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When solving a symbolic regression problem, the gene expression programming (GEP)
algorithm could fall into a premature convergence which terminates the optimization pro-
cess too early, and may only reach a poor local optimum. To address the premature conver-
gence problem of GEP, we propose a novel algorithm named SPJ-GEP, which can maintain
the GEP population diversity and improve the accuracy of the GEP search by allowing the
population to jump efficiently between segmented subspaces. SPJ-GEP first divides the
space of mathematical expressions into k subspaces that are mutually exclusive. It then
creates a subspace selection method that combines the multi-armed bandit and the �-
greedy strategy to choose a jump subspace. In this way, the analysis is made on the pop-
ulation diversity and the range of the number of subspaces. The analysis results show that
SPJ-GEP does not significantly increase the computational complexity of time and space
than classical GEP methods. Besides, an evaluation is conducted on a set of standard SR
benchmarks. The evaluation results show that the proposed SPJ-GEP keeps a higher popu-
lation diversity and has an enhanced accuracy compared with three baseline GEP methods.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Symbolic regression (SR) is a regression analysis that discovers a model that best fits a given dataset in the space of math-
ematical expressions. Unlike machine learning or neural network regression analysis that focuses on optimizing parameters
in a predefined model, SR aims to find appropriate models and their parameters at the same time. Genetic programming (GP)
[1] is a commonly used approach in SR to search for the optimal model. GP evolves to change individual structures of the
population to generate fitted models or computer programs by the three key genetic algorithm (GA) operations: selection,
crossover, and mutation. To represent a mathematical expression, classical GPs usually describe individual encodings in trees
[1–5]. Graph-based GPs, such as graph encoding GP [6,7] and Cartesian genetic programming [8,9], encode individuals into
graphs. Linear GPs, such as gene expression programming (GEP) [10–12] and linear GP [13], convert individuals into linear
strings.

Since these GPs all utilize GA operations, like genetic algorithms(GA), these GPs are prone to premature convergence [14].
From the perspective of exploration and exploitation [15], the reason for premature convergence is that individuals of a
population are similar, hence, they tend to exploit their neighborhood instead of new regions. Therefore, maintaining the
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population diversity is a crucial task in evolutionary algorithms. A diverse population can encourage global exploration and
reduce premature convergence [16,17].

In order to preserve the population diversity, the evolutionary computing (EC) community often uses two strategies: 1)
parameter control and 2) space partition. The parameter control strategy [18] adjusts parameters of evolutionary algorithms
based on population diversity, such as varying population size [19,20], and dynamically adjusting the probability of cross-
over [21,22] and mutation [23,24]. The strategy is easy to implement population diversity and does not require additional
storage spaces. However, it does not know or remember where individuals are in a search space so that it could produce
invalid individuals, such as individuals similar to those of the previous generations.

The space partition strategy [25–30] splits a search space into many subspaces and generates individuals in different sub-
spaces. As individuals in different subspaces have different phenotypes or genotypes, the strategy is easy to control popu-
lation diversity quantitatively by generating individuals from different subspaces. Meanwhile, the strategy remembers an
individual’s approximate position in the search space according to the individual’s subspace. Although the space partition
strategy has been successfully applied in GA, it is not suitable for the SR problem, because the whole search space of SR
is so large that maintaining fine-grained subspaces is intractable computationally.

In this paper, we propose a new gene expression programming based on space partition and jump (named SPJ-GEP) to
maintain the population diversity. SPJ-GEP has the advantages of the above two strategies: it requires small additional stor-
age space, remembers the position of an individual in the search space, and maintains quantitative population diversity. The
SPJ-GEP partitions the space of mathematical expressions into k subspaces based on the chromosome coding. Moreover, it
initializes individuals in one of the k subspaces, as shown in Step 1 in Fig. 1.

Next, SPJ-GEP selects a suitable subspace to search for individuals with better fitnesses based on a subspace selection
method that combines the multi-armed bandit (MAB) [31] and the �-greedy strategy [32], as shown in Step 2 and 3 in
Fig. 1. This method utilizes MAB to choose one of the subspaces because MAB can balance the exploration by searching other
subspaces while maintaining the exploitation of the selected subspace. However, MAB will be invalid when the number of
visiting subspaces is higher than a specific value. To preserve population diversity, the method then switches to the �-greedy
strategy to choose a subspace according to a proposed time formula. The formula decides when to use the �-greedy strategy.

At last, SPJ-GEP uses a new crossover method to make individuals jump from the original subspace to another selected
subspace, as shown in Step 4 in Fig. 1. The method makes these newly selected individuals intersect with the best individual
in the selected subspace so that they can start searching at the latest local optimal position.

The characteristics of SPJ-GEP indicates that classical GEPs [10–12] are a special case of SPJ-GEP when the number of sub-
spaces k equals 1. On the other hand, if k is large enough that each subspace has only one individual, SPJ-GEP will degenerate
into a random selection subspace algorithm. Therefore, k is a critical parameter in SPJ-GEP. In this paper, the range of k is
decided by the population diversity and the probability of jump between subspaces. We analyze the complexity of time
and space of SPJ-GEP and prove that SPJ-GEP does not significantly increase the time and space complexity compared with
classical GEPs.

The main contributions in the paper are summarized as follows:

� We propose the SPJ-GEP algorithm, which allows individuals in a population to jump between subspaces according to the
MAB and the �-greedy strategy. This approach maintains the population diversity.
Fig. 1. The SPJ-GEP framework. Circles represent individuals, and dark circles are the best individuals in subspaces. Step 1. space segmentation; Step 2.
subspace selection; Step 3. subspace exploitation; Step 4. escape from local optimum by subspace jump.



