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ABSTRACT

Buried pipelines are “lifelines” for cities; therefore, it is
vital to understand their location and depth before municipal
construction to prevent them from being damaged. Magnetic
methods have been applied to detect buried ferrous metal
pipelines such as steel and cast-iron pipes. We have devel-
oped a positioning method for buried pipelines from mag-
netic data, which is based on a combination of the tilt angle
and the downward continuation. The magnetic tilt angle can
provide information about the location and depth of buried
pipelines, which can easily be calculated by the horizontal
and vertical magnetic field gradients. We prove that the tilt
angle for the magnetic field that has been reduced to the pole
is independent of the magnetization direction given by the
pipeline direction with respect to the inducing field. A tilt
angle of 90° marks the location of a buried pipeline, whereas
the depth is the distance between the location of the 90° and
its adjacent 0°. The iterative Tikhonov regularization method
for downward continuation, while separating the superim-
posed anomalies and enhancing the horizontal resolution,
also reduces the influence of fast Fourier transform-induced
noise and other noise that is intrinsic to the data set. We use
the derivative of the Tikhonov regularization result as a regu-
larization term of the minimization function and a constraint
for the regularization parameter choice to obtain a more stable
and accurate downward-continued result. This positioning
method is applicable to single and parallel pipeline detection.

INTRODUCTION

Buried pipelines are “lifelines” for cities and are responsible for
the transmission function of material and energy. It is vital to find
their location and buried depth to prevent them from being damaged

in the process of urban development and construction. Magnetic
methods have been used for the positioning of buried ferrous metal
pipelines.
Many methods have been developed to process sampled magnetic

data to estimate source parameters. Nabighian (1972) calculates the
depth, magnetic susceptibility, and dip of 2D bodies by using the
analytic signal of the magnetic anomaly. Thompson (1982) proposes
the Euler deconvolution method, which is based on the Euler’s homo-
geneity relationship, to infer the depth of 2D sources from the mag-
netic data. This method requires assumption of a “structural index”
related to the type of magnetic target. Salem and Ravat (2003) present
a method based on a combination of the analytic signal method and
the Euler deconvolution method to deduce the location, depth, and
geometry of magnetic sources. Salem et al. (2004) use the linear
equation between a symmetric anomalous field and its horizontal gra-
dient to calculate the source’s depth. The method is suitable for a
single contact, a dike, and a horizontal cylinder. Miller and Singh
(1994) introduce the concept of magnetic tilt angle, which estimates
the location and depth of vertical contacts based on the ratio of the
vertical and horizontal gradients of the magnetic field. Salem et al.
(2007) and Cooper (2014) apply the tilt angle to identify the source of
an infinite contact. Salem et al. (2008) combine the tilt angle with the
Euler deconvolution method to identify the location, depth, and shape
of magnetic sources without a priori information about the structural
index of the target. Salem et al. (2013) and Murphy et al. (2012) de-
scribe an adaptive tilt angle equation for depth estimating from full-
tensor gravity data. This method is suitable for estimating the location
and depth of a single point mass, a horizontal line of mass, a vertical
sheet, and a horizontal sheet. Cooper (2016) describes the downward
continuation of the tilt angle, which allows more accurate sources
depth determination from the tilt-depth method, but it is strictly valid
only for isolated sources. Eshaghzadeh (2017) applies the tilt deriva-
tive to estimate the depth of a semi-infinite vertical cylindrical.
With the rapid development of cities, the underground space avail-

able for urban construction is becoming more and more limited. Most
pipelines are buried in parallel to economize urban underground
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space resources. The major difficulty for identifying parallel pipelines
is that the magnetic anomalies generated by them are superimposed
on each other. Downward continuation can separate superimposed
magnetic anomalies and enhance horizontal resolution. Dean (1958)
derives the frequency response of the downward continuation of the
potential field and points out that the approach represents an ill-posed
problem. Many methods exist for stabilizing the downward-continu-
ation process. Tikhonov et al. (1968) introduce a stable downward-
continuation method based on the classic regularization concept.
Cooper (2004) suggests three methods for stable downward continu-
ation, and the results show that downward continuation achieved
by least-squares inversion is more stable. Pasteka et al. (2012) use
C-norms to select the optimum regularization parameter value of
the Tikhonov regularization method. Xu et al. (2007) introduce an
iterative method for downward continuation that is more stable than
the Fourier transform method and able to downward continue data to

