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Abstract 

In area of control, model-based robust identification is rare, and studies in presence of unknown 
noise statistics are especially seldom. The robust estimation problem for time-varying Wiener output- 
error systems is considered in this paper. An adaptive filtering-based recursive identification scheme is 
proposed to distinguish nonlinear time-varying characteristics in complex noise environments. Firstly, a 
virtual equivalent state space model is constructed to achieve adaptive Kalman filtering. In filter design, 
a weighted noise estimator based on Sage-Husa principle is introduced, and is sensitive to noise changes. 
Secondly, the state estimates obtained by filters are used to form the unknown intermediate variables 
in information vectors. Then, a recursive estimation method based on multiple iterations is developed, 
and the convergence of identification is confirmed by martingale hyperconvergence theorem. Finally, the 
numerical simulation results verify the theoretical findings. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Nonlinear block-oriented models can be used to describe many nonlinear dynamic be- 
haviors [1] . Three typical nonlinear block-oriented models are Wiener models, Hammerstein 

models [2] , and their combinations [ 3 , 4 ]. These types of models contain both static nonlin-
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a  
ar blocks and linear dynamic blocks. Among them, a Wiener model has a linear dynamic
art followed by a nonlinear part [5] , and it is widely encountered in engineering practices.
ome biological processes [6] and chemical processes [7] are usually modeled by Wiener
ystems. Meanwhile, these processes are considered time-varying [8] because of environmen-
al or human influence. Besides, if system physical laws are accurate sufficiently [9] , the
bsence of process noise is reasonable, and such systems are known as output-error systems
n system identification. Hence, this paper considers the identification of time-varying Wiener
utput-error systems, and aims to grasp nonlinear and time-varying characteristics of systems.

The identification issues for Wiener systems have attracted great attention. Jvoros [10] stud-
ed the identification of Wiener models that have piecewise-linear or inverse functions of
onlinear parts. The identification of non-invertibility nonlinear parts has been also studied
y Hu and Chen [11] . For FIR Wiener systems, Lacy and Berntein [12] exploited simultane-
us direct estimation of non-invertible, polynomial non-linearities. From another perspective,
xisting identification methods for Wiener systems are roughly divided to several categories,
.g., blind approaches [ 13 , 14 ], maximum likelihood methods [15] , iterative methods [16] , and
ecursive methods [17] . Among these methods, recursive methods are popular because they are
uitable for online identification and can be used for time-varying systems [18] . For Wiener
ystems whose output nonlinear function is continuous and invertible, Ding et al. proposed
he auxiliary-model based recursive least squares algorithm [19] . Further, multiple iterations
 20 –22 ] in recursive identification have been introduced to improve robustness of parameter
stimation in noisy environments. 

Kalman filter is a widely used model-based state estimator [ 23–25 ], and is applied to
inear systems with Gaussian noise. For time-varying output-error system identification, the
tability of Kalman filter [26] has been ensured under uniform complete observability. For
ammerstein systems [ 27 , 28 ], the modified Kalman smoother was derived to estimate the
nknown intermediate variables in systems. For the real-time estimation of 4WD vehicle states,
he extended Kalman filter [29] was combined with minimum error criterion. For actual fault
iagnosis of time varying systems, the adaptive Kalman filter [30] was proposed through joint
tate-parameter estimation. For soft sensor maintenance, data fusion technology was introduced
ased on Kalman filter [31] . However, under unknown noise statistics, estimators should be
edesigned to achieve adaptive filtering. In this respect, Sage-Husa maximum a posteriori
stimation principle [32] has been applied into Kalman filter, in order to give statistical noise
roperties. Unlike Nussbaum designs [ 33 , 34 ] to handle non-zero-mean nonlinearities, Sage-
usa Kalman filter can recursively estimates both mean values and variances of noise. 
In this paper, a linear regression form of Wiener nonlinear systems is adopted for identi-

cation. The proposed recursive estimation is used to achieve identification of time-varying
arameters, and the idea of multiple iterations is introduced to improve robustness. Meanwhile,
he bounded convergence of time-varying systems is harvested by using martingale theorems
 35 , 36 ]. Further, to estimate the unknown intermediate variables in information vectors, a vir-
ual equivalent state space model is proposed, and an extended Kalman filter is implemented.
his adaptive Kalman filter is designed for output-error time-varying systems, and is based
n the results of [26] . Besides, Sage-Husa noise estimator is also introduced into adaptive
ltering. Thus, the recursive identification based on adaptive filtering is able to integrate state
stimation with system identification, and can provide an effective identification method for
ime-varying Wiener output-error systems under complex noise environments [37] . 

The rest of paper is organized as follows. Section 2 gives the system description. The
daptive filtering-based recursive estimation is exploited in Section 3 . Section 4 shows main
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Fig. 1. Wiener output-error system structure. 

 

 

 

 

 

 

performance analyses of identification. To verify effectiveness of the proposed method, nu- 
merical simulation is conducted in Section 5 . Finally, Section 6 comes to a conclusion. 

2. System description 

Refer to the Wiener models in [16] , and consider a discrete time-varying Wiener output-
error system as following 

x 1 (t ) = 

p ∑ 

i=1 

a i (t − 1) 

q ∑ 

l=1 

d l (t − 1) g l ( x 1 (t − i)) + 

p ∑ 

j=1 

b j (t − 1) u(t − j) , (1) 

y(t ) = x 1 (t ) + v(t ) , (2) 

where the measurement output y ( t ) is composed of the true output x 1 ( t ) and the ambient noise
v ( t ), and g l (·) , l = 1 , . . . , q, are known nonlinear base functions, parameters { a i (t − 1) } p i=1 ,
{ d l (t − 1) } q l=1 and { b j (t − 1) } p j=1 are time-varying parameters that need to be identified. Note
that both the order p for linear part and the number q of nonlinear base functions are known.
Thus, identification should be constructed to estimate the system parameters directly. The 
Wiener output-error system in ( 1 )–( 2 ) can be depicted in Fig. 1 . 

