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Fluid catalytic cracking unit, whose batch operations are operated in a multirate mode, is a typical continuous
process with batch operations. The integrated optimization of this problem can be formulated as a hybrid
parametric dynamic optimization. To obtain a high-quality solution, adaptive direct methods are usually required
to solve the problem iteratively. By exploiting the decomposable structure, a novel framework is proposed in this
paper, which can obtain an equivalent or better precision solution with relatively coarse discretization. In detail,
by designating the batch operations as complicating variables, an optimal solution and sensitivity information
about batch operations are obtained by a nonconvex sensitivity-based generalized Benders decomposition algo-
rithm. Then the optimal continuous operations are implemented as extra closed-loop controllers by tracking the
necessary conditions of optimality, while the optimal batch operations are improved by a line search method.
The practical potential of the framework is demonstrated with several operation modes.
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1. Introduction

In the field of process systems engineering (PSE), there are
increasing demands for better modeling and optimization strategies.
Particularly, the integrated optimization of decision making from dif-
ferent levels is a critical technique to further increasing the economic
profit [1,2]. Decisions in chemical process can be classified into con-
tinuous and batch operations. Physically, continuous operations are
the operations that can be adjusted in real-time, while batch opera-
tions are only implemented at certain time instants. In general, batch
operations just mean that they are one-offs. Furthermore, they can
be classified mathematically. If batch operations represent binary or
integer numbers, such as planning, scheduling and designing of
quantized decisions, then the integrated optimization will formulate
a mixed-integer dynamic optimization (MIDO) [3—6]; if the batch
operations represent real numbers, such as the adjustment of flow
rate and the addition of catalysts, then the integrated optimization
will formulate a hybrid dynamic optimization in terms of parameters
and continuous variables’, i.e. hybrid parametric dynamic optimiza-
tion. In this work, the batch operations represent real numbers, and
they are intermittent operations of continuous processes.

As there is an obvious decomposable structure in integrated opti-
mization problem, generalized Benders decomposition (GBD) [8,9]
are usually used to expedite the solving of these problems. In detail,
the original problem is decomposed into a sequence of subproblems,
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namely primal and master problems. The solution of these subpro-
blems leads to a sequence of nonincreasing upper bounds (UBD) and
a sequence of nondecreasing lower bounds (LBD) which converge to
an optimum of the problem. As GBD has many limitations, several
efforts have been made to further generalize it. An extra variable and
equality constraint are introduced to generate linear master prob-
lems [10]. A surrogate model can be constructed for specific noncon-
vex problem to conduct rigors GBD [11,12]. To apply GBD on a class
of general nonconvex problems and sparing the construction of sur-
rogate models, nonconvex sensitivity-based generalized Benders
decomposition (NSGBD) algorithm tackles nonconvexity by directly
manipulating the consistent linear Benders cuts and checking the
optimality conditions [13].

FCCU is one of the most important processes in a refinery to con-
vert low-value heavy oil feedstock into more valuable lighter prod-
ucts, e.g. naphtha, diesel and liquefied petroleum gas. Therefore, the
FCCU is highly expected to operate near the optimal operating condi-
tion with respect to economics [14—17]. Recently, Huang et al. [18]
applied the modifier adaptation for real-time optimization of the
FCCU and Guan et al. [19] proposed a control reconfiguration method
based on the self-optimizing control (SOC) methodology for the eco-
nomic operation of FCCU. Usually, continuous operations are oper-
ated by regulatory PID controllers to maintain optimal operation
points calculated by steady-state optimization, while batch opera-
tions are operated in an excessive mode. However, as the batch oper-
ations slightly changes the system’s dynamic in every cycle, the
independent optimization of continuous and batch operations loses
economic benefit in every transition period and the integrated
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optimization of continuous and batch operations will largely improve
the overall economic performance [7]. In detail, the batch operations
of FCCU include the addition of CO promoter and the adjustment of
combustion air flow rate, while CO promoter is a relatively expensive
resource and air blower consumes electricity. Moreover, they can be
operated in a multirate mode, i.e. implemented under different
cycles. To investigate the economic performance of FCCU under dif-
ferent operation modes, several cases have been considered in this
paper, such as CO promoter added every 8 h and combustion air flow
rate adjusted every 2 h.

The integrated optimization of continuous and batch operations
forms a hybrid parametric dynamic optimization problem. Intui-
tively, the parametrized solution can be obtained by Pontryagin max-
imum principle [20] or Belleman optimality principle [21] for fixed
batch operations, then it leads to a standard steady-state finite-
dimensional optimization problem. In fact, as a special kind of hybrid
system, its optimality conditions can also be obtained, namely hybrid
parametric minimum principle [22]. As most practical problems are
too complex to allow for an analytical solution from optimality condi-
tions, the direct methods are favored to solve optimal control prob-
lems, which parametrizes the continuous variables by discretization
and reformulates the original problem as a nonlinear programming
(NLP). As the batch operations can be parametrized by themselves,
the direct methods can be directly used to solve hybrid parametric
dynamic optimization problem. Moreover, according to the differ-
ence in the level of discretization, there are three types of direct
methods, i.e., the sequential method [23,24], the simultaneous
method [25,26] and multiple-shooting method [27,28].

By direct methods, the continuous and batch control variables are
treated equally without discrimination in the reformulated NLP,
which has three drawbacks: 1) it fails to distinguish the difference
between the continuous and batch operations; 2) it usually obtains a
suboptimal solution of original problem; 3) the solution is of the
open-loop form. As the implementations of batch operations are one-
offs, while the continuous control variables could be adjusted to
meet any real disturbance or mismatch, the optimal solution of batch
operation is far more valuable. Nevertheless, it is not reflected in the
simultaneous parameterization of continuous and batch operations.
To obtain a satisfactory solution efficiently, especially when the prob-
lem formulation contains large-scale models, e.g. those stemming
from industrial applications, the application of adaptive methods
[29,30] is usually inevitable, which generate a fully adaptive, prob-
lem-dependent parameterization by repetitive solution of increas-
ingly refined finite-dimensional optimization problems. To
implement the optimal solution in a close-loop form, the optimal con-
tinuous operations can be implemented as extra feedback controllers
by tracking the necessary conditions of optimality (NCO-tracking
scheme) [31, 32], which maintains near-optimal performance under
uncertainty, while the optimal batch operations are directly used [7].