a greater depth. Zeng et al. (2013) prove that the iterative downward-
continuation method is sensitive to noise and develop an adaptive
iterative method based on Tikhonov regularization approach, which
allows the control of fast Fourier transform (FFT)-induced noise and
other noise that is intrinsic to the data set. Cooper (2019) introduces a
downward-continuation algorithm that downward continues the data
by a distance that is a fraction of the current depth, rather than by a
fixed distance.
The main goal of magnetic surveying of buried pipelines is to

estimate their location and depth based on acquired data. In this
paper, we describe a positioning method for buried pipelines from
magnetic data, which is based on a combination of tilt angle and
downward continuation. Compared with other interpretation meth-
ods, such as Euler deconvolution and optimization inversion, our
method does not need to consider pipeline demagnetization and the
pipeline direction with respect to the inducing field. In addition,

while performing the iterative Tikhonov-regulari-
zation for data downward continuation, we replace
the Tikhonov-regularization result with its deriva-
tive as a regularization term of the minimization
function and a constraint for the regularization
parameter choice to ensure that the downward-
continued result is more stable and accurate.

BASIC THEORIES

Magnetic tilt angle

When the length of a pipeline is much longer
than its buried depth, it can be regarded as an in-
finite horizontal cylinder. Assuming that the pipe-
line runs parallel to the y-axis, the gravitational
potential V generated by the pipeline at any ob-
servation point Pðx; y; zÞ can be expressed as
(Nagy et al., 2000)

Vðx; y; zÞ ¼ −2GρS · ln r; (1)

where G is the gravitational constant, ρ is the density of the
pipeline, S ¼ πδðΦ − δÞ is the cross-section area of the pipeline,
Φ and δ are the outer diameter and thickness of the pipeline,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − XÞ2 þ ðz −HÞ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δz2

p
, X and H are the loca-

tion and buried depth of the pipeline.
There are two assumptions: (1) The pipeline has uniform magnetic

susceptibility κ, and (2) the remanent magnetization Mr and the in-
duced magnetizationMi have the same direction. Therefore, the mag-
netization M of the pipeline can be expressed as (Wang et al., 2019)

M ¼ Mi þMr ¼ κ
T0

μ0
þMr; (2)

where μ0 is the permeability of the vacuum and T0 is the induc-
ing field.
The components of the magnetization M in the x-, y-, and

z-directions are

Mx¼M cos I sinA; My¼M cos I cosA; Mz¼M sin I; (3)

where I is the inclination of the inducing field and A is the azimuth
of the pipeline (i.e., the angle between the pipeline direction and
magnetic north A is positive eastward).

Figure 1. The magnetic measurement model of a single buried pipeline: (a) aide view
and (b) top view.

Table 1. The values of a single buried pipeline’s model
parameters.

Model parameters Value

Pipeline Length (L) 50 m

Outer diameter 0.3 m

Thickness 0.02 m

Density 7860 kg/m3

Magnetic susceptibility 1 SI

Azimuth (A) 60°

Buried depth (H) 3 m

Inducing field Intensity 55,000 nT

Inclination (I) −30°
Measurement plane Length (Lm) 10 m

Width 10 m

Height (Hm) 0 m

Azimuth (A 0) 90°

Measurement point interval 0.1 m

Measurement line interval 0.1 m

J112 Li et al.
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According to Poisson’s equation, there is a relationship between
themagnetic and gravitational potentials of the pipeline (Wang et al.,
2019). The magnetic potential of the pipeline is