Q. Lu et al. / Information Sciences 547 (2021) 553–567 555
� We provide a solid analysis approach to evaluate the range of the number of subspaces k, and we analyze the algorithm’s
time and space complexity.

� Our evaluation results show that SPJ-GEP surpasses the three baseline GEP methods: GEP[10], GEP-ADF[11], and self-
learning GEP [12].

The rest of this paper is organized as follows. Section 2 describes related background techniques. Then, Section 3 and 4 pro-
vide details for the proposed SPJ-GEP algorithm and its analysis, respectively. Moreover, Section 5 shows the experimental
results and analysis. Section 6 discusses related works. Section 7 concludes the paper and points out possible future work.
2. Background

2.1. Gene expression programming for symbolic regression

For a given dataset X;Yf g, the goal of symbolic regression is to discover a function f ðXÞ ¼ Y0, which can minimize the error
between Y0 and Y, from the space of mathematical expression that consists of function symbols (e.g., þ;�;�; =; sin; cos,. . .)
and terminal symbols (e.g., variables and coefficients). In order to find the best fit function, GP encodes an individual (f ðXÞ)
into a tree (as shown in Fig. 2), and applies crossover and mutation to change the individuals for the optimizing function f.

Unlike GP, the gene expression programming (GEP) algorithm [10] encodes an individual to a linear structure of fixed
length. The linear structure includes a head and a tail. The head consists of function symbols and terminal symbols, while
the tail consists of terminal symbols. As shown in Fig. 2, for the two individuals: ‘þþ =��xxyyxy’ and ‘�xx�þxyyxxy’,

the two underlined sections: ‘þþ =��’ and ‘� xx � +’ are the heads. The other two sections: ‘xxyyxy’ and ‘xyyxxy’ are the
tails. The head is part of the prefix expression and contains all function symbols; the tail provides variables or coefficients

for the head. Besides, operations in GEP are similar to those in GA, such as crossover in Fig. 2. By exchanging the substring ‘++’
in ‘þþ =��xxyyxy’ and the substring ‘�x’ in ‘�xx�þxyyxxy’, the crossover obtains two new individuals: ‘þþ x�þxyyxxy’
and ‘�x=��xxyyxy’.

Moreover, some extended GEPs [11,33] that incorporate high-order knowledge have been proposed to improve the
search’s performance on large-scale applications. For example, each chromosome in GEP-ADF [11] consists of multiple con-
ventional genes (called ADFs) and a homeotic gene. Each conventional gene is a prefix subexpression to describe a sub-
solution, while the homeotic gene combines these conventional genes to provide a complete solution to a particular
application.

2.2. Multi-armed bandit problem

A multi-armed bandit (MAB) is the problem to find the best way to maximize a cumulative reward earned by pulling one
of K one-armed bandits that have unknown reward distributions [34]. In order to maximize the cumulative reward, MAB
must balance between exploring more arms to improve the estimates of rewards, and exploiting the current best arm. Many
Fig. 2. Individual coding and crossover in GEP.
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arm-selection strategies, such as �-greedy[35], Boltzmann exploration [36], and upper-confidence bound (UCB) [31], are pro-
posed to keep the exploration and exploitation balance. In the paper, we use the UCB1 as the arm-selection strategy accord-
ing to Eq. 1.
UCB1 ¼ lk þ k

ffiffiffiffiffiffiffiffiffi
2lnt
nk

s
ð1Þ
where 0 < k 6 1; t is the number of times of pulling all arms, lk is the mean reward of the arm k after it has been pulled nk

times. The reward term lk encourages the exploitation of higher-reward arms. The
ffiffiffiffiffiffi
2lnt
nk

q
is the size of the confidence interval

for the reward of the arm k, which encourages the exploration of less-visited arms.

3. Gene expression programming based on space partition and jump

The gene expression programming based on space partition and jump (SPJ-GEP) has four components: space partition,
subspace selection, crossover, and mutation, as shown in Algorithm1. Its frequently used notations are listed in Table 1.

SPJ-GEP first executes the space partition components (line 1) to split the mathematical expression space X into k sub-
spaces x1; . . . ;xkf g. Then, according to UCB or �-greed method (line 6–9), it runs the subspace selection strategy to choose a
subspace xi for exploring X. At last, it calls crossover and mutation to exploit the subspace xi (line 10–11). Since the muta-
tion is the same as the mutation in other GEPs [10–12], we will omit the detailed description of the mutation in the following
subsections.

Algorithm1 SPJ-GEP
3.1. Space partition

3.1.1. Encoding
Let a mathematical expression space be X. If the space can be partitioned into many subspaces, denoted as

x1;x2; . . . ;xnf g, then these subspaces that meet the two following conditions constitute a space-partition set.

� mutually exclusive: xi
T
xj ¼ /; i– j

� completeness: X ¼ Sn
i¼1xi



Table 1
Notation.

Notation Definition

X The mathematical expression space
k The number of subspaces in X
xi The ith subspace
n The number of individuals in the population
G The iteration times in SPJ-GEP
a The threshold value of the confidence interval

ffiffiffiffiffiffiffi
2lnt
nk

q
b The threshold value of the probability that UCBxi loses its effect
� The parameter in the �-greedy method
l The length of an individual code
h The head length of an individual code
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According to the coding of individuals in GEP, i.e., encoding an individual to a linear structure with the fixed-length l and the
head length h, the space of mathematical expression is denoted as Xl;h ¼ ‘ � . . . � � . . . � ’. l is the length of individuals (the total
number of ‘�’); h is the head length (the number of ‘�’); ‘�’ can be anyone symbol from a symbol set S that consists of a func-
tion set F and a terminal set T. In the head, if front ‘�’s are replaced by special symbols s, it can generate a subspace xs, such
as xþ ¼ ‘þ � � � � ’ in Fig. 3. Therefore, the more special symbols appear in the front of the head, the smaller the subspace’s
size becomes. For example, xþþ ¼ ‘þþ � � � ’ is a subspace of xþ, and xþþ � xþ.