Recently, a novel decomposition algorithm that combines NSGBD
with control vector parameterization (CVP) has been developed to
solve the hybrid parametric dynamic optimization [33]. It designates
batch operations as complicating variables and can be seen as a com-
bination of dynamic optimization on the continuous control variables
and sensitivity analysis on the batch control variables. In this paper, a
novel implementation framework based on NSGBD is proposed,
which implements optimal continuous control variables as close-
loop form while exploits the sensitivity information of NSGBD. In
detail, optimal continuous control variables are implemented by
NCO-tracking and a line search on batch control variables is con-
ducted to improve the solution quality of batch control variables.
This framework overcomes the drawbacks stated above and obtains a
high-quality solution of batch operations with a relatively coarse dis-
cretization against direct methods.

The rest of this paper is organized as follows: In Section 2, a brief
introduction of a FCCU with high efficiency regenerator is given, and

its batch properties are discussed, i.e. the addition of CO promoter and
the adjustment of combustion air flow rate. In Section 3.1, the mathe-
matical description of hybrid parametric dynamic optimization is
given, which can be solved and implemented by a tailored algorithm
given in Section 3.2 and an implementation framework given in Sec-
tion 3.3. In Section 4, the mathematical formulation of hybrid paramet-
ric dynamic optimization for FCCU is given, and four cases are solved
and implemented by the framework proposed in Section 3.3.

2. Batch properties of FCCU

The model adopted in this work is derived from the model of an
industrial FCCU with a high-efficiency regenerator as proposed by
the authors [7,34—36]. A schematic diagram of the FCCU with high-
efficiency regenerator is given in Fig. 1. Here, a short description of
model and operations is given.

The preheated raw crude oil reaches riser close to the bottom, and
contacts with atomizing steam to atomizing the feed for efficient con-
tacting of the feed and regenerated catalyst, which reactions are
taken as a five-lump model. Then the vapors and the catalysts sepa-
rate rapidly and efficiently in stripper, while product vapors exit the
upper cyclones and flow to the main fractionator tower. The purpose
of the main fractionator is to desuperheat and recover liquid products
from the reactor vapors. The spent catalyst flows into regenerator for
recovery, which mainly consists of two parts: a combustor where the
gases and the solids are fast-fluidized and a dense bed where the
gases and the solids are only bubbling-fluidized. The regenerator has
three main functions: 1) it restores catalyst activity by burning off
the coke covered in the catalyst; 2) it supplies heat for cracking reac-
tions; 3) it delivers fluidized catalyst to the feed nozzles. Moreover,
flue gas and catalyst are separated in the freeboard and flue gas exits
the cyclones to a plenum chamber in the top of the regenerator.

The continuous operations of FCCU are normally controlled by PID
controllers. In specific, the regulatory PID control system of FCCU is
comprised of five controllers, which are the regenerated catalyst slide
valve controlling the riser temperature, the spent catalyst slide valve
controlling the catalyst inventory in the stripper, the recirculation slide
valve controlling the catalyst inventory in the dense bed, the steam
injected to the wet gas compressor turbine controlling the reactor pres-
sure and the flue gas slide valve controlling the pressure difference
between the reactor and the regenerator. Hence, the continuous opera-
tions are the adjusting of valve openings, or the setting of set-points of
these controllers. Apart from these operations, FCCU discussed in this
paper has two extra batch operations, namely the adjusting of combus-
tion air flow rate and the addition of CO promoter.

The air blower provides sufficient air velocity and pressure to
maintain the catalyst bed in a fluidized state while provides oxygen
for the combustion in the regenerator. Combustion air flow rate is
commonly adjusted through variable inlet guide vanes system [37],
which consists of a series of flat plates that can be turned to induce a
controlled inlet pre-whirl. The adjustment of combustion air flow
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Fig. 1. Schematic diagram of FCCU with high-efficiency regenerator.
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rate is realized by tuning the setting angles of vanes. To reduce the
mechanical loss and increase the working life of variable inlet guide
vanes system, the control of combustion air flow rate might better be
intermittent. Hence, the adjustment of combustion air flow rate is a
batch operation of the continuous process.

Most FCCU uses CO promoter to assist the combustion of CO to
CO, in the regenerator and to guarantee the safety of the operation
by avoiding afterburning in the freeboard. The amount and frequency
of CO promoter additions varies from one FCCU to another. In some
units, CO promoter is added to the regenerator two to three times a
day. In other FCCU, CO promoter is added only if the temperature rise
of freeboard exceeds the operation constraints. In this paper, CO pro-
moter is added manually and periodically in FCCU, which also
belongs to a batch operation of the continuous process.

Another special character about multi batch operations is they can
be operated in different cycles, i.e. multirate mode. One case studied
in this paper is that the addition of CO promoter is implemented
every 8 h, while the adjustment of combustion air is taken every 2 h.

3. Hybrid parametric dynamic optimization
3.1. Mathematical formulation of hybrid parametric dynamic optimization

The mechanism model of industrial processes and the constraint
equations are the basis of discussing hybrid parametric dynamic opti-
mization. For universality, a process model can be represented by dif-
ferential/algebraic equations (DAEs):

4 = £t xa(0) xa(0), u(0), 7) (1a)

0 = fo (t.xa(0). xalt). (), ) (1b)

where x,(t) € R [x4(t) € R™ represents the vector of differential/alge-
braic state variables; u(t)/u represents the vector of continuous/batch
control variables. In this paper, the initial conditions x4(to) are given
as the final values of the last period. Obviously, # acts as a parameter
in this process model.