U ¼ −1
4πGρ

M · gradpV; (4)

and the magnetic field of the pipeline is

B ¼ −μ0∇U: (5)

Because the pipeline is running parallel to the y-axis, the
gravitational potential along the pipeline direction (the y-axis) is

Figure 2. (a-c) The responses of Bmx, Bmy, and Bmz, corrupted by random noise with 1nT standard deviation and 1nT average, (d-f) data from
(a), (b), and (c) downward continued by 1 m, respectively, (g-h) pole-reduced data Bx⊥ and Bz⊥, (i) tilt angle map, (j) tilt angle curve on the
measurement line drawn in Figure 2i, and (k) the curve of the regularization parameters.
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unchanged and the y-directional second-order partial derivatives are
zero. The components of the magnetic field B in the x-, y-, and
z-directions are as follows:

Bz ¼
μ0

4πGρ
ðMxVxz þMzVzzÞ;

Bx ¼
μ0

4πGρ
ðMxVxx þMzVxzÞ; By ¼ 0; (6)

where Vxx, Vxz, and Vzz are second-order derivatives of the gravity
potential V, Vxx ¼ −Vzz.
Substituting equations 1 and 3 into 6, we get

Bz ¼
μ0SM½2 cos I sin A · ΔxΔz − sin IðΔx2 − Δz2Þ�

2πðΔx2 þ Δz2Þ2 ;

(7)

Bx ¼
μ0SM½cos I sin AðΔx2 − Δz2Þ þ 2 sin I · ΔxΔz�

2πðΔx2 þ Δz2Þ2 :

(8)

When the pipeline is vertically magnetized, Mx ¼ 0, Mz ¼ M,
and

Bz⊥ ¼ μ0
4πGρ

MVzz; Bx⊥ ¼ μ0
4πGρ

MVxz: (9)

Substituting equations 3 and 9 into 6, we get

Bz ¼ Bx⊥ cos I sin Aþ Bz⊥ sin I;

Bx ¼ Bx⊥ sin I − Bz⊥ cos I sin A; (10)

and the equation for reducing magnetic data to the pole:

Bz⊥¼
Bz sin I−Bx cos I sinA
sin2 Iþcos2 Isin2A

; Bx⊥¼
Bz cos I sinAþBx sin I
sin2 Iþcos2 Isin2A

:

(11)

Substituting equations 7 and 8 into 11, we get

Bz⊥ ¼ðΔz2−Δx2Þ μ0MSð1− cos2Acos2 IÞ
2πðΔx2þΔz2Þ2ðsin2 Iþ cos2 I sin2AÞ ;

(12)

Bx⊥ ¼ 2ΔxΔz
μ0MSð1 − cos2 A cos2 IÞ

2πðΔx2 þ Δz2Þ2ðsin2 I þ cos2 I sin2 AÞ :
(13)

The tilt angle can be expressed as (Miller and Singh, 1994)

θ ¼ tan−1

0
B@ Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y

q
1
CA: (14)

Substituting equations 12 and 13 into 14, we get

θ ¼ tan−1
�
Δz2 − Δx2

j2ΔxΔzj
�
: (15)

The tilt angle for pole-reduced magnetic data is the same as the
tilt angle for full tensor gravity data (Murphy et al., 2012), which is
not affected by the magnetization direction given by the pipeline
direction with respect to the inducing field. A tilt angle of 90°
(Δx ¼ 0) marks the location of a buried pipeline, whereas its depth
is the distance between the location of the 90° and its adjacent
0° (Δx ¼ Δz).
In real magnetic measurements, measurement lines are usually

not perpendicular to the buried pipeline. Therefore, the data should
be rotated using equation 16 before reducing to the pole:

2
4Bx

By

Bz

3
5¼

2
4 sinðA 0−AÞ cosðA 0−AÞ 0

cosðA 0−AÞ −sinðA 0−AÞ 0

0 0 1

3
5
2
4Bmx

Bmy

Bmz

3
5; (16)

where A 0 is the azimuth of the measurement line (that is the angle
between the measurement line direction and magnetic north, A 0 is
positive eastward), and Bmx, Bmy, and Bmz are the magnetic obser-
vation data. The azimuth A of the pipeline can be calculated as (Guo
et al., 2015a)

A ¼ arctan
xp2 − xp1
yp2 − yp1

; (17)

where P1ðxp1; yp1Þ and P2ðxp2; yp2Þ are the coordinates of two
points of a contour line in the magnetic map.