Based on the above subspace encoding, these subspaces and their relationships can be represented as a space-partition
tree, where the root node is Xl;h, each of the other nodes is a subspace of Xl;h, and a branch represents a containment rela-
tionship between two subspaces, e.g., xþþ � xþ as shown in Fig. 3. From the tree, a lot of space-partition sets can be found
based on the above two conditions. For example, xþ;x�;xxf g and xþþ;xþ�;xþx;xþ;xxf g both are space-partition sets.

3.1.2. Initialization
SPJ-GEP selects a space-partition set by the following strategy. It can easily find the first level ll where the number of

nodes is equal or greater than the number of subspaces (k) according to ll P logk
jSj, where jSj is the number of symbols.

For example, in Fig. 3, if k ¼ 5 and jSj ¼ 3, then ll ¼ 2. Moreover, the algorithm discovers a space-partition set
xþþ;xþ�;xþx;x�þ;x��;x�x;xxf g. Then, for each subspace xi in the set, SPJ-GEP randomly generates an individual and
computes UCBxi

according to Eq. 2.

3.2. Subspace selection

SPJ-GEP uses modified UCB1 to select a subspace from a space-partition set. When the modified UCB1 becomes invalid in
most of the subspaces, SPJ-GEP then uses the �-greedy method to choose a subspace.

3.2.1. Subspace selection based on UCB1
For a space-partition set x1;x2; . . . ;xkf i, it represents the space of mathematical expressions. Moreover, any individual

that SPJ-GEP generates must be in one of these subspaces. If each subspace is seen as an arm in the multi-armed bandit
(MAB), and generated individuals in the subspace are considered as pulling the arm. SPJ-GEP faces the same problem as
MAB does: how to balance between exploration and exploitation of these subspaces.

The difference between SPJ-GEP and MAB is that SPJ-GEP wants to obtain an individual with maximal fitness. Whereas,
MAB wants to obtain a sequence of individuals so that their cumulative fitness is maximal. So, we modify Eq. 1 to Eq. 2 as the
subspace selection method.
Fig. 3. A space-partition tree. The function set F ¼ þ;�f g and the terminal set T={x}.



558 Q. Lu et al. / Information Sciences 547 (2021) 553–567
UCBxi
¼ 1

f �xi
þ 1

þ k

ffiffiffiffiffiffiffiffiffi
2lnt
nxi

s
ð2Þ
where xi is a subspace, f �xi
is the fitness of the best individual in xi; t is the number of visiting X until a particular time, and

nxi
is the number of times that the subspace xi is accessed to. Then, SPJ-GEP selects the best subspace xi� that has the max-

imal UCB as its exploration space.

3.2.2. Subspace selection based on �-Greedy method

As visit times increase in a subspace, the size of the confidence interval (
ffiffiffiffiffiffi
2lnt
ni

q
in Eq. 2) decrease to zero. That means UCBxi

falls back to a greedy method with the subspace value (f �xi
) and becomes invalid in the balance between exploration and

exploitation.
To overcome the above invalidation, SPJ-GEP uses the �-greedy method [35] to select a subspace when confidence inter-

vals in most of the subspaces tend to be zero. Using Eq. 2 chooses a subspace with the probability 1� �; random chooses a
subspace from the above with the probability �.

3.2.3. The time of using the �-Greedy Method
To find out when UCBxi

(Eq. 2) loses its effect on most subspaces, SPJ-GEP uses Eq. 3 in the following Theorem 1. For
example, given k ¼ 300;n ¼ 100;G ¼ 100000;a ¼ 0:1 and b ¼ 0:8, to choose a subspace xi, it uses Eq. 2 if

t < � 2�300�lnT

0:012�ln0:8
� 4333918, where T ¼ n� G ¼ 100� 10000 ¼ 107; otherwise, it uses �-greedy method.

Theorem 1. Let k be the number of subspaces, and T be the total number of times of visiting the mathematical expressions space X

after running SPJ-GEP. If the confidence interval
ffiffiffiffiffiffiffi
2lnt
nxi

r
6 a, where a ! 0þ;UCBxi will lose its effect on subspace xi. Assuming that

different nxi is independent identically distributed (i.i.d.), and each nxi is an exponential distribution with the parameter k, the
probability that each UCBxi loses its effect is greater than b when the number of times that X is accessed to.
t P �2klnT

a2lnb : ð3Þ
Proof. According to the constant T and
ffiffiffiffiffiffi
2lnt

nxi

q
6 a, we have nxi

P 2lnT

a2 so that UCBxi
are invalid in xi. Therefore, if we want to

assure that the probability, which each UCBxi
loses its effect, is greater than b, i.e., Pðnxi

P 2lnT

a2 Þ P b, the following equation
k 6 �a2lnb

2lnT ð4Þ
must be satisfied, because
Pðnxi
P 2lnT

a2 Þ ¼
R1
2lnT

a2
ke�knxi dnxi

¼ e�k2ln
T

a2

) e�k2ln
T

a2 P b:
As different nxi
is i.i.d. and each nxi

is an exponential distribution with the parameter k, we get
t ¼ E½
Xk

i¼1

nxi
� ¼ E½E½

Xk

i¼1

nxi
jk�� ¼ E½k�E½nxi

� ¼ k
k
: ð5Þ
According to formulas 4 and 5, we finally obtain formula 3.
3.3. Exploitation with crossover

Suppose that the current population is at the subspace xj, after SPJ-GEP selects a subspace xi, it makes all individuals in
the population jump from the subspace xj to the subspace xi. As the aforementioned subspace encoding, codes of these
individuals in xj start with the code of xj. So, for making them jump, it is necessary to replace their head codes with the
code of xi. For example, given two individuals ‘þþ=��xxxxxx’ and ‘þþþ�� xxxxxx’ in the subspace xþþ, the two individ-
uals will jump into the subspace xþ� after they change to ‘þ���xxxxxx’ and ‘þ�þ�� xxxxxx’ by replacing ‘++’ in their
heads with the code ‘+�’ of ‘xþ�’.