The objective of a continuous process with batch operations is to
maximize the product yield and minimize the cost of feed and opera-
tion, which is represented as

b
minJ(u(t),u) = / (T (t,xq(t),xq(t), u, %) + €1 (2, x4(t),xq(t), u,%))dt + C2 (%)
to

2)

where cost function J is composed by three parts, r( t,x;4(t),xq(t), u,u
and ¢; (Lxd(t),xa([),mﬁ) are the product yield and the cost during
continuous operation, while ¢, (%) is the cost for batch operations at
time instant to. An extra differential state variable X(t) can be intro-
duced to simplify the form of J. In detail, let

X=-1+0 3)
with initial condition
X(to) =0 4)

Without loss of generality, the differential state variable could still
be represented as x,4(t). Then the cost function J can be simplified as:

min, o & (x(ty). 7) = X(t) + (@) (5)

where x(t) = (x4(6)T,x(£)))".
The path constraints are represented as

xP <x() <xb (6a)

ul® <u(t)<u¥® (6b)

where x = (x2)7, (x)T)T, x = ((x4")7, (x22)")7, xb and x4 are the
lower and upper bounds of differential state variables; x and x! are
the lower and upper bounds of algebraic state variables; u® and u*?
are the lower and upper bounds of continuous control variables.
Moreover, the constraints of # are represented as

ﬁlb fﬁfﬁub (7)

where % and #*® are the lower and upper bounds of batch control
variables. The end-point inequality constraints are represented as

oI <x(t) <afub (8)
where xﬂb _ ((xgb)r,(xgb)T)T, xﬁ‘b _ ((xQUb)T,(xgib)T)T, xgb and xZub are

the lower and upper bounds of differential state variables at end-
point; xﬂb and x{;'b are the lower and upper bounds of algebraic state
variables at end-point; The end-point equality constraints could be
treated as special instances of end-point inequality constraints when
the lower bounds equal upper bounds.

From the above, the optimization of a continuous process with
batch operations is described as searching an optimal trajectory of
continuous control variables u(t) and an optimal value of batch con-
trol variables # to minimize Eq. (5), while satisfies Eqs. (1), (6), (7)
and (8). Then the hybrid parametric dynamic optimization could be
described by Problem (P1).

Problem (P1):
miny 2/ (x(t). @) (%)
s.t. xq(to) = x9 (9b)
4 = fa(txa(0) xa(0), u(0). 7) (90)
0 = fo(t.xa(0). xa(0), u(0). 7) (9d)
Gy()<0 (9€)
Gy (u(t)) <0 (9f)
Gp(x(1)) <0 (%)
Ge (x(tf)) <0 (9h)
where

= (3a%) @
au(uo) = (4 17 &
(o) = (325) 8
e xty)) - (iﬁ,f,”;f;) (o

As most practical problems are too complex to allow for an analytical
solution, the numerical algorithms are inevitable for solving optimal con-
trol problems. In practice, the direct methods are favored, and its key
idea is transforming the original infinite-dimensional optimization prob-
lem into a finite-dimensional NLP by the parameterization of continuous
variables. For sequential method, the continuous control variables are
approximated in finite dimensional linear spaces, while other continuous
variables are calculated by integration. Specifically, for continuous
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control variable u(t) € D, the approximation is carried out by
—~ N
u(t)y ~a(t) =" W (1) (10)

where ¢?’(t) is the basis of the linear space
DN = span{g (t), @5 (¢), ....dn(t)}, and u is the projection of u(t) at
¢?’ (t). Usually, the piecewise Lagrange interpolation polynomials are
used for qb,”(t), where m(suppq&ﬁv(t) msupquf’(t)) = 0 (measure) for

Vi # j. Hence, it has <¢§V(t),¢}v(t) > = 0 for Vi # j for Dy. For piece-
wise constant controls, the optimization horizon [to,t7] is subdivided
into N > 1 control stages, i.e. o < t; < t; < ... < ty =15 and the orthog-
onal basis function ¢f’ (t) can be represented as

N L st<t
0 ={ "5 e an

By sequential method, the continuous control variable u(t) is
parameterized by iy = ()7, ..., (@¥)")" and the dynamic optimi-
zation is transformed into an NLP. Since path constraints of original
problem will be transformed into interior constraints by sequential
method solver which only hold in separated points, additional end-
point constraints must be employed to prevent the violation of path
constraints on the entire time. For example, the variable y(t) has an
upper bound y** and lower bound y®, after introducing two new

variables y{(t) and y*(t) with two differential equations y’ = max (O,

y”’—y(t)) and y" = max(O,y(t)—y”b), and two initial conditions
y!(to) =0 and y*(to) =0, the additional end-point constraints can be
written as: y'(t;)=0 and y“(t;) = 0. Moreover, if piecewise constant
controls are used for u(t), the path constraints for u(t) could be
enforced on uy. At this point, the reformulated NLP is described by
Problem (P2).

Problem (P2):
min;\Nﬁ]<x(tf),ﬁ) (12a)
s.t. MX(to) = Xo (12b)
MX(t) = F(t,X(t),ﬁN,ﬁ) (12¢)
G4, ﬁN,X(tf))fﬂ (12d)
where
M = diag(1,....,1,0,...,0) (12e)
3n4+2ng Ng
x4(t)
X(t) = <xb(t)> (12f)
xq()
xO
d
Xo=10 (12g)
0
Fa(txqt).xo(0)an. 1)
F(6X(0),an,7) = AG) (12h)

Sa(txa(0),xa(0) n, )

max(o,x”’fx(t))

fo(tx) = max(.x(6)-) (12i)

Gy (u)
Gy (uy)
G, ﬁN,X(rf)> = G’e(xb(tf)) (12j)
G, (x(tf))
Gu(”’fl)
Guln) = | (12k)
Gu(uh)
Ge((t)) =x(t) (121)

3.2. Nonconvex sensitivity-based generalized Benders decomposition

Since the hybrid parametric dynamic optimization has clearly
decomposable structure, GBD-based approach could be applied.
Recently a novel decomposition algorithm that combines NSGBD
with CVP has been developed to solve hybrid parametric dynamic
optimization [33]. It discretizes continuous control variables, des-
ignates batch control variables as complicating variables and
applies three techniques: (1) an extra variable and equality con-
straint is introduced to generate consistent linear Benders cuts,
which provides linear programming (LP) master problems and
sensitivity information of batch operations, no matter how the
complicating variables appear in the model; (2) for infeasible
points infeasible minimum problems are constructed to generate
supporting hyperplanes to cut off the infeasible region of compli-
cating variables and new feasible points; (3) with the check of
optimality conditions linear Benders cuts are directly manipulated
to tackle nonconvexity.