Downward continuation

If the magnetic data on the measurement plane are denoted
by Bðx; y; z0Þ, the magnetic data Bðx; y; zÞ on any plane can be
obtained from equation 18 (Dean, 1958):

Bðx;y;zÞ¼Δh
2π

Z
∞

−∞

Z
∞

−∞

Bðε;η;z0Þ
½ðx−εÞ2þðy−ηÞ2þΔh2�3∕2dεdη;

(18)
Figure 3. An exposed buried pipeline in the Changping District,
Beijing.
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where Δh ¼ z0 − z is the elevation difference and the z-axis is pos-
itive downward.
An integral kernel function kðx; yÞ is defined as

kðx; yÞ ¼ Δh
2π

·
1

ðx2 þ y2 þ Δh2Þ3∕2 : (19)

Therefore, equation 18 can be written as a convolution:

Bðx; y; zÞ ¼ kðx; yÞ ⊗ Bðx; y; z0Þ: (20)

In the frequency domain, equation 20 can be written as a product:

B̂ðu; v; zÞ ¼ Hðu; vÞB̂ðu; v; z0Þ; (21)

and

Figure 4. (a-c) The responses of Bmx, Bmy, and Bmz, (d-f) data from (a-c) downward continued by 1.5 m, respectively, (g-h) pole-reduced data
Bx⊥ and Bz⊥, (i) tilt angle map, (j) tilt angle curve on the measurement line drawn in panel i, and (k) the curve of the regularization parameters.
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Hðu; vÞ ¼ e−2π·Δh·
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
; (22)

where B̂ðu; v; zÞ, B̂ðu; v; z0Þ, andHðu; vÞ are the Fourier transforms
of Bðx; y; zÞ, Bðx; y; z0Þ, and kðx; yÞ and u and v are the wavenum-
bers in the x- and y-axes.
When Δh is positive (or negative), equation 21 is the calculation

for upward (or downward) continuation and equation 22 is the
upward-continuation operator Hupðu; vÞ (or the downward-continu-
ation operator Hdownðu; vÞ). The downward continuation, while
enhancing details in the data, also amplifies high-frequency noise.
Consequently, one needs to regularize the problem to obtain a
reasonable approximate solution. The most popular method is
Tikhonov regularization, which for downward continuation allows
the control of FFT-induced noise and other noise intrinsic to the
data set.
The Tikhonov-regularization approach can be defined as a min-

imization problem solution — we must minimize a function (J),
which is formulated as (Tikhonov and Arsenin, 1977)

Z Z
D
J

�
x;y;Bz;

∂Bz

∂x
;
∂Bz

∂y

�
dxdy¼

Z Z
D

�
½kðx;yÞ⊗Bz−B0�2

þα

��
∂Bz

∂x

�
2

þ
�
∂Bz

∂y

�
2
��

dxdy¼min; (23)

where Bz ¼ Bðx; y; zÞ, B0 ¼ Bðx; y; z0Þ; α > 0 is the regularization
parameter, which provides a trade-off between the measurement
fidelity and the prior information introduced by the regularizing
function.