Define the parameter and information vectors as 

ϕ k 
T (t ) = 

[
g k ( x 1 (t − 1)) , g k ( x 1 (t − 2)) , . . . , g k ( x 1 (t − p)) 

]
, k = 1 , . . . , q, 

ϕ u 
T (t ) = 

[
u(t − 1) , . . . , u (t − p) 

]
, 

θu 
T (t − 1) = 

[
b 1 (t − 1) , . . . , b p (t − 1) 

]
, 

θk 
T (t − 1) = 

[
a 1 (t − 1) d k (t − 1) , . . . , a p (t − 1) d k (t − 1) 

]
, k = 1 , . . . , q, 

ϕ 

T (t ) = 

[
ϕ 1 

T (t ) , . . . , ϕ q 
T (t ) , ϕ u 

T (t ) 
]
, 

θT (t − 1) = 

[
θ1 

T (t − 1) , . . . , θq 
T (t − 1) , θu 

T (t − 1) 
]
, 

(3) 

where ϕ(t ) ∈ R 

p( q+1) and θ(t − 1) ∈ R 

p( q+1) . Thus, the regression form of ( 1 )–( 2 ) can be
written as 

y(t ) = ϕ 

T (t ) θ(t − 1) + v(t ) . (4) 

Assumptions 1 and 2. The noise v ( t ) satisfies the following assumptions 

E [ v(t ) ] = r(t ) = 0; (A1) 

E 

[
v 2 (t ) 

] = R(t ) ≤ σv 
2 < ∞ . (A2) 
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he assumptions ( A1 ) and ( A2 ) shows that stochastic noise has properties of both zero mean
nd bounded variances. However, the noise can be either white or colored, and its statistical
roperty can be non-Gaussian and time-varying. Specifically, the noise variances R(t ) can
hange with time. These assumptions reflect unknown noise statistics. 

ssumptions 3 and 4. Define the parameter variation ω(t ) = θ(t ) − θ(t − 1) . Assume that
(t ) satisfies the following assumptions 

 

[
ω ( t ) ω 

T ( s ) 
] = 0, s � = t ; E [ v ( t ) ω ( s ) ] = 0, (A3)

 

[‖ ω(t ) ‖ 2 ] ≤ ε ‖ θ(t − 1) ‖ 2 ≤ σw 

2 < ∞ , (A4)

here ε > 0 is a very small number. That is, the parameter variation ω(t ) remains tiny in
(t − 1) . The assumptions illustrate that the variation is uncorrelated with ambient noise. 

. Adaptive filtering-based recursive identification 

This section aims to employ a weighted gradient identification algorithm to estimate pa-
ameters. Adaptive filtering is introduced to harvest the optimal estimates of true x 1 ( t ). 

Referring to the works in [20] , multiple iterations in recursive identification can improve
obustness of parameter estimation in noisy environments, and thus improve model accuracy.
ecause of time-varying property of parameters, damping coefficients are also introduced to
ost functions. That is, different coefficients enable fast forgetting of past information, and
hus enable fast tracking of current parameter changes. Define the cost function as 

 (θ) = 

1 

2 

t ∑ 

j= t−m+1 

[ 
b̄ 

t− j d̄ m 

· (y( j) − ϕ 

T ( j) θ
)2 ] 

, (5)

here m denotes the number of samples from epoch t − m + 1 to epoch t at each re-
ursion. From ( 5 ), the damping coefficients fitted by negative exponential law are se-
ected as { ̄b 

m−1 d̄ m 

, . . . , b̄ 

1 d̄ m 

, d̄ m 

} , where the scalar b̄ represents attenuation speed, and
 ̄m 

= ( 1 − b̄ ) / ( 1 − b̄ 

m ) , 0 < b̄ < 1 . It should be noted that the values of b̄ and m need to be
djusted, according to situations of parameter changes. The tradeoff between robust estimation
nd change track needs to be solved. Thus, the proposed cost function can not only guarantee
obust estimation, but also keep track of parameter changes. The quadratic criterion in ( 5 )
an be minimized by adopting the well-known Gauss-Newton technique [20] . Define 

(t ) = [ ϕ(t − m + 1) , . . . , ϕ(t ) ] T , 

 (t ) = 

[
y(t − m + 1) , . . . , y(t ) 

]T 
, 

 (t ) = diag( ̄b 

m−1 d̄ m 

, . . . , b̄ 

1 d̄ m 

, d̄ m 

) , 

(6)

here �(t ) ∈ R 

m ×p( q+1) and W (t ) ∈ R 

m×m . Then, the following equation is yielded 

d 

dθ
J (θ) = −�T (t ) W (t ) [ Y (t ) − �(t ) θ] . (7)

he Hessian of J (θ) is given by 

d 

2 

d θ2 
J (θ) = �T (t ) W (t ) �(t ) . (8)
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The Gauss-Newton solution of minimizing ( 5 ) can be generated by 

ˆ θ(t ) = 

ˆ θ(t − 1) + o(t ) 
[ 
− d 2 J(θ) 

d θ2 

] −1 
· dJ(θ) 

dθ

∣∣∣ ˆ θ(t−1) 

= 

ˆ θ(t − 1) + o(t ) H 

−1 (t ) �T (t ) W (t ) 
[ 
Y (t ) − �(t ) ̂  θ(t − 1) 

] 
, 

(9) 

where H (t ) := �T (t ) W (t ) �(t ) and o ( t ) is a sequence of positive scalar. To enhance tracking
capability of process changes, o ( t ) is usually given by 

1 / o(t ) = γ / o(t − 1) + 1 , (10) 

where initial term o(m) denotes a small number specified by the designer, and γ denotes 
forgetting factor. In addition, to prevent H ( t ) from being singular, H ( t ) can be modified
according to Robbins-Monro [20] method 

H (t ) = H (t − 1) + o(t ) 
(
�T (t ) W (t ) �(t ) − H (t − 1) 

)
. (11) 

In summary, the proposed gradient-based recursive identification (RI) method is formulated 

as 
Gradient-based recursive identification (RI) method 

Begin 
1. Initialize the vectors and matrices ˆ θ(m) , H (m) , o(m) at epoch m . 
2. For t ≥ m + 1 , implement the proposed recursive identification algorithm 

�(t ) = [ ϕ(t − m + 1) , . . . , ϕ(t ) ] T , (12) 

Y (t ) = 

[
y(t − m + 1) , . . . , y(t ) 

]T 
, (13) 

W (t ) = diag( ̄b m−1 d̄ m , . . . , b̄ 1 d̄ m , d̄ m ) , (14) 

1 / o ( t ) = γ / o ( t − 1 ) + 1 , (15) 