By designating the batch operations # as complicating variables
and introducing a new batch control variable # and an extra equality
constraint

h(@u)=u-u=0 (13)
the NSGBD algorithm for Problem (P2) can be constructed with the

corresponding problems listed below:
Problem (P3):

(@t olfs) = arg ming, J (x(ty), ) ) (14a)
s.t. MX(to) = Xo (14b)
MX(t) = F(t,X(t),ﬁN,Ei) (14c)
G(ﬁ';z,a,v,x(tf)) <0 (14d)
where J, is the optimal value of objective function.
Problem (P4):

(i@l k) = arg min?w/(x(tf),u) (15a)
s.t. MX(to) = Xo (15b)
MX(t) = F(t,X(t),ﬁNj) (15¢)
G, ﬁN,X(tf)> <0 (15d)
h(ﬁ, g{,) —0 (15e)

where g, is the multiplier of the equality constraint (15e).
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Problem (P5):
(ﬁjnl,_yc,ﬁ’;) = arg min;, _ AR (16a)
s.t. MX(to) = Xo (16b)
MX(t) = F(t,X(t),ﬁN,ﬁ) (16¢)
Gy, X (1) ) <0 (16d)
where
la— |} = @—@) A—w) (16e)

A is a symmetric positive definite matrix.

Problem (P6):
(w’;,ﬁ’&‘d,#;m’,;) = arg min,, o (17a)
s.t. MX(to) = Xo (17b)
MX(t) = F(t,X(t),ﬁN,ﬁ) (17¢)
G, aN,X(rf)) —qte<0 (17d)
h(@, @) =0 (17e)

where [L]; is the multiplier of equality constraint (17e) and e is vector
whose elements are all equal to one with proper dimension.
The constraints on % (Eq. (7)) can be represented as:

i (g—ﬁ”b)fo,iel(u (18a)
wy- (u—a")=0.7 ek, (18b)
where ui = (0,..,0 ,1,0...,0 dui =(0,..,0 ,-1,0...0
”’c ( ’ ’ ) )an ’Ld ( ) ) )
i1 L i—1 L
Problem (P7):
(nb,ub\v vk vk v’é) = arg r}]ﬁnn (19a)
n2o - - (=2}).j € Keas (19b)
”'][; . <E_Elg)50-,jrel<infeas (19C)
i (g—ﬁ”b)fo,ieKu (19d)
wy- (u—a")=0.7 ek, (19€)

where vk, vk, v¥ and vk are the Lagrangian multipliers for Kpeqs, Kinfeas,
K, and K,

Define
Ea={jeZ: (vy); # 0} (20a)
Ep={j €Z: (v); # 0} (20b)
Ee={ieZ: (v); #0} (20c)
Ho={ieZ: (), £0} (20d)

Problem (P8):
(uf) = arg min pt -u (21a)
W - (u—=18) <0, € Kineas (21b)
i (u—7,)<0,ie Ky (21c)
M- (u—1)<0,1 €K (21d)
The basic equations about convergence:
LBD > UBD (22a)
UBD-LBD < ¢, (22b)
The equations for the checking of optimality conditions:
Il /e | p<e2 (23a)
luy—ug || p<es (23b)

Algorithm 1: NSGBD with CVP for Problem (P1)

Step 1. Determine a set of proper inner points in optimization
horizon [to,t], namely tp < £ < £ < ... < ty=t; and parameterize the
continuous control variable u(t) as #y. Find a point @} according to
Eq. (7); let j=1, j=1, Kfeas=0, Kinfeas=9, LBD =—o00; set the hyper
parameters y, &1, & and é&s. ‘ ‘

Step 2. Solve the primal Problem (P3) for @}, = @,. One of the fol-
lowing cases must occur:

(1). Primal problem (P3) is feasible with #), , and j{l, solve the pri-
mal Problem (P4) for u), = @, at @, and @ uiyy , with . UBD = J.: One of
the following cases must occur:

(D.1BD > UBD. pl, = ypul, 1€ B,

(2. UBD — LBD <&;. One of the following cases must occur:

(). 125 +|2 + 24 =0 (@, is an inner point). If Eq. (23a) is satis-
fied, then the algorithm terminated with optimal solution (uJNﬂ,u’ ),
else ul = yul,le B, .

(b). |Eb| +1E | +|Eql # 0 (w0, is a boundary point). Solve Problem
(P8) at w, with ul. If Eq. (23b) is satisfied («}, = #,), then the algorithm
terminated with optimal solution (i} ,, N )

(3). Otherwise.

Kfeas = {Kfeasvj}' ] :j +1.

(2). Primal Problem (P3) is infeasible. Solve the Problem (P5) for u’
with (uNC,u’) Solve the Problem (P6) for @ at (@ .,#.) and =0
with ILb mfeas {KmfeasJ } "l "lc-] ] +1.Return to Step 2. .

Step 3. Solve master Problem (P7) with n’b, u’ v, v’, v. and v
LBD = 17’b,u’ u’ Return to Step 2.

Remark 1. The algorithm flowchart of NSGBD [13] is given at Fig. 2.
Problems (P3) and (P4) are the primal problems for fixed #, to gener-
ate a Benders cut. The primal Problem (P3) is solved with fixed com-
plicating variables and the primal Problem (P4) is solved at the
solution found in primal Problem (P3). Problems (P5) and (P6) are the
infeasible minimum problems for infeasible u’ to generate a feasible
pomt @. and a supporting hyperplane of fea51ble region of # described
by [Lb, which is used to approximate the feasible region of . Problem
(P5) finds a feasible point that is closest to the infeasible point. Prob-
lem (P6) is solved at the solution found in primal Problem (P5) and
o =0. Problem (P7) is the LP master problem for the generation of
new points. =, is the index of active Benders cuts. At nonconvex
points, the multipliers of active Benders cuts indexed by =, will be
multiplied by y to provide valid LBDs. Z,, = and = are the index of
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Generate a supporting
hyperplane and new —
feasible point
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Terminate
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to generate a new point

Fig. 2. The algorithm flowchart of NSGBD.

active constraints for Kinpeqs, K, and Kj, which are used to distinguish
between boundary and inner points. Eq. (22a) indicates that the mas-
ter problem gives an invalid LBD, which indicates the nonconvexity
of original problem. Eq. (23a) and (23b) are the local conditions for
optimality at inner and boundary points. Problem (P8) is the corre-
sponding problem for Eq. (23b), which aims to check the optimality
conditions numerically. The key technique of NSGBD is the detection
of nonconvex points and the operation of corresponding active Bend-
ers cuts, which is described by Step 2 of Algorithm 1.