The Euler-Lagrange equation corresponding to equation 23 is
(Troutman, 1983)

∂J
∂Bz

−
∂
∂x

�
∂J

∂ð∂Bz∕∂xÞ
�
−

∂
∂y

�
∂J

∂ð∂Bz∕∂yÞ
�

¼
�
2½kðx;yÞ⊗Bz−B0� ·

∂½kðx;yÞ⊗Bz�
∂Bz

�
−2α

∂2Bz

∂x2
−2α

∂2Bz

∂y2

¼kðx;yÞ⊗Bz−B0−α

�
∂2Bz

∂x2
þ∂2Bz

∂y2

�

¼0; (24)

where

∂ðkðx; yÞ ⊗ BzÞ
∂Bz

¼ 1

2π

Z
∞

−∞

Z
∞

−∞

Δh
½ðx − ξÞ2 þ ðy − ηÞ2 þ Δh2�3∕2 dξdη ¼ 1:

Applying the Fourier transform to equation 24 and combining the
theorem of spectrum of differentiation,

∂2Bz

∂x2
¼ ðiuÞ2B̂z ¼ −u2B̂z;

∂2Bz

∂y2
¼ ðivÞ2B̂z ¼ −v2B̂z;

(25)

we get

HupB̂z þ αðu2 þ v2ÞB̂z ¼ B̂0; (26)

B̂z¼
B̂0

Hupþαðu2þv2Þ¼HTdownB̂0; (27)

and

HTdown ¼
e−2π·Δh·

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p

1þ αðu2 þ v2Þe−2π·Δh·
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p ;

(28)

where B̂z ¼ B̂ðu; v; zÞ and B̂0 ¼ B̂ðu; v; z0Þ;
HTdownðu; vÞ is the Tikhonov downward-continu-
ation operator; and Δh is a negative number.
A saturation result of the Tikhonov regulariza-

tion method shows that a higher rate of conver-
gence cannot be expected under higher

smoothness assumptions. However, a higher rate of convergence
can be obtained by “iterative Tikhonov regularization” (Zeng et al.,
2013), which is defined as follows:

B̂0
z ¼ HTdownB̂0; B̂n

z ¼ B̂n−1
z þHTdownðB̂0 −HupB̂

n−1
z Þ:
(29)

For the regularization method, the choices of the iteration number
and the regularization parameter are crucial to yield a well-posed
solution. The optimal iteration number is five. The root mean-

Figure 5. The magnetic measurement model of parallel buried pipelines: (a) side view
and (b) top view.

Table 2. The values of the parallel buried pipelines’ model
parameters.

Model parameters

Induced field
inclination (I)

Azimuth (A) Buried
depth (H)

Axis
spacing (d)

45° −45° 2 m 1 m

J116 Li et al.
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square error between the downward-continued and theoretical fields
is unchanged as the iteration number increases from five (Zeng et al.,
2013). Here, we extended the algorithm for determining a regulari-
zation parameter as (Reginska, 1996)

α� ¼ argminfkðu2 þ v2ÞðB̂α
z Þ2kkB̂0 −HupB̂

α
zkg: (30)

APPLICATION TO A SINGLE BURIED PIPELINE

The depth-detection error is defined as the absolute difference
between the estimated and true values for the buried depth of pipe-
lines, which shall not exceed 0.15 H (in whichH is the actual depth
of buried pipelines. When H < 1 m, assume that H ¼ 1 m) (Li
et al., 2019). The location detection error is defined as the absolute

Figure 6. (a-c) The responses of Bmx, Bmy, and Bmz, corrupted by noise with 0.01 nT standard, (d-f) data from (a-c) downward continued by
1.7 m, respectively, (g-h) pole-reduced data Bx⊥ and Bz⊥, (i) tilt angle map, (j) tilt angle curve on the measurement line drawn in panel i, and
(k) the curve of the regularization parameters.
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difference between the estimated and true values for the axis spac-
ing of parallel pipelines, which shall not exceed 0.1 H.
We lower the downward-continuation altitude from zero at the

measurement point interval. Because the data are downward contin-
ued closer to the pipeline depth, they contain more high-frequency
detail that might be controlled in the process of the Tikhonov-
regularization approach. Therefore, if the tilt angle map has one
or two linear peaks with a value of 90°, we will stop lowering the
downward-continuation altitude to avoid the increase of detection
errors due to data distortion.