H ( t ) = H ( t − 1 ) + o ( t ) 
(
�T ( t ) W ( t ) �( t ) − H ( t − 1 ) 

)
, (16) 

ˆ θ( t ) = 

ˆ θ( t − 1 ) + o ( t ) H 

−1 ( t ) �T ( t ) W ( t ) 
[ 
Y ( t ) − �( t ) ̂ θ( t − 1 ) 

] 
(17) 

3. After getting ˆ θ(t ) , the parameter estimates { ̂ a i (t ) } p i=1 , { ̂  d l (t ) } q l=1 and { ̂ b j (t ) } p j=1 can be further 
calculated. According to [21] , the average method gives the following parameter estimates { ˆ a i (t ) 

}p 
i=1 = 

[ 
ˆ θ1 (t ) , . . . , ˆ θp ( t ) 

] T 
, (18) 

{ ˆ d l (t ) 
} q 

l=1 
= 

1 

p 

p ∑ 

i=1 

[ 
1 , 

ˆ θp+ i (t ) 
ˆ θi (t ) 

, 
ˆ θ2p+ i (t ) 

ˆ θi (t ) 
, . . . , 

ˆ θ(q−1) p+ i (t ) 
ˆ θi (t ) 

] T 
, (19) 

{ ˆ b j (t ) } p 
j=1 

= 

[ 
ˆ θpq+1 (t ) , . . . , ˆ θpq+ p ( t ) 

] T 
, (20) 

where ˆ d 1 (t ) = 1 ensures uniqueness of the result [21] . 
4. Increase t by 1 and go to Step 2. 

End 

It should be mentioned that the proposed RI method in ( 12 )–( 20 ) is based on multiple itera-
tions. This means that the parameter updates for epoch t considers multiple errors of previous
moments. Hence, this kind of “memory” ensures more accurate grasp of system characteris- 
tics, and enhances robustness of identification. Actually, robustness of identification means the 
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bility that can distinguish system characteristics in complex noise environments. Moreover,
n order to keep track of time-varying system characteristics, the attenuation speed b̄ and the
ength m should be selected. That is, the balance between robustness and traceability needs
o be guaranteed. 

However, the difficulty in this recursive algorithm is that the information vector ϕ(t )
ontains unknown components x 1 (t − i) . Hence, in this paper, an adaptive filtering method is
xploited to obtain the optimal estimates of x 1 ( t ). It is well known that the extended Kalman
lter [29] has been widely used to harvest state estimates for nonlinear state space models.
or the system model ( 1 ), its equivalent state space model is constructed as following 

 (t ) = f t−1 ( x (t − 1) ) + B t−1 u(t − 1) , 

(t ) = Cx (t ) + v(t ) , 
(21)

here 

 (t ) = 

[
x 1 (t ) , x 2 (t ) , . . . , x p (t ) 

]T 
, 

 t−1 = 

[
b 1 (t − 1) , b 2 (t − 1) , . . . , b p ( t − 1) 

]T 
, 

 = [1 , 0, . . . , 0] , 
f t−1 ( x (t − 1) ) = 

[
f 1(t−1) (x (t − 1)) , f 2(t−1) (x (t − 1)) , . . . , f p(t−1) ( x ( t − 1)) 

]T 
, 

f k(t−1) (x (t − 1)) = a k (t − 1) 
q ∑ 

l=1 
d l (t − 1) g l ( x 1 (t − 1)) + x k+1 (t − 1) , k = 1 , . . . , ( p − 1) , 

f p(t−1) (x (t − 1)) = a n (t − 1) 
q ∑ 

l=1 
d l (t − 1) g l ( x 1 (t − 1)) , 

t should be noted that B t−1 ∈ R 

p , f t−1 ( x ( t − 1) ) ∈ R 

p and C ∈ R 

1 ×p . The states of this
quivalent model in ( 21 ) includes true x 1 ( t ) and other virtual states x 2 ( t ), …, x p ( t ). Thus, ( 21 )
an be used for extended Kalman filtering. In addition, for unknown noise statistics, estimators
hould be designed in order to achieve adaptive filtering. Here, the design approach of noise
stimator is based on the principle of Sage-Husa maximum a posteriori estimation. From ( 21 ),
age-Husa noise estimator [32] in the framework of Kalman is shown as below 

ˆ  ( t ) = 

1 

t 

t ∑ 

j=1 

[
y ( j ) − C ̂  x ( j| j − 1 ) 

]
, (22)

ˆ 
 ( t ) = 

1 

t 

t ∑ 

j=1 

[
ε 2 ( j ) − CP ( j| j − 1 ) C 

T 
]
, (23)

here ε( j) is the innovation, i.e., ε( j) := y( j) − C ̂  x ( j| j − 1) − ˆ r ( j ) , ˆ x ( j | j − 1) ∈ R 

p is the
ime update state estimate for epoch j , P ( j| j − 1) ∈ R 

p×p is the time update error covariance
stimate for epoch j , and ˆ r (t ) and 

ˆ R (t ) denote estimated mean values and estimated variances,
espectively. However, according to [32] , ( 22 ) and ( 23 ) are only suitable to the situation where
oise prior statistics remains unchanged. If ambient noise changes rapidly and continuously,
t will cause the estimator performance to degrade significantly. Based on Sage-Husa estima-
ion, different damping coefficients are also introduced to deal with the information of noise
stimations at different moments. Since the initial epoch for adaptive filtering starts from
poch m , the sequence length of damping coefficients should be (t − m) instead of t . The se-
uence fitted by negative exponential law can be selected as { ̃ b 

t−m−1 ˜ d t−m 

, . . . , ˜ d t−m 

} , where
˜ 
 t−m 

= ( 1 − ˜ b ) / ( 1 − ˜ b 

t−m ) and 0 < 

˜ b < 1 . Hence, the weighted expressions of ( 22 )–( 23 ) from



1286 Z. Wang, H. An and X. Luo / Journal of the Franklin Institute 357 (2020) 1280–1298 

 

 

 

 

 

 

 

 

 

 

 

, 

) 
epoch ( m + 1 ) to epoch t can be rewritten as 

ˆ r (t ) = 

t ∑ 

j= m+1 

{ ˜ b 

t− j ˜ d t−m 

· [y( j) − C ̂  x ( j| j − 1) 
]} 

= (1 − ˜ d t−m 

) ̂  r (t − 1) + 

˜ d t−m 

[
y(t ) − C ̂  x (t | t − 1) 

]
, 

(24) 

ˆ R (t ) = 

t ∑ 

j= m+1 

{ ˜ b 

t− j ˜ d t−m 

· [ε 2 ( j) − CP ( j| j − 1) C 

T 
]} 

= (1 − ˜ d t−m 

) ̂  R (t − 1) + 

˜ d t−m 

[
ε 2 (t ) − CP (t | t − 1) C 

T 
]
, 

(25) 

In ( 24 )–( 25 ), recent noise samples are weighted heavier than past noise samples. In this way,
estimated means and covariances can follow noise changes. Moreover, the bigger the value 
of b is, the greater the proportion of past noise statistics is. 