Remark 2. There are two properties of NSGBD that will be exploited
in the follows: 1) g, is the gradient (sensitivity) of projected cost
function at differentiable points [13] with respect to #; 2) parallel
scheme [38] can be easily embedded into NSGBD, i.e. multiple primal
problems can be solved independently and simultaneously.

3.3. Novel implementation framework of optimal solution

As primal problems are solved by a direct method, namely CVP,
the solution of continuous operations still share the common limita-
tions of direct methods, i.e. the solution of continuous operations is
usually suboptimal, which renders the solution of batch operations
suboptimal. Moreover, the solution of continuous operations is of the
open-loop form. To overcome these limitations, a novel implementa-
tion framework is proposed as follows.

The open-loop optimal continuous operations could tell the com-
position of arcs of the analytical solution, which includes constraint-
seeking and sensitivity-seeking arcs in the sense of necessary condi-
tions of optimality. In detail, the constraint-seeking arcs are deter-
mined by the active path constraints, while sensitivity-seeking arcs
are determined by the dynamic model and cost function, and regulat-
ing these conditions around zero leads to optimality. Hence, the NCO-
tracking scheme can be used to implement the optimal continuous
operations of dynamic optimization as extra closed-loop controllers
under the assumption that the set of active constraints calculated by
former dynamic optimization does not change with uncertainty, i.e.
the structure of the optimal solution (the types and sequence of arcs)
of the true system is known a priori.

Due to the discretization of continuous variables, the feasible
region of continuous operations for reformulated NLP shrinks (a sub-
space of original feasible region.). Working through the dynamic sys-
tem, it also shrinks the feasible region of batch operations, which
makes the optimal batch operations obtained by NSGBD suboptimal.
However, this solution includes extra sensitivity information, which
makes it possible to conduct an extra line search (sensitivity analysis)
to improve its quality. In detail, with the optimal continuous opera-
tions implemented by NCO-tracking scheme, a line search with
respect to scalar « is given as follows:

=1+ K (24)

where @ is the optimal batch operations obtained by NSGBD algo-
rithm, and g} is the corresponding multiplier of Problem (P4). Then
several simulations about different « are conducted to find improved
optimal batch operations that maximizes the economic performance
without violating the constraints under satisfactory precision. Note
that if #; is an inner point, where || ) || is small, then the sign of « is
uncertain; if @ is a boundary point, where || w/ || is large, then « <
0. The magnitude of « can be estimated by the neighbor points of @,
and the precision required in practice.

Combining the NSGBD algorithm with NCO-tracking scheme, this
implementation framework, which is illustrated by Fig. 3, can also
obtain near-optimal performance under uncertainty. Comparing to
the implementation framework that integrates the adaptive CVP
with NCO-tracking scheme [7], this novel scheme shares and exploits
the advantages of NSGBD algorithm in two aspects: 1) when the
dimension of batch operations is relatively large, the solving of pri-
mal problems of NSGBD will be much easier than the solving of NLP
that parameterizes the continuous and batch operations simulta-
neously, while LP master problems can be easily solved. In extreme
cases, large amount of batch operations and discretized continuous
operations will give too many decision variables, which makes simul-
taneous optimization of continuous and batch operations intractable
and renders the NSGBD become the only alternative; 2) the sensitiv-
ity information about batch operations is fully exploited by conduct-
ing a line search, which obtains a high-quality solution without using
adaptive methods or a very fine discretization mesh.

Note that the scheme proposed at Fig. 3 is not an extension of the
general methodology of NCO tracking. The NCO-tracking is used in
Fig. 3 to improve the solution quality of continuous operations while
the solution quality of batch operations is improved with the help of
sensitivity information of NSGBD. In every simulation of Fig. 3, no
uncertainty or disturbance is introduced. The four NCO parts include
both the profile and pointwise objectives that must be met and each
objective involves the enforcement of active constraints and the zero-
ing of reduced gradients [39], where the active constraints can be
controlled at the active boundaries using appropriate operational
degrees of freedom. In practice, the gradients can be calculated by
the neighboring-extremal (NE) approach [40] (the gradients are com-
puted using the difference between nominal (corresponding to )
and measured outputs), finite-difference (perturbation) approach or
regression approach [41]. Also, note that it is not always necessary to
evaluate the sensitivities directly, because quantities that go to zero
with them suffice for implementation. In fact, the batch operations
can also be treated as pointwise decision variables in NCO-tracking
framework, which can be adapted on a run-to-run basis under the
real uncertain processes [42—44]. Then the scheme proposed at Fig. 3
is nothing but providing a good initial guess for batch operations
which speeds up the convergence. In practice, the algorithm can be
executed in each control interval to provide a new solution of batch
operations and a new NCO structure of continuous operations for

‘ Hybrid parametric dynamic optimization
Parameterized by CVP

‘ Nonlinear Programming ‘
Batch operations as
complicating variables

Nonconvex sensitivity-based general
Benders decomposition

Sensitivity Batch | Continuous
information | operations | operations

v
NCO-tracking
Close-loop

Line search w = /" + k"

Fig. 3. A novel implementation scheme combining NSGBD with NCO-tracking.
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next cycle, or the batch operations can be taken into a part of NCO
enforcement and adapt with continuous operations batch-to-batch,
while the algorithm is executed when large-scale change of working
conditions is expected.