Then, it exploits xi by recombining each of the transferred individuals with the best individual in the subspace xi. For
example, if the best individual is ‘þ��þþ xxxxxx’, the above two individuals ‘þ���xxxxxx’ and ‘þ�þ�� xxxxxx’ recom-
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bine with the best individual, respectively. The recombination makes the jumped population start to search from the local
optimal space, and speeds up the convergence.

Note that if the selected subspace xj is equal to xi, the recombination is the same as the recombination of classical GEPs
[10–12] in that any two individuals in the population recombine randomly. So, if the above subspace selection continuously
chooses the same subspace, SPJ-GEP will exploit the subspace persistently.

4. Analysis of SPJ-GEP

4.1. Time and space complexity

Compared with classical GEPs [33,37,38], SPJ-GEP requires additional structures to record the visiting times (nxi
) and the

best fitness (f �xi
), as well as extra computation to obtain UCBxi

in each subspace. The additional time and space complexity
are related to the number (k) of all subspaces. Suppose the time and space complexities for classical GEPs within g iterations
are OðgepÞ and HðgepÞ, respectively. For SPJ-GEP, they are Oðgepþ g � c � kÞ ¼ Oðgepþ n� kÞ and Hðgepþm� kÞ, where
n ¼ c � k; k > 1, and g; c, and m are constants. Therefore, if k is within a reasonable range, its time and space complexities
are acceptable. In our experimental evaluation, its running time is almost as fast as GEP’s because the value of k is generally
not very large (detail in Section 4.3).

4.2. Population diversity

To preserve the population diversity, SPJ-GEP always lets the population jump from one subspace to another subspace.
Even if an individual in a population immediately jumps back to its original subspace after two jumps, its structure has been
significantly changed according to the following Lemma 1.

Lemma 1. Suppose SPJ-GEP executes single-point crossovers with uniform distribution, and l is the length of an individual
encoding without considering its subspace encoding. After the individual has jumped k subspaces, the similarity between the
jumped individual, and the original individual is
simðkÞ ¼ 1þ l
2l

� �k

ð6Þ
Proof. Since the crossover point is randomly selected with uniform distribution, after a crossover, the expected length of the
original fragment in the new individual is ð1þ lÞ=2. Then, the similarity between the original individual and the jumped indi-

vidual is ð1þ lÞ=2l after one crossover. Therefore, after k crossovers in k subspaces, the similarity is simðkÞ ¼ ð1þl
2l Þ

k
.

For example, if the length of an individual is 20, after jumping only two subspaces, the similarity between original and
jumped individuals changes to 0:276. As k increases, simðkÞ tends to be zero. Moreover, the two individuals become more
different. Therefore, the subspace selection method, which lets the population jump from a subspace to another subspace,
diversifies the population so that it helps prevent a local optimum in SPJ-GEP.

4.3. The number of subspaces

The number of subspaces k is a critical parameter in SPJ-GEP. If k ¼ 1, it means that there is only one subspace in X. So,
when the subspace is X, SPJ-GEP degenerates into a standard GEP. If k is large enough that there is only one individual in a
subspace, each subspace is an individual. In this case, SPJ-GEP degenerates into the random initialization algorithm, ran-
domly generating an individual (i.e., a subspace) in X. Therefore, if k is too large or too small, the algorithm performance will
be degraded.

According to Lemma 1, the larger k, the smaller the similarity. Then, SPJ-GEP needs a smaller similarity to escape from the
local optimum. Based on the following Theorem 2, we have the lower bound of k. Besides, the larger k, the smaller the prob-
ability that an individual jumps in its original subspace. The probability must be larger enough that SPJ-GEP can exploit a
subspace continuously for a while. Otherwise, SPJ-GEP will always explore a different subspace that breaks the balance
between exploration and exploitation. So, based on the following Theorem 3, we have the implicit expression of the upper
bound of k.

Theorem 2. Suppose an individual returns to the original subspace after it jumps k subspaces, in order to guarantee the similarity

between the original individual and the new back individual is less than or equal to g, the lower bound of k is lng

ln1þl�ln2l
.

