complicates Tarim horizontal drilling[J]. Oil & gas journal, 2011, 109(11).
[30]Determination of rock fracture toughness K_IIC and its relationship with tensile strength[J]. Rock mechanics and rock engineering, 2011, 44(5): 621.
[31]Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J]. Rock mechanics and rock engineering, 2011, 44(6): 711.
[32]高温热处理共和盆地干热岩力学特性实验研究[J].地下空间与工程学报,2020,16(1):114-121.
[33]深层页岩气藏粘土矿物水岩作用微观机制[J].地球化学,2020,49(2).
[34]高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J].岩石力学与工程学报,2019,38(S1):2668-2679.
[35]高温下页岩水化损伤的各向异性实验研究[J].中国科学:物理学 力学 天文学,2017,47(11):138-145.
[36]各向异性地层中斜井井壁失稳机理[J].石油学报,2013,34(03):563-568.
[37]页岩气井脆性页岩井壁裂缝扩展机理[J].石油钻探技术,2012,40(04):13-16.
[38]钻井液浸泡下深部泥岩强度特征试验研究[J].岩石力学与工程学报,2012,31(07):1399-1405.
[39]碳酸盐岩声发射地应力测量方法实验研究[J].岩土工程学报,2011,33(08):1192-1196.
[40]山前浅部盐层断层附近套管损坏分析[J].石油钻采工艺,2011,33(03):109-112.
[41]深层地应力地理方位确定的新方法[J].岩石力学与工程学报,2011,30(02):233-237.
[42]南海西江油田古近系泥页岩地层防塌钻井液技术[J].石油钻探技术,2019,47(06):40-47.
[43]超深井筒温度分布及其对围岩力学性质的影响研究[J].岩石力学与工程学报,2019,38(S1):2831-2839.
[44]川南深层页岩各向异性特征及对破裂压力的影响[J].石油钻探技术,2018,46(03):78-85.
[45]密地层井壁失稳的孔隙弹性动力学机理研究[J].石油科学通报,2017,2(04):478-489.
[46]页岩气开发:岩石力学的机遇与挑战[J].中国科学:物理学 力学 天文学,2017,47(11):6-18.
[47]复合盐膏层界面错动的变形机理及数值模拟研究[J].石油科学通报,2019,4(04):390-402.
[48]基于近钻头振动数据的海底硬质地层探测方法[J].船海工程,2019,48(04):112-116.
[49]三维页岩储层多重压力流固耦合模型研究[J].中国科学:物理学 力学 天文学,2019,49(01):40-52.
[50]页岩润湿性的神经网络预测模型[J].断块油气田,2018,25(06):726-731.
[51]干热岩地热储层钻井和水力压裂工程技术难题和攻关建议[J].中国科学:物理学 力学 天文学,2018,48(12):97-102.
[52]温压条件下蒙脱石水化的分子动力学模拟[J].硅酸盐学报,2018,46(10):1489-1498.
[53]缝网页岩储层非线性耦合渗流模型研究[J].中国科学:物理学 力学 天文学,2018,48(06):98-112.
[54]加载方式对水泥石气密封性影响研究[J].石油钻探技术,2018,46(01):55-61.
[55]非均匀应力场中井筒卸载过程井壁围岩孔隙弹性动力响应机制[J].岩石力学与工程学报,2018,37(05):1115-1125.
[56]塔里木盆地玉科区块超深井膏盐层段套管损坏机理与防治措施[J].天然气工业,2016,36(12):92-99.
[57]冲击作用下岩石裂纹长度预测模型及数值模拟研究[J].石油钻探技术,2016,44(04):41-46.
[58]高压气体渗流对裸眼井筒塑性区半径的影响分析[J].岩石力学与工程学报,2015,34(S2):4286-4294.
[59]盐膏岩DRA-Kaiser地应力测试方法初探[J].岩石力学与工程学报,2015,34(S1):3138-3142.
[60]超深井侧钻段泥岩井壁失稳分析[J].石油钻探技术,2014,42(06):53-58.
[61]基于薄板理论的碳酸盐岩地层压力检测方法探讨[J].石油钻探技术,2014,42(05):57-61.