Theoretical example

The magnetic measurement model of a single buried pipeline is
shown in Figure 1, in which the N-axis is the magnetic north, the
gray area is a measurement plane, and the black spots are measure-
ment points. The values of the model parameters are shown in Table 1.
Figure 2a-2c shows the response of the three components of the

magnetic anomaly from the model presented in Figure 1, all of them
corrupted by random noise with a standard deviation of 1nT and an
average of 1nT. Figure 2d-2f are data from Figure 2a-2c downward
continued by 1 m (Δh ¼ −1 m) using equation 30 with α� ¼ 0.631

(see Figure 2k), respectively. The terms P1ð0; 1:3Þ and P2ð10; 7:1Þ
are the coordinates of two points of the contour line drawn in Fig-
ure 2f. The azimuth of the pipelines is determined to be 59.89° by
equation 17. Figure 2g and 2h are the pole-reduced data calculated
using equations 16 and 11 based on the data from Figure 2d-2f.
Figure 2i is the tilt angle map of the data from Figure 2g and
2h computed using equation 14.
An estimated value of the buried depth of the pipeline can be

determined as (see Figure 2i)

H� ¼HdþjΔhj−Hm ¼ jd90 to 0× sinðA 0−AÞjþ jΔhj−Hm;

(31)

whereHd is the depth from the downward-continuation plane to the
pipeline, Hm is the height of the measurement plane, d90 to 0 is the
distance between the location of the tilt angle value of 90° and its
adjacent zero value, A 0 and A are the azimuth of the measurement
line and the pipeline, respectively, andΔh is the downward-continu-
ation distance.

The estimated value of the buried depth of the pipeline presented
in Figure 1 is determined to be 2.95 m by equation 31. The depth
detection error is 0.05 m, which is less than the precision of 0.45 m
(i.e., 0.15 H, H ¼ 3 m).

Field example

Figure 3 shows an exposed buried pipeline in the Changping
District, Beijing. The pipeline running from north to south is buried
at a depth of 4.5 m. The inclination and declination of the geomag-
netic field are 59.061° and –6.629° (Guo et al., 2015b). The mag-
netic data acquisition equipment includes a computer and a
measurement apparatus that is assembled by eight magnetoresistive
sensors at an interval of 0.1 m in a straight line. We kept the meas-
urement apparatus close to the ground and moved it along the east–
west direction in the measurement area.
Figure 4a–4c shows the response of the horizontal and vertical

components of the measured magnetic field. Figure 4d–4f are data
from Figure 4a–4c downward continued by 1.5 m (Δh ¼ −1.5 m)
using equation 30 with α� ¼ 0.631 (see Figure 4k), respectively.
The coordinates of two points of the contour line drawn in Figure 4f
are P1(6.2, 0) and P2(6.2, 10). The azimuth of the pipelines is de-
termined to be 0° by equation 17. Figure 4g and 4h are the pole-
reduced data calculated using equations 16 and 11 based on the data
from Figure 4d-4f. Figure 4i is the tilt angle map of the data from
Figure 4g and 4h computed using equation 14. The estimated value
of the buried depth of the pipeline presented in Figure 3 is determined
to be 4.6 m by equation 31. The depth detection error is 0.1 m, which
is less than the precision of 0.675 m (i.e., 0.15 H, H ¼ 4.5 m).