Because the state space model ( 21 ) is a discrete output error model, the extended Kalman
filter can be established according to [26] . In order to deal with unknown noise statistics,
the weighted noise estimator in ( 24 )–( 25 ) is also applied into the filtering algorithm. Then,
parameter estimates { ̂  a i (t − 1) } p i=1 , { ˆ d l (t − 1) } q l=1 and { ̂ b j (t − 1) } p j=1 at epoch (t − 1) are used

to form 

ˆ f t−1 (·) and 

ˆ B t−1 . Thus, the adaptive EKF algorithm for Wiener output-error systems
is concluded as below 

ˆ x (t | t − 1) = 

ˆ f t−1 ( ̂  x (t − 1 | t − 1)) + 

ˆ B t−1 u(t − 1) , (26)

P (t | t − 1) = 

( 

∂ ˆ f t−1 

∂x 

| ˆ x (t −1 | t −1) 

) 

P (t − 1 | t − 1) 

( 

∂ ˆ f t−1 

∂x 

| ˆ x (t −1 | t −1) 

) T 

, (27) 

ˆ r (t ) = (1 − ˜ d t−m 

) ̂  r (t − 1) + 

˜ d t−m 

[
y(t ) − C ̂  x (t | t − 1) 

]
, (28) 

ε(t ) = y(t ) − C ̂  x (t | t − 1) − ˆ r (t ) , (29) 

ˆ R (t ) = (1 − ˜ d t−m 

) ̂  R (t − 1) + 

˜ d t−m 

[
ε 2 (t ) − CP (t | t − 1) C 

T 
]
, (30) 

K(t ) = P (t | t − 1) C 

T 
(
CP (t | t − 1) C 

T + 

ˆ R (t ) 
)−1 

, (31) 

ˆ x (t | t ) = ˆ x (t | t − 1) + K(t ) ε(t ) , (32)

P (t | t ) = ( I − K(t ) C ) P (t | t − 1) . (33) 

In ( 31 ), K(t ) denotes the nonlinear gain for state updates. At initial epoch m , initialize
ˆ x (m | m ) = x 0 and P (m | m ) = P 0 . After getting the optimal estimated state vector ˆ x (t | t ) , ˆ x 1 (t | t )
can be extracted to construct the information vector ϕ(t ) . Specifically, the estimated informa-
tion vectors are formed as 

ˆ ϕ 

T 
k (t ) = 

[
g k ( ̂  x 1 (t − 1 | t − 1)) , g k ( ̂  x 1 (t − 2| t − 2)) , . . . , g k ( ̂  x 1 (t − p| t − p)) 

]
, k = 1 , . . . , q

ϕ u 
T (t ) = 

[
u(t − 1) , . . . , u (t − p) 

]
, 

ˆ ϕ 

T (t ) = 

[ ˆ ϕ 

T 
1 (t ) , . . . , ˆ ϕ 

T 
q ( t ) , ϕ u 

T ( t ) 
]

(34
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n conclusion, the adaptive filtering algorithm and the recursive identification algorithm both
tart at epoch (m + 1) . That is, the relationship can be shown as below 

 = m + 1 , 

ˆ  1 (t − 1 | t − 1) , ˆ θ(t − 1) ⇒ 

ˆ θ(t ) , 

ˆ  (t − 1 | t − 1) , ˆ θ(t − 1) ⇒ ˆ x (t | t ) ⇒ ˆ x 1 (t | t ) , 

 = t + 1 . 

ence, the specific algorithm can be drawn as 

daptive filtering-based recursive identification (AF-RI) method 

egin 
1. Initialize the vectors and matrices ˆ θ(m) , H (m) , o(m) , ̂  x (m| m) , P (m| m) at epoch m . 
2. Initialize terms ˆ x 1 (m − 1 | m − 1) , . . . , ˆ x 1 (2 − p | 2 − p) for the information matrix ˆ �(m + 1) . 
3. For t ≥ m + 1 , form the estimated information vectors by ( 34 ), and implement the proposed 

ecursive identification algorithm 

ˆ �(t ) = 

[ ˆ ϕ (t − m + 1) , . . . , ˆ ϕ (t ) 
]T 

, (35) 

ˆ H (t ) = 

ˆ H (t − 1) + o(t ) 
( ˆ �T (t ) W (t ) ̂  �(t ) − ˆ H (t − 1) 

)
, (36) 

ˆ θ(t ) = 

ˆ θ(t − 1) + o(t ) ̂  H 

−1 (t ) ̂  �T (t ) W (t ) 
[ 
Y (t ) − ˆ �(t ) ̂ θ(t − 1) 

] 
. (37) 

4. Harvest newest parameter estimations { ̂ a i (t ) } p i=1 , { ̂  d l (t ) } q l=1 and { ̂ b j (t ) } p j=1 by ( 18 )–( 20 ). 
5. Construct the virtual equivalent state space model by ( 21 ). 
6. For t ≥ m + 1 , implement the proposed adaptive filtering algorithm by ( 26 )–( 33 ). 
7. Extract the current optimal estimate ˆ x 1 (t | t ) . Increase t by 1 and go to Step 3. 
nd 

emark 1. The sensitivity of proposed Sage-Husa Kalman filter is affected by attenuation
peed 

˜ b in a large extent. When the value of ˜ b gets bigger, attenuation becomes slower, and
˜ 
 t−m 

decreases to a small value. Then, in ( 28 )–( 30 ), ˆ r (t ) and 

ˆ R (t ) of noise estimator change
lowly in face of noise changes. Hence, under unknown noise statistics, the bigger value of ˜ b
akes the proposed filter difficult to track noise changes, and the sensitivity of nonlinear gain
(t ) decreases significantly. It should also be noted that the proposed Sage-Husa Kalman
lter can deal with situations with non-zero-mean noise. The filter can recursively estimates
oth mean values and variances of noise. 