Proof. According to Eq. 6 in Lemma 1, ð1þl
2l Þ

k 6 g. Then, we have
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k P
lng

ln1þl � ln2l ð7Þ
When the running time of SPJ-SEP exceeds a specific time, SPJ-SEP uses the �-greedy strategy to select a subspace accord-
ing to Theorem 1. Most of the subspaces are selected randomly. So, the jump probability Pði; jÞ between subspace i and j sat-
isfies a long tail distribution. Moreover, the probability that the subspace with the best UCBxi

will be selected again is 1� �,
and the probability is higher than the probability of selecting other subspace, i.e., Pði; iÞ > Pði; jÞ. If SPJ-SEP uses the best UCBxi

(MAB) to select a subspace, the same conclusions Pði; jÞ satisfies a long tail distribution and Pði; iÞ > Pði; jÞ can be obtained
through an analysis similar to the above.
Theorem 3. Suppose the jump probability Pði; jÞ between subspace i and j satisfies the Zipf distribution [39], in order to guarantee
that Pði; iÞ P d, the number of subspace k satisfies the following inequality.
1Xk

i¼1

1
i

� �c P d ð8Þ
Proof. Since Pðxi;jÞ satisfies Zipf distribution, whose probability mass function of Zipf is f ðxÞ ¼ 1

xc
Pk

i¼1
ð1=iÞc

, where

x ¼ 1;2; . . . ; k; k is the number of subspace, and c is a parameter.
pði; iÞ ¼ f ð1Þ ¼ 1Xk

i¼1

ð1=iÞc
P d ð9Þ
owing to f ð1Þ > f ðxÞ when x– 1.
For example, if c ¼ 0, the Zipf distribution will degenerate into a uniform distribution. According to Eq. 8, 1

k P c. So,

k 2 lng

ln1þl�ln2l
; 1c

h i
.

Table 2
GP Problems.

Name Formula Dataset

F1 x6 þ x5 þ x4 þ x3 þ x2 þ x U[�1, 1, 20]
F2 x4 þ x3 þ x2 þ x U[�1, 1, 20]
F3 x5 � 2x3 þ x U[�1, 1, 20]
F4 sinðx2ÞcosðxÞ � 1 U[�1, 1, 20]
F5 sinðxÞ þ sinðxþ x2Þ U[�1, 1, 20]
F6 lnðxþ 1Þ þ lnðx2 þ 1Þ U[0, 2, 20]
F7 2sinðxÞcosðyÞ U[�1, 1, 100]
F8 1:57þ ð24:3vÞ U[�50, 50, 10000]
F9 6:87þ 11cosð7:23x3Þ U[�50, 50, 10000]
F10 2� 2:1cosð9:8xÞsinð1:3wÞ U[�50, 50, 10000]
F11 0:3xsinð2� xÞ E[�1, 1, 0.1]
F12 lnx E[1,1]
F13 xy U[0, 1, 100]
F14 x4 � x3 þ y2

2 � y U[�3, 3, 20]

F15 x3
5 þ y3

2 � y� x U[�3, 3, 20]

F16 e�xx3ðcosxsinxÞðcosxsin2x� 1Þ E[0.05, 10, 0.1]

F17 e�ðx�1Þ2

1:2þðy�2:5Þ2
U[0.3, 4, 100]

F18 e�xx3ðcosxsinxÞðcosxsin2x� 1Þ x:E[0.05, 10, 0.1]

�ðy� 5Þ y:E[0.05, 10.05, 2]
F19 ðx� 3Þðy� 3Þ þ 2sinððx� 4Þðy� 4ÞÞ U[0.05, 6.05, 300]
F20 ðx�3Þ4þðy�3Þ3�ðy�3Þ

ðy�2Þ4þ10
U[0.05, 6.05, 50]

The function sets of F1 � F7; F8 � F10 ; F11 � F15 and F16 � F20 are from Koza
[1], Korns [41], Keijzer [42] and Vladislavleva [43], respectively.
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5. Experiments

5.1. Dataset and experimental parameters

In this paper, the dataset consists of 20 SR test problems that are derived from the GP benchmarks [40], as shown in
Table 2. The functions and constants of the data set are shown in Table 3. To evaluate the proposed algorithm SPJ-GEP,
we have created three algorithms SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP based on the three baseline GEPs: GEP [10],
GEP-ADF [11], and SL-GEP [12], respectively. The three new algorithms have the same parameters as these GEPs have except
for the additional parameters k;a, and b. The detailed parameters of the above six algorithms are described in Table 4.

We set the number of subspaces k a particular value according to the number of nodes on a specific layer in the space-
partition tree. Since the evaluation consists of six basic benchmarks, and each basic benchmark has different function sym-
bols and terminal symbols, SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP have different k values for different basic benchmarks. In
Table 4, the last row shows the range of k is [144–1000]. For example, in the Koza basic benchmark, there is a function sym-
bol set þ;�;�; =; sin; cos; lnðjxjÞ; exf g, whose length is 8, and a terminal set x1; x2f g, whose length is 2. When a space-partition

set is obtained by nodes on the 3rd layer in the space-partition tree, the number of the subspaces k is ð8þ 2Þ3 ¼ 1000.

5.2. Verification of subspaces selection method

Looking back at the subspace selection in SPJ-GEP, Inequality 3 is a key to decide when the UCB (Eq. 2) loses its effect on
selecting subspaces. To verify the accuracy and the correctness of Inequality 3, we run SPJ-GEP with different values of

parameter k (100,200 and 300) on five test problems. When t P � 2klnT

a2 lnb
, where T ¼ 100000� 100, such as

t P 2�100�ln10
7

ð0:1Þ2�ln0:8
� 1444639, the algorithm stops. Then, we sum up the number of subspaces where UCB has lost its effect

according to the following Inequality
Table 4
Parame

Popu
Head
Chro
Max

Muta
Inve
1-po
confi
prob
num
ffiffiffiffiffiffiffiffiffi
2lnT

nxi

s
6 a ð10Þ
where nxi
is the number of times that the subspace xi is accessed to. Finally obtain the probability of subspace convergence

(PSC) by Eq. 11
PSC ¼ s
k

ð11Þ
Table 3
The Functions and Constants of Data Set.