APPLICATION TO PARALLEL BURIED PIPELINES

Theoretical example

The magnetic measurement model of parallel buried pipelines is
shown in Figure 5. The values of the fixed model parameters are
shown in Table 1, and the values of the varying model parameters
are shown in Table 2.
Figure 6a-6c shows the response of the three components of the

magnetic anomaly from the model presented in Figure 5, all of them
corrupted by random noise with a standard deviation of 0.01nT.
Figure 6d-6f are data from Figure 6a-6c downward continued by
1.7 m (Δh ¼ −1.7 mÞ using equation 30 with α� ¼ 0.0025 (see
Figure 6k), respectively. The terms P1(8.2, 0) and P2(0, 8) are the
coordinates of two points of the contour line drawn in Figure 6f.
The azimuth of the pipelines is determined to be −45.71° by equa-
tion 17. Figure 6g and 6h are the pole-reduced data calculated using
equations 16 and 11 based on the data from Figure 6d-6f. Figure 6i
is the tilt angle map of the data from Figure 6g and 6h computed
using equation 14.
The estimated value of the axis spacing of the two pipelines can

be determined as (see Figure 6i)

d� ¼ jd90 to 90 × sinðA 0 − AÞj; (32)

where d90 to 90 is the distance between the locations of the tilt angle
value of 90°.
The estimated values of the buried depth and axis spacing of the

two pipelines presented in Figure 5 are determined to be 2.19 and
0.98 m by equations 31 and 32, respectively. The depth detection
error is 0.19 m, which is less than the precision of 0.35 m

Figure 7. Two parallel cast-iron pipes on a flat area in our office
building in the Changping District, Beijing.
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(i.e., 0.15 H, H ¼ 2 m). The location detection error is 0.02, which
is less than the precision of 0.2 m (i.e., 0.1 H).

Experimental example

The magnetic-data-acquisition equipment used in the experiment
includes an integrated magnetic gradiometer and a fluxgate sensor.

The experiment was carried out on a flat area in our office building
in the Changping District, Beijing (see Figure 7). The two pipes run
from east to west. The buried depth and axis spacing of the two
pipes are 0 and 0.5 m, respectively. The height of the measurement
plane is 0.5 m. Measurement lines run from south to north. The
three components Bx, By, and Bz observed by the equipment away
from the pipes are 29556nT, –3424nT, and 52146nT, respectively.

Figure 8. (a-c) The responses of Bmx, Bmy, and Bmz, (d-f) data from (a-c) downward continued by 0.4 m, respectively, (g-h) pole-reduced data
Bx⊥ and Bz⊥, (i) tilt angle map, (j) tilt angle curve on the measurement line drawn in panel i, and (k) the curve of the regularization parameters.
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Substituting the three values into equation 33, we determine the in-
clination and declination of the geomagnetic field to be approxi-
mately 60° and –7°:

I ¼ arctan
Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y

q ; D ¼ arctan
By

Bx
: (33)

Figure 8a–8c shows the response of the horizontal and vertical
components of the measured magnetic field. Figure 8d–8f are data
from Figure 8a-8c downward continued by 0.4 m (Δh ¼ −0.4 m)
using equation 30 with α� ¼ 0.0794 (see Figure 8k), respectively.
The coordinates of two points of the contour line drawn in Figure 8f
are P1(0.9, 1.6) and P2(4.4, 1.6). The azimuth of the pipelines is de-
termined to be 90° by equation 17. Figure 8g and 8h are the pole-
reduced data calculated using equations 16 and 11 based on the data
from Figure 8d–8f. Figure 8i is the tilt angle map of the data from
Figure 8g and 8h computed using equation 14.The estimated value of
the buried depth and axis spacing of the two pipes presented in Fig-
ure 7 are determined to be 0.1 and 0.5 m by equation 31 and 32,
respectively. The depth detection error is 0.1 m, which is less than
the precision of 0.15 m (i.e., 0.15 H, replace H with 1 m). The lo-
cation detection error is 0 m, which meets the precision.

CONCLUSION

A positioning method for buried ferrous metal pipelines has been
described based on a combination of magnetic tilt angle and down-
ward continuation. The tilt angle of pole-reduced magnetic data for
buried depth and location detection is not affected by the magneti-
zation direction of pipelines. The iterative Tikhonov-regularization
method for downward continuation not only enhances detail in
magnetic data but allows the control of high-frequency noise. The
application of the method to the positioning of single and parallel
pipelines gave satisfactory results.
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