4. Hybrid parametric dynamic optimization of FCCU
4.1. Mathematical formulation of FCCU

As discussed in Lin et al. [7], riser temperature is directly related
to the productivity of the valuable product, combustion air flow rate
is a mainly measure of adjustable utility cost and the addition of CO
promoter consumes extra resources, then continuous control variable
u(t) is taken as the set-points of riser temperature T;q_sp(t), While
batch control variables # are the adjustment of combustion air flow
rate V and the amount of added CO promoter M,,. The batch opera-
tions are operated in a multirate mode, i.e. the CO promoter is added
every 8h=480min and the air blower is adjusted every
2 h =120 min. For simplicity, the value of economic objective function
is calculated by the difference between the current operation and the
nominal operation, which is:

minj (Tra_sp(t)a {Vi}?:l ) Mpro) = (;180 (*w]dFd <t> Tra_sp(t)7 {Vi}?:l ) Mpm)
~@1Fn (£, T sp (€), ViY iy Mpro ) )t + 31 [i500.0)f(VI)dE + @3Mpro
(25)

where w4, w1, and w3 denote the price of diesel, naphtha and CO
promoter; F; and F, are the yield of diesel and naphtha; f is the
energy consumption of air blower with respect to {V,»}le. The con-
straints imposed on the decision variables and on the other state vari-
ables for FCCU can be referred in Lin et al. [7]. Hence, the hybrid
parametric dynamic optimization is to search an optimal trajectory
of Trq_sp(t) and optimal values of Mp,, and {V,-}?:1 to minimize objec-
tive function Eq. (25), while satisfies the system model and con-
straints. Note that the economic objective function is multiplied by a
minus sign for the reformulation of a minimization form. To coincide
with the conventional custom, the minus sign is discarded in the nar-
ration.

To compare the effect of optimizing V as a batch operation and
provide an upper bound for above cases, a case considering V as a
continuous operation is carried out, whose cost function is

min](Tmisp(t), V(D) M,,r,,) = [is0 (7w1dFd (t, Tra sp(£), V(0), Mpm)
—winFa (t, Tra5p(0), V(0), Mm) +f (V(t)) )dt + w3Mpro
(26)

Considering the CO promoter may work on a preset way
(Mpr, = 4kg), two extra cases are carried out to compare these effects.
All cases considered are given by Table 1. The detail about the well-
posed of this hybrid parametric dynamic optimization can be referred
inLinetal. [7].

The NSGBD algorithm was implemented using gPROMS/gOPT to
solve the dynamic optimization primal problems, and MATLAB for
the LP master problems. Moreover, the piecewise constant controls
are used for the approximation of continuous controls with 16 equi-
distant meshes. Note that there aren’t batch operations in Case 3,
which makes the NSGBD unnecessary and is solved by normal CVP.

Table 1
All cases considered.
Case 1 2 3 4
CO promoter Batch Batch  Preset Preset

Combustion air ~ Continuous Batch  Continuous  Batch

4.2. Case 1: Combustion air as a continuous operation whereas CO
promoter as a batch operation

In this case, the batch operation is M, and the continuous opera-
tions are Ty,_sp and V, which is the case considered in Lin et al. [7],
where the adaptive CVP is used and the result will be compared lat-
ter. Here, there are 32 decision variables in the reformulated NLPs of
primal problems. Using the NSGBD algorithm, all the feasible primal
solutions, Lagrange multipliers and master solutions are summarized
in Table 2. Using a termination tolerance of ¢;=1, &;= 0.1 and &= 0.1,
NSGBD algorithm converged after 5 iterations.

The parallel scheme is used in the first iteration, where primal
problems for M} =2 and M};3 = 4 are solved simultaneously. The
algorithm converged in 5 iterations when J° — LBD® < 1 and ||u’[]®|| <
5 x 1073 (inner point), and all the M, are feasible points. Current
optimal solution is Mgm = 3.1864kg, J° = 1655.2%. The optimal solu-
tions of other continuous variables at iteration 5 are given in the solid
lines of Fig. 4.

As shown in the solid lines of Fig. 4a and 4b, the optimal solution
requires the higher riser temperature and combustion air flow rate
with the higher activity of CO promoter, which is the same as Lin
et al. [7]. As shown in Fig. 4c and 4d, the upper-bound constraints of
0, molar fraction in flue gas and temperature rise in the freeboard
are active throughout the entire time, which means the optimal solu-
tion is only composed by constraint-seeking arcs. Hence, according to
NCO-tracking scheme, the optimal continuous control variables,
namely riser temperature set-points and combustion air flow rate,
can be determined by these two constraints. Hence, two extra regula-
tory controllers are needed to maintain two upper bounds con-
straints active, and it leads to an input-output pairings problem. As
discussed in Lin et al. [7], riser temperature set-points should pair
with temperature rise in the freeboard and combustion air flow rate
pairs with O, molar fraction in flue gas.

Define L={k € N: u* < 0}, R={k € N: u* > 0}, then it should have
My, <M,,, for k € L and M}, > M, for k € R. Hence, the rough esti-
mation of optimal batch operations for the original problem is

M, € (Maxe My, ming.gMy,,) = (3.1864,3.3440)kg (27)

By the novel framework proposed in Section 3.3, a line search
with the implementation of NCO-tracking can be conducted, which is
shown in Table 3.

As shown at the first and third rows of Table 3, i.e. Mp,, = 3.1864kg
and Mp,, = 3.3440kg, better performances than the solution of primal
problems are obtained with the help of NCO-tracking scheme, which
is caused by the safety margin left at every constant control section
caused by discretization. By the last two rows of Table 3, optimal
solution of batch operation M,,, should reside in the interval [3.344,
3.45]kg. Then optimal implementation of batch operation can be
Mo =3.4kg with J=2732.3¥, and the corresponding simulation with
NCO-tracking scheme is given by the dash lines of Fig. 4. As can be
seen at the dash lines of Fig. 4c and 4d, the safety margin left at every
constant control section has been largely eliminated by NCO-track-
ing. Comparing with the result obtained in Lin et al. [7] (Mpy, = 3.35kg,
J=2697.05¥), which is solved by simultaneous adaptive CVP with the

Table 2

Progress of iterations of NSGBD algorithm.
Iteration ~ Mpo(kg) 1 Jo¥) LBD(¥) J-LBD(¥)
1.1 2.0000 -134.12 -15828 - -
12 4.0000 45.905 -1636.8 - -
2 2.8097 —35.649 -16479 -16914  43.570
3 3.3440 7.2533  -1655.0 -16669  11.945
4 3.0655 -14.828 -16543  -1657.0  2.6695
5 3.1864 -4.6607 -1655.2  -1656.1  0.87264
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Fig. 4. optimal results in open-loop (Mp,,=3.1864 kg) and close-loop (Mp,=3.4 kg) forms: (a) riser temperature, (b) combustion air flow rate, (c) temperature rise in the freeboard,

(d) O, molar fraction in flue gas.