Name Functions Constants(ERC)

Koza þ;�;�; =; sin; cos; en; lnðjnjÞ None
Korns þ;�;�; =; sin; cos; en; lnðjnjÞ Random finite 64bit

n2;n3;
ffiffiffi
n

p
; tan; tanh IEEE double

Keijzer þ;�; 1n ;�n;
ffiffiffi
n

p
Random value from

Nðu ¼ 0;r ¼ 5Þ
Vladislavleva-A þ;�;�; =;n2 n� nþ � n�
Vladislavleva-B þ;�;�; =;n2; en; e�n n� nþ � n�
Vladislavleva-C þ;�;�; =;n2; en; e�n; sin; cos n� nþ � n�

ters of Algorithms.

GEP SPJ-GEP GEP-ADF SPJ-GEP-ADF SL-GEP SPJ-SL-GEP

lation size 100 100 100 100 100 100
length 20 20 5/10 5/10 5/10 5/10

mosome length 41 41 43 43 43 43
generations 105 105 105 105 105 105

tion rate 0.03 0.03 0.03 0.03
rsion rate 0.1 0.1 0.1 0.1
int recombination 0.7 0.7 0.7 0.7 0.7
dence interval a 0.1 0.1 0.1
of convergence b 0.8 0.8 0.8
of subspaces k 144–1000 144–1000 144–1000



Fig. 4. The probability of subspace convergence with different k.

Table 5
Performance Metrics.

F GEP SPJ-GEP GEP-ADF SPJ-GEP-ADF SL-GEP SPJ-SL-GEP

Suc1 RMSE2 Suc RMSE Suc RMSE Suc RMSE Suc RMSE Suc RMSE

F1 10% 0.0207 20% 0.0250 10% 0.0314 60% 0.0153 30% 0.026 10% 0.0346
F2 50% 0.0116 70% 0.0068 50% 0.0156 60% 0.0091 80% 0.0086 100% 0
F3 90% 0.0084 100% 0.0037 100% 0.0083 100% 0.0075 100% 0.0037 90% 0.0069
F4 80% 0.0071 100% 0.0038 80% 0.0100 100% 0.0073 100% 0.0074 100% 0.0063
F5 100% 0.0058 100% 0 30% 0.0149 100% 0.0031 100% 0.0014 30% 0.0209
F6 80% 0.0094 90% 0.0076 40% 0.0137 60% 0.0114 40% 0.0137 50% 0.0088
F7 20% 0.0146 100% 0.0024 50% 0.0141 90% 0.0021 60% 0.0096 70% 0.0091
F8 10% 0.0296 0% 0.0544 20% 0.0225 0% 0.0087 0% 0.5061 0% 0.4075
F9 80% 0.2323 20% 0.2557 80% 0.1582 80% 0.1540 0% 1.2302 0% 1.0982
F10 0% 0.9459 0% 0.0451 0% 0.9440 0% 0.0398 0% 0.1527 0% 0.1497
F11 0% 0.0285 0% 0.0430 10% 0.1668 60% 0.0264 0% 0.0381 0% 0.0377
F12 0% 0.1073 0% 0.1211 0% 0.0746 0% 0.0226 0% 0.0488 0% 0.0431
F13 0% 0.0697 0% 0.1376 0% 0.0051 0% 0.0268 0% 0.1692 0% 0.1713
F14 40% 0.0082 0% 0.0200 80% 0.0081 90% 0.0079 0% 1.3877 0% 1.5230
F15 0% 0.0518 0% 0.9583 30% 0.0384 20% 0.9440 0% 2.7841 0% 2.6733
F16 0% 0.1003 0% 0.0652 0% 0.0659 0% 0.0672 0% 0.1396 0% 0.0558
F17 0% 0.0428 0% 0.0395 0% 0.0406 0% 0.0323 0% 0.0697 0% 0.0689
F18 0% 0.4622 0% 0.4243 0% 0.4687 0% 0.4086 0% 0.7133 0% 0.6393
F19 0% 1.3266 0% 1.2119 0% 1.2740 0% 1.0940 0% 1.3299 0% 1.6041
F20 0% 0.3206 0% 0.2801 0% 0.2839 0% 0.2627 0% 0.7109 0% 0.6504

=3 11 0 10 0 14 0
+ 6 12 8 17 3 14
� 3 8 2 3 3 6

1 ‘‘Suc” represents the proportion of finding the correct result whose fitness computed by RMSE is less than 0.01.
2 ‘‘RMSE” shows the average fitness obtained by running one of these Algorithms 10 times.
3 ‘‘=,+,�” represents comparison results: same, good and poor. And the numeric in the row represents the comparison result between GEP and GPJ-GEP

(GEP-ADF and SPJ-GEP-ADF, or SL-GEP and SPJ-SL-GEP).
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where s is the number of subspaces that satisfy the above Inequality.
The PSCs on the five test problems with different values of k are illustrated in Fig. 4. All PSCs are close to 0.8, which is the

value of parameter b. So, Inequality 3 is correct in determining when UCBxi
(Eq. 2) loses its effect on most subspaces.
5.3. Performance metrics for comparison

To obtain the performance metrics of the algorithms: GEP, SPJ-GEP, GEP-ADF, SPJ-GEP-ADF, SL-GEP, and SPJ-SL-GEP, each
of the algorithms runs 10 times on the 20 test problems. Moreover, their results are shown in Table 5. For example, 50% in
the column ”suc” means that the number of finding correct results is 5 in 10 runs of one of these algorithms.

Observing the comparative data between GEP and SPJ-GEP from Table 5, we conclude that SPJ-GEP finds more correct
results than GEP (‘‘6” in row ‘‘+” and ‘‘3” in row ‘‘�”) and obtains a better average fitnesses than GEP (‘‘12” in row ‘‘+”). Com-
paring data between GEP-ADF and SPJ-GEP-ADF, SPJ-GEP-ADF can find more correct results and a better average fitnesses



Table 6
Wilcoxon’s Sign Rank Test [44].