. Main performance analysis 

Martingale convergence theorem [35] denotes the applications of Lyapunov stability the-
ries in stochastic systems. The theorem is usually adopted to analyze convergence of time-
nvariant systems. Meanwhile, the martingale hyperconvergence theorem [34] is obtained to
tudy bounded convergence of time-varying systems. 
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Lemma 1 [34] . Define the non-negative function V (t ) = V (x(t )) and the set 

R t = [ x(t ) : h ( x(t ) ) ≤ ηmax < ∞ , a. s. ] , (38) 

where ηmax denotes the upper bound. Define R 

c 
t as the complementary set of R t . For x(t ) ∈ R 

c 
t ,

if V(t) satisfies the following inequality 

E ( V (t ) ) − V (t − 1) ≤ −b(t ) , a. s. (39) 

Meanwhile, for x(t ) ∈ R 

c 
t , the random variable b(t ) satisfies b(t ) > 0. Then, for sufficiently

large t, i.e., t > t 0 , we have x(t ) ∈ R t , or lim t→∞ 

x(t ) ∈ R t , a. s. 

Assumptions 5 and 6. For the proposed RI method in ( 12 )–( 20 ) and any t ( t ≥ m + 1 ), there
exist α > 0 and β > 0 such that the following persistent excitation condition holds 

αI ≤ �T (t ) W (t ) �(t ) = 

m ∑ 

i=1 

[
( ̄b 

i−1 d̄ m 

) 
(
ϕ(t − i + 1) ϕ 

T (t − i + 1) 
)] ≤ βI. (A5) 

In addition, the information vector ϕ(t ) is bounded, i.e., 

0 ≤ ‖ ϕ(t ) ‖ 2 ≤ M < ∞ . (A6) 

It should be noted that the assumptions ( A5 )–( A6 ) ensures system identifiability. 

Theorem 1. For t ≥ m + 1 , consider the time-varying Wiener output-error system in ( 1 )–
( 2 ) . The noise v(t ) satisfies the assumptions ( A1 )–( A2 ) , and the parameter variation ω(t )
satisfies the assumptions ( A3 )–( A4 ) . Further, considering the proposed RI method in ( 12 )–
( 20 ) , the assumptions ( A5 )–( A6 ) are satisfied. Afterwards, the parameter estimation error ˜ θ(t )
is bounded, and 

lim →∞ 

∥∥∥ ˜ θ(t ) 
∥∥∥2 

≤ 1 

α(1 − γ ) 

( 

m 

2 d̄ 

2 
m 

σ 2 
v M 

α
+ 

γ σ 2 
w 

o 0 p 0 
+ 

βσ 2 
w 

1 − γ

) 

, ˜ θ(t ) = 

ˆ θ(t ) − θ(t ) . (40) 

Proof. ( 15 ) and ( 16 ) give 

H (t ) 

o(t ) 
= 

1 − o(t ) 

o(t ) 
H (t − 1) + �T (t ) W (t ) �(t ) = γ

H (t − 1) 

o(t − 1) 
+ �T (t ) W (t ) �(t ) . (41)

Define G(t ) = H (t ) / o(t ) . Then, we have 

G(t ) = γ G(t − 1) + �T (t ) W (t ) �(t ) , G(m) = 

1 

o 0 p 0 
I, o(m) = o 0 . (42)

From the definition of ω(t ) and ( 17 ), ˜ θ(t ) can be written as 

˜ θ(t ) = 

ˆ θ(t − 1) + G 

−1 (t ) �T (t ) W (t ) 
[ 
Y (t ) − �(t ) ̂  θ(t − 1) 

] 
− ω(t ) . (43)

Define �(t ) = [ v(t − m + 1) , · · · , v(t ) ] T and �(t ) ̃  θ(t − 1) = 

˜ Y (t ) , it is easy to get 

 (t ) = �(t ) θ(t − 1) + �(t ) , ˜ θ(t ) = 

˜ θ(t − 1) + G 

−1 (t ) �T (t ) W (t ) 
(
− ˜ Y (t ) + �(t ) 

)
− ω(t ) . 

(44) 

Define a non-negative definite function 

 (t ) = 

˜ θT (t ) G(t ) ̃  θ(t ) . (45) 
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rom ( 44 )–( 45 ), it yields 

 (t ) = γV (t − 1) − ˜ Y 

T (t ) 
(
W (t ) − W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) 
) ˜ Y (t ) 

+ �T (t ) W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) �(t ) + ω 

T (t ) G(t ) ω(t ) (46)

+ 2 ̃

 Y 

T (t ) 
(
W (t ) − W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) 
)
�(t ) − 2 ̃

 θT (t − 1) G(t ) ω(t ) 

− 2 

(
− ˜ Y 

T (t ) + �T (t ) 
)
W (t ) �(t ) ω(t ) . 

rom ( 42 ), G(t ) can be written as 

(t ) = γ t−m G(m) + 

t−m−1 ∑ 

i=0 

γ i �T (t − i) W (t − i) �(t − i) . (47)

or t ≥ m + 1 , ( A5 ) gives the following inequality 

 

(
γ t−m 

o 0 p 0 
+ 

1 − γ t−m 

1 − γ
α

)
≤ G(t ) ≤ I 

(
γ t−m 

o 0 p 0 
+ 

1 − γ t−m 

1 − γ
β

)
, G 

−1 ( t ) ≤ 1 − γ

(1 − γ t−m ) α
I ≤ I 

α
. 

(48)

n ( 46 ), ˜ Y 

T (t ) and �(t ) are uncorrelated, and 

˜ θT (t − 1) , �(t ) , ˜ Y 

T (t ) and ω(t ) are uncorre-
ated. Thus, taking the expectation of both sides of ( 46 ) and using the assumptions ( A1 ) and
 A3 ), it follows that 

E ( V (t ) ) = γV ( t − 1) − ˜ Y 

T (t ) 
(
W (t ) − W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) 
) ˜ Y (t ) 

+ E 

(
�T (t ) W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) �(t ) 
)+ E 

(
ω 

T (t ) G(t ) ω(t ) 
)
, 

(49)

here E( V ( t ) ) is the expectation of V (t ) . Because W (t ) − W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) ≥ 0,
here exists ˜ Y 

T (t )( W (t ) − W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) ) ̃  Y (t ) ≥ 0. From ( 49 ), it gives 

 ( V (t ) ) ≤ γV ( t − 1) + E 

(
�T (t ) W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) �(t ) 
)+ E 

(
ω 

T (t ) G(t ) ω(t ) 
)
. 