Table 3

Line search with respect to batch operations.
Mpro(kg) Jo¥)
3.1864 2728.7
3.2652 27304
3.3440 2731.7
3.4500 27315

piecewise constant control approximation for continuous operations,
a high-quality solution with better precision is obtained with rela-
tively coarse discretization. In detail, simultaneous adaptive CVP con-
verged in 14 iterations with 43 decision variables (21 meshes), while
the NSGBD converged in 5 iterations with 32 decision variables (16
meshes). Note that the scale of NLPs is different for adaptive CVP and
NSGBD. Adaptive CVP needs to repetitively solve increasingly refined
finite-dimensional optimization problems, while the scale of primal
problems is identical for all the iterations in NSGBD.

4.3. Case 2: Combustion air and CO promoter as batch operations

In this case, the reformulated NLPs of primal problems only con-
tain 16 decision variables, as there is only one continuous operation.
Considering the length of this paper, only partial feasible primal solu-
tions, Lagrange multipliers and master solutions are summarized in
Table 4, partial solutions of infeasible minimum problems and
Lagrange multipliers for supporting hyperplanes are summarized in
Table 5, and partial active constraints of master problems are summa-
rized in Table 6. Using a termination tolerance of ¢;=1, &= 0.1 and &3=
0.1, NSGBD algorithm converged after 10 iterations.

The parallel scheme is used in iterations 1, 2, 3 and 4. At iteration
1, 4 out of 2°=32 corner points are calculated simultaneously. The
corner points (2, 48, 48, 48, 48) and (4, 48, 48, 48, 48) in iteration 1.1
and 1.2 are feasible points and obtain two Benders cuts for master
problems. The corner points (2, 50, 50, 50, 50) and (4, 50, 50, 50, 50)
in iteration 1.3 and 1.4 are infeasible points, which invoke two infea-
sible problems simultaneously and obtain two new feasible points,

Benders cuts for master problems and supporting hyperplanes of fea-
sible region. At iteration 2.1, new batch operations obtained from the
master problem are also infeasible, which invokes one infeasible
problem and obtains one new feasible point, Benders cut for master
problems and supporting hyperplane of feasible region. Simulta-
neously, 2 corner points (4, 50, 48, 48, 48) and (4, 48, 50, 48, 48) are
calculated in iteration 2.2 and 2.3. They are also infeasible points,
which invoke two infeasible problems simultaneously and obtain
two new feasible points, Benders cuts for master problems and sup-
porting hyperplanes of feasible region.

At iterations 3.1 and 4.1, new batch operations are obtained from
master problems, and parallel scheme is used to generate 3 extra
neighbour points, i.e. iteration 3.2, 3.3 and 3.4 and iteration 4.2, 4.3,
and 4.4, which are all infeasible points. Both iterations (3 and 4)
invoke four infeasible problems. From iteration 5, new batch opera-
tions obtained from master problems are feasible. However, at itera-
tions 5 and 8, master problems give false estimates of lower bounds,
i.e. LBD > UBD, which indicates the nonconvexity of the FCCU prob-
lem. For iteration 5, the active Benders cuts are the ones generated
by iterations 1.2 and 4.2 (shown at Table 6), whose Lagrange multi-
pliers are multiplied by y =1.16. The same operation is conducted at
iteration 8, and the algorithm converges at iteration 10. Since there
are active border constraints at iteration 10 (shown at Table 6), (M5,
V10 v10,vI0 v10) is a boundary point. Then Problem (P8) is solved
and convergence criterion Eq. (24b) holds. Hence, optimal
solution of NSGBD is: Ml}ﬁ’o =3.3223kg, V]°=49.068km3/h,
Vzl0 =48.981km3/h, V310 = 48.931km>/h, Vio = 48.896km?> /h,
J'°=1279.8%, and the solution of some other variables at iteration 10
are given in the solid lines of Fig. 5.