F GEP/SPJ-GEP GEP-ADF/SPJ-GEP-ADF SL-GEP/SPJ-SL-GEP

T+ T� Result1 T+ T� Result T+ T� Result

F1 13 �42 � 47 �8 � 18 �37 �
F2 40 �15 � 40 �15 � 47 �8 �
F3 51 �4 + 38 �17 � 10 �45 �
F4 51 �4 + 44 �11 � 45 �10 �
F5 52 �3 + 52 �3 + 3 �52 –
F6 40 �15 � 38 �17 � 36 �19 �
F7 51 �5 + 49 �6 + 34 �21 �
F8 0 �55 – 54 �1 + 32 �23 �
F9 2 �53 – 33 �22 � 49 �6 +
F10 40 �15 � 23 �32 � 32 �23 �
F11 3 �52 – 55 0 + 34 �21 �
F12 19 �36 � 46 �9 + 34 �21 �
F13 1 �54 – 0 �55 – 24 �31 �
F14 12 �43 � 30 �25 � 12 �43 �
F15 1 �54 – 55 0 + 39 �16 �
F16 49 �6 + 22 �33 � 53 �2 +
F17 30 �25 � 41 �14 � 31 �24 �
F18 49 �6 + 46 �9 + 21 �34 �
F19 46 �9 + 37 �18 � 14 �41 �
F20 54 �1 + 41 �14 � 7 �48 �
� 7 12 17
+ 8 7 2
� 5 1 1

1 ‘‘þ;�;�” represents that the competitor is significantly better, worse than and similar to SPJ-GEP or SPJ-GEP-ADF, respectively, according to the
Wilcoxon signed-rank test a ¼ 0:05 . And the numeric in the row represents the comparison result between GEP and GP-GEP (GEP-ADF and GP-GEP-ADF, or
SL-GEP/SPJ-SL-GEP).
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than GEP-ADF. Although SL-GEP and SPJ-SL-GEP find the same number of correct results, SPJ-SL-GEP can still obtain a smaller
average fitness value than SL-GEP.

In Table 6, the results of the Wilcoxon Signed-Rank Test[44] are listed. It considers both the average fitnesses and RMSE.
According to the comparative data, SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP still obtain a better performance than the original
GEP, GEP-ADF, and SL-GEP, respectively.

All best fitnesses found by the above six algorithms are shown as points in Fig. 5. The results indicate that, in most of the
problems, the range of fitness obtained by SPJ-GEP, SPJ-GEP-ADF, or SPJ-SL-GEP is smaller than the range of fitness obtained
by GEP, GEP-ADF, or SL-GEP. These results show that SPJ-GEP can obtain more accurate performance than the baseline GEP
algorithms.

However, SPJ-GEP is not superior to GEP, GEP-ADF or SL-GEP in all the tested problems. For a few special problems, the
performance of GEP, GEP-ADF or SL-GEP is better than SPJ-GEP. For example, as shown in Fig. 6(a), the average and the range
of GEP fitness value both are smaller than those of SPJ-GEP fitness value; similarly, in Fig. 6(h), the range of GEP-ADF (SL-
GEP) fitness value is smaller than that of SPJ-GEP-ADF (SPJ-SL-GEP). That is because, from the subspace’s view, although
the mathematical expression space is split into many subspaces, the size of each subspace is still huge so that GEP, GEP-
(a) GEP vs SPJ-GEP (b) GEP-ADF vs SPJ-GEP-

ADF

(c) SL-GEP vs SPJ-SL-GEP

Fig. 5. Fitness comparison on all test problems. The x-coordinate shows the test problems. Red points represent the output of GEP, GEP-ADF, or SL-GEP, and
black points represent the output of SPJ-GEP, SPJ-GEP-ADF, or SPJ-SL-GEP.



(a) F1 (b) F3 (c) F5 (d) F6

(e) F10 (f) F12 (g) F16 (h) F19

Fig. 6. Fitness comparison on special test problems. In each subgraph, boxes from left to right represent GEP, SPJ-GEP, GEP-ADF, SPJ-GEP-ADF, SL-GEP, and
SPJ-SL-GEP, respectively.
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ADF, and SL-GEP may only search in one or several subspaces. Moreover, the crossover and the mutation of SPJ-GEP (SPJ-
GEP-ADF or SPJ-SL-GEP) are the same as those of GEP (GEP-ADF or SL-GEP) in a subspace. Those make it possible for the base-
line GEPs to find more accurate results than these SPJ-GEP algorithms if the subspace that they search for is the target sub-
space in which the correct results are located.

5.4. Comparison of population diversity

Since the crossover and the mutation of SPJ-GEP are the same as those of the baseline GEPs in a subspace, what makes SPJ-
GEP obtain more accurate results than these GEPs in most of the problems? It is attributed to the SPJ-GEP’s ability to jump
between subspaces, which maintains population diversity. To observe the population diversity, the different degree (dg) of
individuals is defined by the following equation.
dg ¼ D
N

ð12Þ
where N is the number of individuals in a population, and D is the number of different fitness values of individuals. For exam-
ple, if 100 individuals generate 70 different fitness values, the different degree is 0.7. Therefore, dg can represent the popu-
lation diversity, and dg is computed at every 100 generations in the above algorithms. By collecting dg values of the above six
algorithms that run in the test problem - F11, the population diversity changes of these algorithms are shown in Fig. 7.