[62]多弱面地层水平井裸眼井壁垮塌量计算模型[J].石油勘探与开发,2014,41(01):102-107.
[63]石膏含量对盐膏层蠕变速率影响的研究[J].岩石力学与工程学报,2013,32(S2):3238-3244.
[64]水平井造斜段盐膏层套管等效应力分析[J].钻采工艺,2013,36(02):87-89+11.
[65]裂缝性储层裸眼井壁失稳影响因素分析[J].石油钻采工艺,2013,35(02):39-43.
[66]深部盐膏岩地层套管磨损后等效应力分析[J].中国石油大学学报(自然科学版),2013,37(01):75-79.
[67]水平井试油过程裂缝性储层失稳机理[J].石油学报,2011,32(02):295-298.
[68]快速钻井剂稳定井壁快速钻进作用机理研究[J].西南石油大学学报(自然科学版),2010,32(01):165-169+205-206.
[69]一种气体钻井井壁稳定性分析的简易方法[J].石油钻采工艺,2009,31(06):48-52.
[70]一种井漏层位钻前风险预测新方法[J].石油钻采工艺,2008(03):24-28.
(二)会议论文:
[1]Analytical model of collapse pressure in fracture zone based on hot dry rock concerning the effect of incompatible deformation[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[2]Effect of temperature recovery on time-dependent wellbore stability in geothermal drilling[C]//ARMA-CUPB Geothermal International Conference. American Rock Mechanics Association, 2019.
[3]Experimental Investigation on Mechanical Properties and Failure Mode of Natural Fractured Sandstone[C]//SPE Argentina Exploration and Production of Unconventional Resources Symposium. Society of Petroleum Engineers, 2018.
[4]Optimizing Fluid Production From Porous Media: From Hydraulic Fractures to Plant Roots[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2016.
[5]Experiments and Finite Element Simulation on Cement Sheath Failure in HPHT Well Fracturing[C].50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June, Houston, Texas,2016.
[6]A Quantitative Approach to the Design and Evaluation of Shale Drilling Fluids Based on Multi-Field Coupling Theory[C]//Offshore Technology Conference Asia. Offshore Technology Conference, 2016.
[7]Rock Breaking Model Under Dynamic Load with the Application of Torsional and Axial Percussion Hammer[C]//International Petroleum Technology Conference. International Petroleum Technology Conference, 2016.
[8]Anisotropic wellbore stability model for transversely isotropic formation and its application in drilling through shale formation[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers, 2015.
[9]The First Application of Whole Process Underbalanced Drilling in Ultradeep Horizontal Well in Tarim Oilfield[C]//SPE/IADC Managed Pressure Drilling & Underbalanced Operations Conference & Exhibition. Society of Petroleum Engineers, 2014.
[10]Pore pressure prediction in ultra-deep salt formation in Tarim Basin[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014.
[11]Study on Nonlinear Large Deformation Measurement and Constitutive Relationship of Mudstone Sidewall 2nd International young scholars’ symposium on rock mechanics,2011, 161-165.
[12]Experimental study of wellbore deformation in a deep claystone formation International Workshop on True Triaxial Testing of Rocks,2011,87-90.
(三)授权专利:
[1]一种能够诱导本征尖锐裂缝的双悬臂梁断裂韧性测试方法[P].CN108333045A,2018-07-27.
[2]一种水泥环气密封性失效判断方法[P]. CN107991165A,2018-05-04.
[3]一种多分支孔眼钻及多孔眼并行钻进方法[P]. CN106382096A,2017-02-08.
[4]基于地质力学的裂缝型地层定向井造斜方位的设计方法[P].CN105574251A,2016-05-11.
[5]一种预测弱面地层坍塌压力当量密度窗口的方法[P]. CN104806233A,2015-07-29.
[6]一种裂缝型地层防塌钻井液性能参数的设计方法[P]. CN104778303A,2015-07-15.
[7]一种油基钻井液参数的设计方法[P]. CN104732064A,2015-06-24.
[8]一种水溶性无机纳米材料的制备方法[P]. CN104692400A,2015-06-10.
[9]一种硬脆性水化泥页岩人造岩心的制备方法[P]. CN104692726A,2015-06-10.