(50)

et ρi (t ) be the i th row of W ( t ) �( t ) , i.e., ρi (t ) = b̄ 

m−i d̄ m 

ϕ 

T (t − m + i) . Then, assumptions
 A2 ) and ( A6 ) yields 

 

(
�T (t ) W (t ) �(t ) G 

−1 (t ) �T (t ) W (t ) �(t ) 
) ≤ m 

m ∑ 

i=1 

[
ρi (t ) G 

−1 (t ) ρT 
i (t ) · E 

(
v 2 (t − m + i) 

)]
≤ (m 

2 d̄ 

2 
m 

σ 2 
v M 

)/
α. 

(51)

urther, from ( A4 ), it yields 

 

(
ω 

T (t ) G(t ) ω(t ) 
) ≤
(

γ t−m 

o 0 p 0 
+ 

1 − γ t−m 

1 − γ
β

)
σ 2 

w 

≤
(

γ

o 0 p 0 
+ 

β

1 − γ

)
σ 2 

w 

. (52)

efine ηmax as ηmax = 

m 

2 d̄ 2 m σ
2 
v M 

α
+ ( 

γ

o 0 p 0 
+ 

β

1 −γ
) σ 2 

w 

, and b ( t ) as b(t ) = (1 − γ ) V (t − 1) − ηmax .
hen, from ( 51 )–( 52 ), ( 50 ) can be written as 

 [ V (t ) ] − V (t − 1) ≤ −b(t ) . (53)
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Consider the set R t = [ ̃  θ(t ) : (1 − γ ) V (t − 1) ≤ ηmax , a. s . ] , and define R 

c 
t as the comple- 

mentary set of R t . Thus, for x(t ) ∈ R 

c 
t , there exists b(t ) > 0. Applying martingale hypercon-

vergence theorem of Lemma 1 , it is known that 

lim →∞ ̃

 θ(t ) ∈ R t , a. s . (54) 

Therefore, we have 

lim →∞ 

V ( t ) ≤ m 

2 d̄ 

2 
m 

σ 2 
v M 

(1 − γ ) α
+ 

γ σ 2 
w 

o 0 p o (1 − γ ) 
+ 

βσ 2 
w 

(1 − γ ) 2 
. (55) 

Then the parameter estimation error ˜ θ(t ) satisfies 

lim 

t→∞ 

∥∥∥ ˜ θ(t ) 
∥∥∥2 

≤ m 

2 d̄ 

2 
m 

σ 2 
v M 

(1 − γ ) α2 
+ 

γ σ 2 
w 

αo 0 p 0 (1 − γ ) 
+ 

βσ 2 
w 

α(1 − γ ) 2 

= 

1 

α(1 − γ ) 

( 

m 

2 d̄ 

2 
m 

σ 2 
v M 

α
+ 

γ σ 2 
w 

o 0 p 0 
+ 

βσ 2 
w 

1 − γ

) 

. 

(56) 

This proves Theorem 1 . 

In Theorem 1 , the assumptions ( A1 )–( A4 ) specify conditions of both noise and parame-
ter variation. The assumptions ( A5 ) and ( A6 ) show both persistent excitation property and
boundedness of information vectors. By assuming that the information vector ϕ(t ) is known, 
Theorem 1 shows the bounded convergence of time-varying Wiener output-error systems. 

Corollary 1. From ( 4 ) and ( 34 ) , define ˆ v (t ) = y(t ) − ˆ ϕ 

T (t ) θ(t − 1) . Assume that the error
ˆ v (t ) satisfies the assumptions ( A1 ) –( A2 ) , and the parameter variation ω(t ) satisfies the as-
sumptions ( A3 )–( A4 ) . Further, considering the proposed AF-RI method, assumptions ( A5 )
and ( A6 ) are satisfied, i.e. , αI ≤ ˆ �T (t ) W (t ) ̂  �(t ) ≤ βI and 0 ≤ ‖ ̂  ϕ (t ) ‖ 2 ≤ M < ∞ . Then,
the parameter estimation error ˜ θ(t ) is bounded, and Eq. (40) is obtained . 

Proof. The proof of this corollary is similar to the proof of Theorem 1 , and is thus omitted.

Remark 2. By selecting the suitable value of ˜ b , ˆ r (t ) and 

ˆ R (t ) of Sage-Husa noise estimator
can record noise changes correctly. The nonlinear gain K(t ) is sensitive to noise changes, 
and the adaptive Kalman filter in ( 26 )–( 33 ) can approximate the Kalman filter in [26] . In
fact, under uniform complete observability, [26] proves that the error dynamics equation of 
Kalman filter is asymptotically stable for linear time-varying output-error systems. Meanwhile, 
recursive identification based on the Gauss-Newton technique can provide more and more 
accurate parameter estimates. Thus, with the improvement of parameter estimation accuracy, 
the proposed adaptive filter based on Sage-Husa principle can provide more accurate estimate 
of ˆ ϕ 

T (t ) . This leads to uncorrelation between ˆ v (t ) and process data. Therefore, the conditions
of Corollary 1 are easy to be satisfied. 