As shown in Fig. 7, GEP, GEP-ADF, and SL-GEP have a lower level of the population diversity, while SPJ-GEP. SPJ-GEP-ADF
and SPJ-SL-GEP have a higher level of the population diversity. Besides, the average amplitude of blue curves that represent
these SPJ-GEPs is higher than that of black curves that represent the three baseline GEPs. Although crossover and mutation
contribute to maintaining population diversity in the early stages of these GEPs running, they tend to make little differences
between individuals in the later stages. However, the jump always makes significant differences between individuals in SPJ-
GEPs, according to Lemma 1.



(a) GEP vs SPJ-GEP (b) GEP-ADF vs SPJ-GEP-

ADF

(c) SL-GEP vs SPJ-SL-GEP

Fig. 7. The different degree comparison on F11.

(a) F1 (b) F18

Fig. 8. Convergence comparison.
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5.5. Convergence comparison

Fig. 8(a) and (b) illustrate that SPJ-GEPs (SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP) can obtain better results than the base-
line GEPs(GEP, GEP-ADF, and SL-GEP). As the number of iterations increases, the baseline GEPs gradually fall into local opti-
mum space. Meanwhile, owing to the low population diversity, they cannot escape from the local optimum space with a high
probability. However, SPJ-GEPs can easily escape from a local optimum space because the jump between subspaces transfers
individuals to different subspaces and maintains a high population diversity. Therefore, when the baseline GEPs present pre-
mature convergence, SPJ-GEPs still find new better results even in the later stage of 100,000 generations. That demonstrates
that SPJ-GEPs can always explore new subspaces with a high probability.

However, owing to the jump between subspaces and the above subspace selection method, it is difficult for SPJ-GEPs to
exploit a local space continuously in a period. Therefore, the convergence speed of SPJ-GEPs is slower than that of these base-
line GEPs in the early stage of 100,000 generations. For example, in Fig. 8(a), at approximately 40,500 generations, GEP finds
the best result with the fitness 0.025, while SPJ-GEP finds that with 0.078.
6. Related work

Similar to our idea of space partition that maintains the population diversity in this study, a method named NrGA was
proposed to use a binary space partitioning (BSP) tree. NrGA recursively subdivides space into two and stores individual vis-
iting information, and the method is integrated with GA so that individual revisits are completely eliminated [25–27].
Although NrGA can maintain the population diversity by visiting the BSP tree, it needs a lot of additional time and space
to maintain the tree. Especially for the huge space of mathematical expressions in SR, maintaining the BSP tree will become
an impossible mission. However, in the paper, SPJ-GEP does not construct a space-partition tree but utilizes its abstract
structure to obtain a space-partition set. Moreover, SPJ-GEP maintains population diversity by letting individuals jump
between subspaces instead of eliminating revisiting individuals.

Many distributed evolutionary algorithms (dEA) use a similar idea of space partition to distribute individuals of the pop-
ulation to different subspaces (multiple processors or computing nodes) [28]. These dEAs can be divided into island [29] [45],
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cellular [46] [30], hierarchical [47], and pool models [48]. These dEAs can increase the population diversity because their
subpopulations run independently in different subspaces, and transfer their best individuals by a migration strategy. As they
are distributed algorithms, they pay more attention to the communication cost and scalability and pay no attention to the
subspace selection method, so that they could waste a lot of computation time on invalid subspaces.

Different from the above methods of partitioning global space, Tsutsui [49] and Huang [50] proposed two methods of
local spaces that are created by the convergence status of the present population respectively. Tsutsui [49] proposed the
forking GA (fGA) which divides the search space for each population into subspaces depending on the convergence status
of the population and the solutions obtained so far. Then two types of fGAs (genotypic fGA and phenotypic fGA) are created
to maintain population diversity by defining two searching subspaces of each sub-populations, respectively. One is the sali-
ent schema which defines subspaces by phenotype parameters of the present population. The other is the neighborhood
hypercube which defines the local subspaces around the current best individual in the phenotypic feature space. The forking
GA can avoid the premature convergence of populations because the searching method enables the population to exploit
different local subspaces. Although Huang [50] proposed a differential evolution (DE) method based on the three spaces:
local space, opposition space, and global space, the three spaces are all local spaces because the global space refers to the
space near the best individual in a population, and its opposition space. So, the method can accelerate convergence but can-
not avoid falling into a local optimum.
7. Conclusion and future work

In the paper, we propose a novel algorithm, SPJ-GEP, to deal with the SR problem. Using the new approach that partitions
the space of mathematical expressions into subspaces, SPJ-GEP guides the population effectively jump among these sub-
spaces with a subspace selection method. SPJ-GEP maintains the population diversity while keeping the balance between
subspace exploration and exploitation. Therefore, the proposed SPJ-GEP has the following advantages. SPJ-GEP can be easily
embedded in other GEPs because its three key components – space partition, subspace selection, and crossover, are compat-
ible with other GEPs. As shown in the evaluation analysis, SPJ-GEP does not significantly increase the time and space com-
plexity compared with classical GEPs. SPJ-GEP can overcome the problem of premature convergence and avoid falling into a
local optimum.

Although SPJ-GEP surpasses the tested baseline GEPs on most benchmarks, it has two weaknesses that prevent it from
quickly finding better results than the baseline GEPs on a few benchmarks. One is that SPJ-GEP does not define how to choose
the best space-partition set from the space-partition tree. After all, the quality of the set directly affects the search results of
SPJ-GEP. The other weakness is that the selected subspace may not be the subspace where the optimal result is located. In
this case, the jump to these selected subspaces could result in an unreasonable search. In the future, we will address these
weaknesses by quantifying these subspaces.
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