[10]一种层状硬脆性泥页岩水化特性的评价方法[P]. CN104675395A,2015-06-03.
[11]一种层状硬脆性泥页岩水化特性的评价装置[P]. CN104675396A,2015-06-03.
[12]一种高频动载破岩工具及其使用方法[P]. CN109630010A,2019-04-16.
[13]一种双悬臂梁断裂韧性测试装置[P]. CN108303314A,2018-07-20.
[14]基于旋转粒子喷射的近井地带处理装置[P]. CN205477555U,2016-08-17.
[15]一种利用地质构造面曲率预测区域高压盐水层孔隙压力的方法[P]. CN101942992A,2011-01-12.
[16]一种利用测井资料检测高压盐水层孔隙压力的方法[P]. CN101936157A,2011-01-05.
[17]一种基于压裂地质体可压性的井型设计方法及装置[P]. CN103390108A,2013-11-13.
[18]一种基于压裂地质体可压性的储层分析方法及装置[P]. CN103382838A,2013-11-06.
[19]一种利用小波变换计算地层孔隙压力的方法[P]. CN103089253A,2013-05-08.
[20]一种利用测井资料预测碳酸盐岩地层孔隙压力的方法[P]. CN101963056A,2011-02-02.
[21]裂缝性易漏地层堵漏承压能力评价装置[P]. CN203570309U,2014-04-30.
[22]井眼径向变形的测量装置[P]. CN202170792U,2012-03-21.
承担项目情况:
[1]深层页岩水力裂缝闭合的蠕变机理研究,国家自然科学基金面上项目(主持),2019-2021
[2]页岩油气高效开发基础理论研究,国家自然科学基金重大项目(研究骨干),2015-2019
[3]高温高应力盐膏层弯曲井筒围岩失稳机理与控制理论研究,国家自然科学青年基金项目(主持),2013-2015
[4]页岩粘土矿物表面纳米材料改性对井壁稳定作用机理研究,中国博士后科学基金特别资助(主持),2013-2014
[5]超深裂缝性气藏井筒失稳机理及转向工艺优化研究,国家油气重大专项(负责),2016-2019
[6]乌石17-2油田井壁稳定性及钻井提速技术研究,中海油科技项目(负责),2019-2021
[7]钻井液稳定井壁的抑制性定量评价新方法,中石油科技项目(负责),2018-2020
[8]克拉苏构造带盐膏层力学机制及蠕变规律系统研究,中石油科技项目(负责),2018-2021
[9]碳酸盐岩地层漏失预测模型及井下复杂随钻诊断系统的研究与开发,中石油科技项目(负责),2018-2019
[10]深层高应力环境下井壁失稳物理模拟实验与评价研究,中石化科技项目(负责),2019-2020
[11]水基钻井液耦合下页岩井筒失稳封堵力学机制研究,中石化科技项目(负责),2019-2020
[12]深水天然气水合物储层试采井筒围岩失稳机理研究,中石油科技项目(负责),2017-2018
科研教学奖励:
[1]高温高压超深复合盐膏层井筒完整性关键技术及工业化应用(1/10),中国岩石力学与工程学会科技进步二等奖,2019年
[2]矿业、石油及安全工程领域优秀青年科技人才提名奖,国家自然科学基金委员会,2018年
[3]深层致密性地层高效储层改造一体化关键技术及应用(3/7),中国产学研创新成果一等奖, 2017年
[4]深层应力敏感性地层承压堵漏关键技术(3/6),中国岩石力学与工程学会技术发明二等奖,2017年
[5]中东富油气区复杂地层井筒关键技术及工业化应用(6/15),中国石油与化学工业联合会科技进步一等奖,2015年
[6]新疆优秀博士后,新疆维吾尔自治区 ,2012年
[7]气液介质转换的井壁失稳机理研究,中国岩石力学与工程学会优秀博士学位论文,2012年
[8]气液介质转换的井壁失稳机理研究,中国石油大学(北京)优秀博士学位论文,2012年
社会与学术兼职:
[1] 中国岩石力学与工程学会深层岩石力学与油气工程专委会秘书长
[2] 国际岩石力学学会会员
[3] SPE(美国石油工程师协会)会员
[4] 中国岩石与工程学会会员