Remark 3. Both the theorem and the corollary in this paper are the extensions of convergence
results in [35] and [36] . Specifically, the asymptotic convergence of linear time-invariant 
systems is given in [35] , and the bounded convergence of linear time-varying systems is
obtained in [36] . 
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. Numerical simulation 

In this section, the time-varying Wiener output-error systems are considered for identifica-
ion. Three examples are used to demonstrate the effectiveness of proposed AF-RI method.

eanwhile, by replacing unknown x 1 (t − i) in ϕ(t ) with measurements y(t − i) , the proposed
I method in ( 12 )–( 20 ) is also implemented. These two identification methods are used to

llustrate the following aspects: (i) the effectiveness of proposed recursive identification; (ii)
he better performance of AF-RI method; (iii) the effectiveness of dealing with unknown noise
tatistics. Here, the same system structure is used for examples 1 and 2 , and it is taken the
ollowing form 

 1 (t ) = 

2 ∑ 

i=1 

a i (t − 1) 

3 ∑ 

l=1 

d l (t − 1) g l ( x 1 (t − i)) + 

2 ∑ 

j=1 

b j (t − 1) u(t − j) , (57)

(t ) = x 1 (t ) + v(t ) , (58)

(t ) = [ a 1 (t ) , a 2 (t ) , d 1 (t ) , d 2 (t ) , d 3 (t ) , b 1 (t ) , b 2 (t ) ] 
T , (59)

here the vector [ g 1 (y(t − i)) , g 2 (y(t − i)) , g 3 (y(t − i))] T contains nonlinear basis func-
ions, and the vector θ(t ) denotes the parameters of system. In simulation tests, the atten-
ation speed b̄ = 

˜ b = 0. 9 , the sample number m = 20, and the forgetting factor γ = 0.99.
urthermore, the initial parameters and states are taken as ˆ x (m | m ) = x 0 = 10 

−6 ∗ [1 , 1] T 

nd 

ˆ θ(m) = 10 

−6 ∗ [1 , . . . , 1] T , respectively. For the proposed Kalman filter, there exist
 (m | m ) = P 0 = 10 ∗ I 2×2 , ˆ R (m) = 10 

6 and ˆ r (m) = 10 

6 . 

xample 1. In this example, two time-varying systems are adopted to explain the effectiveness
f proposed AF-RI method. These two systems are shown in Situation 1 and Situation 2,
espectively. Then, in Situation 1, the fluctuations of system parameters are set to be extremely
mall. Meanwhile, in Situation 2, the slow time-varying characteristics of system are shown,
nd the linear changes on system parameters are introduced. It should also be noted that the
dentified models have same structures as the systems in both situations. 

Situation 1. Consider the following time-varying Wiener output-error system 

 1 (t ) = 

2 ∑ 

i=1 

a i 
[
d 1 x 1 (t − i) + d 2 ( x 1 (t − i)) 2 + d 3 ( x 1 (t − i)) 3 

]+ 

2 ∑ 

j=1 

b j u(t − j) , (60)

(t ) = x 1 (t ) + v 1 (t ) , (61)
= [ a 1 , a 2 , b 1 , b 2 , d 1 , d 2 , d 3 ] 

T 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

N (0. 18 , 0. 001 

2 ) 

N (0. 23 , 0. 001 

2 ) 

N (−0. 3 , 0. 001 

2 ) 

N (1 . 0, 0. 001 

2 ) 

N (1 . 0, 0. 001 

2 ) 

N (0. 2, 0. 001 

2 ) 

N (−0. 33 , 0. 001 

2 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
(62)

here the true parameters conform to normal distributions, and fluctuate slightly around cer-
ain values. The inputs { u(t ) } are taken as persistent excitation signals with zero mean and
nit variance. The noise { v 1 (t ) } is taken as the three-term mixture Gaussian noise 

 1 (t ) ∼ 0. 8 ∗ N 

(
0, 0. 2 

2 
)+ 0. 15 ∗ N 

(
0, 50 ∗ 0. 2 

2 
)+ 0. 05 ∗ N 

(
0, 100 ∗ 0. 2 

2 
)
, (63)
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Fig. 2. The predicted output quality of RI method in Situation 1 of Example 1 . 

Fig. 3. The predicted output quality of AF-RI method in Situation 1 of Example 1 . 

 

 

 

 

 

 

 

where v 1 (t ) denotes the non-Gaussian white noise. In ( 63 ), the term N ( 0, 0. 2 

2 ) represents
nominal ambient noise, and the terms N ( 0, 50 ∗ 0. 2 

2 ) and N ( 0, 100 ∗ 0. 2 

2 ) represent impul- 
sive components. The probabilities that the impulses occur are 0.15 and 0.05. For the models
in ( 60 )–( 63 ), noise and parameter variations satisfy the assumptions ( A1 )–( A4 ) approximately.

Further, the proposed AF-RI and RI methods are applied to estimate parameters. Set the
total data length L = 10,000, and assume δ(t ) := ‖ ̂  θ(t ) − θ(t ) ‖ / ‖ θ(t ) ‖ × 100% as the relative 
estimation error. The predicted outputs produced by two methods are also compared with 

the actual noise-free outputs in Figs. 2–3 . From the figures, the predicted outputs obtained
by AF-RI method are closer to the actual noise-free outputs. Fig. 4 describes the change
processes of relative estimation errors for both RI and AF-RI methods. From Figs. 2–4 , we
can get the following conclusions 
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Fig. 4. The relative estimation error of parameters in Situation 1 of Example 1 . 
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i) The relative estimation errors are fluctuating. 
i) AF-RI method can generate more accurate estimations of system parameters. 
i) AF-RI method generates the more accurate model to track time-varying system. 

Situation 2 . Consider the following slow time-varying Wiener output-error system 

 1 (t ) = 

2 ∑ 

i=1 

a i [ d 1 x 1 (t − i) + d 2 sin( x 1 (t − i)) + d 3 cos( x 1 (t − i)) ] + 

2 ∑ 

j=1 

b j u(t − j) , (64)

(t ) = x 1 (t ) + v 1 (t ) , (65)

= [ a 1 , a 2 , b 1 , b 2 , d 1 , d 2 , d 3 ] 
T 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0. 25 + 0. 0001 ∗ t 
0. 28 + 0. 0001 ∗ t 
−0. 3 − 0. 0001 ∗ t 
1 . 0 + 0. 0001 ∗ t 

1 . 0 

−0. 5 + 0. 0001 ∗ t 
−0. 3317 + 0. 0002 ∗ t 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
(66)

here the parameters to be identified change slowly and linearly. In order to ensure uniqueness
f identification, the parameter d 1 of nonlinear part is equal to 1, and does not participate in
dentification. The inputs { u(t ) } are taken as persistent excitation signals with zero mean and
nit variance, and the noise { v 1 (t ) } remains same as in ( 63 ). Thus, the assumptions ( A1 )–( A4 )
re approximately satisfied. With L = 2000, RI and AF-RI methods are applied to estimate
arameters { a 1 , a 2 , b 1 , b 2 , d 2 , d 3 } . The performances of tracking time-varying parameters
re shown in Figs. 5–6 . From the figures, the following conclusions are got 

i) The tracking performances of { a 1 , a 2 , b 1 , b 2 } of linear part are poor by RI method. 
i) The convergence speed of { d 2 , d 3 } of nonlinear part is slow by RI method. 
i) The convergence speed of parameter estimation is faster by AF-RI method. 
) The better performances of tracking time-varying parameters are got by AF-RI method. 
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Fig. 5. The performances of tracking time-varying parameters by RI method. 

Fig. 6. The performances of tracking time-varying parameters by AF-RI method. 

 

 

 

 

Example 2. In this example, robustness of identification is tested under different noise en-
vironments. The system structure adopts the same form described in ( 64 )–( 66 ). Both RI and
AF-RI methods are applied into identification. The inputs { u(t ) } are taken as persistent ex-
citation signals with zero mean and unit variance. Besides, the following root mean square
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Table 1 
Mean values and standard deviations of RMSE under colored impulsive 
noise. 

Noise Algorithms RMSE 

v 2 (t ) RI 0.4714 ± 0.0071 
AF-RI 0.1937 ± 0.0064 
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rror (RMSE) index is taken to evaluate robustness 

MSE = 

√ √ √ √ 

L ∑ 

t=1 

(
x 1 (t ) − ˆ y (t ) 

)2 
/L , (67)

here x 1 (t ) denotes the actual noise-free output, ˆ y (t ) is the predicted output. With L = 2000,
he noise sequences { v(t ) } are taken in the following different situations. 

Situation I. The colored impulsive noise is adopted to verify the effectiveness of iden-
ification methods. That is, the mixture Gaussian noise v 1 (t ) in ( 63 ) can be seen as white
oise, and the colored impulsive noise v 2 (t ) is produced by moving average (MA) process.
he expressions of v 2 (t ) is shown as below. 

 2 (t ) = C 

(
z −1 
)
v 2 (t ) = 

(
1 + c 1 ∗ z −1 + c 2 ∗ z −2 

)
v 1 (t ) , (68)

here c 1 = 0. 7 , c 2 = −0. 5 , and the measurement outputs y(t ) = x 1 (t ) + v 2 (t ) . Then, the
ecommended RMSE index is used, and RI and AF-RI methods are run 50 times, respectively.
oth mean values and standard deviations of RMSE are shown in Table 1 . From the table,

t is known that these two identification methods are effective for colored impulsive noise.
ore accurate predicted outputs are obtained by AF-RI method. 

Situation II. Besides colored impulsive noise, the noise estimator based on Sage-Husa
rinciple can also handle noise with time-varying variances. Hence, the noise form is given
s 

 x (t ) ∼ 0. 8 ∗ N 

(
0, σ̄ 2 

v (t ) 
)+ 0. 15 ∗ N 

(
0, 50 ∗ σ̄ 2 

v (t ) 
)+ 0. 05 ∗ N 

(
0, 100 ∗ σ̄ 2 

v (t ) 
)
, (69)

here σ̄ 2 
v (t ) denotes the variance function. The expression of σ̄ 2 

v (t ) is 

¯ 2 
v (t ) = 

{
(r + k ∗ t ) 2 , t ≤ t 0 
σ̄ 2 

v ( t 0 ) , t > t 0 
(70)

here k = 0. 00015 , and t 0 is bigger than the data length L . The noise equations in ( 69 )–( 70 )
atisfy ( A1 )–( A2 ). When the term r in ( 70 ) is taken as 0.07, 0.1, 0.2, 0.3, four time-varying
oise sequences v 3 (t ) , v 4 (t ) , v 5 (t ) , v 6 (t ) are generated to test identification performance. RI
nd AF-RI methods are run 50 times, respectively. Both mean values and standard deviations
f RMSE are shown in Table 2 . From the table, it is known that both RI and AF-RI methods
an deal with time-varying impulsive noise effectively. Meanwhile, AF-RI method can provide
ore accurate identification results under reasonable noise intensities. 

Situation III. In order to observe the performance of proposed Sage-Husa Kalman filter,
on-random noise is introduced. Consider the following time-varying multi-sinusoidal noise
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Table 2 
Mean values and standard deviations of RMSE under noise with time- 
varying variances. 

Noise Algorithms RMSE1 

v 3 (t ) RI 0.6239 ± 0.0201 
AF-RI 0.3469 ± 0.0305 

v 4 (t ) RI 0.6613 ± 0.0198 
AF-RI 0.4004 ± 0.0464 

v 5 (t ) RI 0.8288 ± 0.0348 
AF-RI 0.5054 ± 0.0606 

v 6 (t ) RI 0.9739 ± 0.0198 
AF-RI 0.6135 ± 0.0570 

Fig. 7. The changing process of RMSE index under time-varying multi-sinusoidal noise. 

 

 

 

 

 

v 7 (t ) = ( c 1 + k ∗ t ) sin (2π f 1 t ) + c 2 sin (2π f 2 t ) + c 3 sin (2π f 3 t ) , (71) 

where c 1 = 0. 25 , c 2 = 0. 2, c 3 = 0. 1 , k = 0. 01 , and f 1 = 5 H z, f 2 = 12H z, f 3 = 18 H z.
Assuming that the sampling time T s = 0. 01 s, the changing process of RMSE index is shown
in Fig. 7 . From the figure, the RMSE values obtained by AF-RI method finally stabilize
around 0.19, and the RMSE values by RI method are gradually increasing after t = 12s . This
illustrates that the proposed Sage-Husa Kalman filter is effective. Further, the performance 
of AF-RI method is better than the performance of RI method under time-varying multi-
sinusoidal noise. 

6. Conclusions 

The combination of state estimation and system identification provides an effective tool to 

analyze time-varying and nonlinear behaviors under complex noise environments. This paper 
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roposes AF-RI method to achieve robust identification for time-varying Wiener output-error
ystems. Meanwhile, this paper tries to solve the problems below. 

• The appropriate attenuation speed determines the sensitivity of proposed Sage-Husa Kalman
filter, and the sensitive filter can keep track of noise changes. 

• The virtual equivalent state space model is constructed to implement adaptive filtering. 
• The unknown variables in information vectors are associated with optimal state estimates.
• The bounded convergence for time-varying nonlinear systems is exploited. 

The proposed adaptive filtering-based recursive method can also be extended to the iden-
ification of other time-varying nonlinear systems under unknown noise statistics. 
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