As shown in Fig. 5¢, the upper bound constraint of temperature
rise in the freeboard is active throughout the entire time, which
means the optimal solution is only composed by constraint-seeking
arcs. Hence, according to NCO-tracking scheme, the optimal continu-
ous control variable, namely riser temperature set-points, can be
determined by this constraint. Hence, one extra regulatory controller
is needed to maintain this upper bound constraint active by adjusting
the set-points of riser temperature. Moreover, define
P={keN:puk>0}, {N;={keN: puk <0}}?:1. As iy and {py}E
are the gradients of projection function, the rough estimations of
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Table 4
Partial feasible primal solutions.
Iteration 4.4 5 6 7 8 9 10
Mpro(kg) 2.5865 2.4590 2.7855 2.8738 2.8890 3.2639 3.3223
v 8.9744 —21.541 27.047 25.754 20.927 53.115 58.887
Vi(km?/h)  49.034 49.061 49.064 49.064 49.065 49.068 49.068
Hvi 34803  -35154 34719 —3479.8 —3490.8 —3480.0  —34683
Vo(km?/h)  48.952 48.977 48978 48979 48.979 48.980 48.981
Mz -3456.5  -34627  —-3447.1  -3476.1 —3461.9 34281 34342
Vs(km?/h)  48.928 48.927 48929 48929 48929 48930 48931
Hvs 34023  -34582 34416  -34525 —3465.0 —34792 34418
Vykm?/h)  48.872 48.894 48.895 48.895 48.895 48.896 48.896
Hva 34613  -3505.7  —3407.5 —34268 34694  -34152 34411
1§3) -989.35  —12584 12718 —12744  —12753 —-12798  —127938
LBD(¥) - -12583 12784  -12755 ~1275.3 12909 12805
J-LBD(¥) - -0.10351 65509 1.0377  -0.047900 11125  0.66554
Table 5
Partial infeasible primal solutions.
Iteration 4.1 42 43 44
Mpro(kg) 2.4295 2.5865 2.5865 2.5865
M'yro (kg) 2.4295 2.58652 2.5865 2.5865
W —4.3090 —1.4923 x 10 —8.7590 —5.7774
Vy(km3/h) 49.061 49154 49.034 49,0342
V'; (km?/h) 49.061 49.062 49.034 49.0342
Wi 9.6649 x 10~° 1.4561 x 10° -3.8917x10°  1.8691 x 1073
Vy(km3/h) 48.977 48952 49,079 48952
V'5 (km?/h) 48.970 48952 48.970 48952
Wz —22725x107°  1.2098 x 1072 1.4636 x 10° —4.2456 x 1073
Vs(km3/h) 48.927 48.904 48.904 49,034
V'3 (km?/h) 48.924 48.904 48.904 48.928
Wz —-6.8183x10°° -1.7140x 103  —2.5470x 10~* 1.4713 x 10°
V,(km3/h) 48.894 48.872 48.872 48.872
V' (km?/h) 48.894 48.872 48.872 48.872
Wva 14714 x 10° —36467x 1072 13657 x107%  —3.1264 x 102
Table 6 seen at the dash line of Fig. 5c, the safety margin left at every constant
Partial active constraints of master problems. control section has been largely eliminated by NCO-tracking. The batch
lteration 5 3 10 operation of combustion air flow rate introduces a cycle 2 h into the
- - optimization horizon 8 h, while there is an artificial cycle 0.5h in the
Active constraints 12,42 22,7 14,34,41,42,43 solution of dynamic optimization (illustrated by the solid lines of Fig. 5).
Moreover, a better solution of batch operation is obtained by a line
search method.
optimal batch operations can be given as follows: For Cases 3 and 4, only the values of optimized cost functions
under NCO-tracking are given here for brevity, which are pro-
* B k 10\ _ ’
Mpro € (Mine pMyyo, Mpro) = (2.5865, 3.3223)kg (283) vided in Table 8. Comparing Case 2 to 1 and 4 to 3, the batch oper-
10 . 3 ation of combustion air deteriorates the economic performance.
* . .
Vie V1", maxeen, Vi) = (49.068,49.072)km” /h (28b)  The reason for this can be explained by the local enlarged
V; e (V39, maxkeNZV%‘) = (48.981,48.983)km> /h (28b)
Table 7
V§‘ c (V310, MaXye y, Véf) _ (48.931 ) 48.932)1<m3/h (ng) Line search with respect to batch operations.
0 . , Mpro(kg)  Vi(km3/h) Vy(km?h) Vs(km?/h) V,(km?/h) Violation J(¥)
V; e (V,”, max Vi) = (48. 48.897)km” /h 2
4 € (Vg maxien,Vy) = (48.896,48.897)km”/ (28D) 33223 49.068 48.981 48931 48.896 No 1761.1
Then a line search with the implementation of NCO-tracking can 33223 49072 48985 48934 48900  No 1812.8
be conducted as the simulations shown in Table 7 33223 49.076 48.988 48.938 48.904 No 1864.3
I . . 3.3223  49.080 48.992 48.942 48.908 Yes 1915.6
As shown at the first row of Table 7, ie. a simulation for
(Mp%,, V{0, V30, V30, v10), better performances than primal problems of
NSGBD are also obtained with the help of NCO-tracking scheme. By the Table 8
last two rows of Table 7, the optimal solution of batch operations should Ca €S . .
3 omparison of different operation modes.
be taken as: Mp, € (3.3223, 3.3223)kg, V; € (49.076, 49.080)km>/h, V, €
(48.988, 48.992)km3/h, V5 e (48938, 48.942)km*/h, V4 e (48.904, Case  Mpo(kg) Vi(km’h)  Vo(km’h)  Vs(km’/h)  Vi(km*/h) J(¥)
48.908)km°/h. Then optimal implementation of batch operations can be 1 34000  — - - - 27323
M,y =3.3223kg, V; =49.078km?/h, V, = 48.990km’>/h, V3 = 48.940km>/h, 2 33223 49.078 48.990 48.940 48.906 1890.4
V4 =48.906km>/hwith J=1890.4%¥, and the corresponding simulation 3 40000 - - - - 27232
4 906km/hwith J=1890 and the sponding simulatio 4 40000  49.081 48.993 48.941 48.906 1866.6

with NCO-tracking scheme is given by the dash lines of Fig. 5. As can be
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Fig. 5. optimal results in open-loop and close-loop forms (Mpo=3.3223 kg): (a) riser temperature and its set points, (b) combustion air flow rate, (c) temperature rise in the free-

board, (d) O, molar fraction in flue gas.

drawing in Fig. 5d. While the upper bound constraint for temper-
ature rise in the freeboard is active most of the time by an extra
PID controller, the upper bound constraint for O, molar fraction
in flue gas is active only at the end-point of each cycle (2 h), which
leaves much safety margin unexploited. Comparing Case 3 to 1
and Case 4 to 2, the prescribed operation of CO promoter mildly
diminishes the economic performance, which suggests that the
economic benefits obtained by integrated optimization mainly
come from the continuous operations of riser temperature and
combustion air.

5. Conclusions

This paper proposes a novel integrated optimization framework
for the optimization of the continuous process with batch operations,
which is illustrated by a commercial FCCU with CO promoter. This
kind of integrated optimization must tackle an extremely difficult
infinite dimensional optimization, namely dynamic optimization. It is
still a challenge to obtain a high-quality solution for such problems
efficiently, especially when the problem formulation contains large-
scale models, which is normally solved by adaptive methods. How-
ever, this paper exploits the decomposable structure of hybrid
parametric dynamic optimization, which is solved by NSGBD algo-
rithm. In detail, by designating the batch operations as complicating
variables, a sequence of primal and master problems is solved until
convergence. Then the open-loop optimal continuous operations are
implemented as extra close-loop controllers by NCO-tracking
scheme to account for the uncertainty, while the optimal batch
operations are improved by a line search method using the sensi-
tivity information provided by NSGBD algorithm. For the case
study of FCCU, the results show that a high-quality solution could
be obtained by the proposed framework with relatively coarse
discretization. Moreover, several cases have been covered to
show that the batch operation of combustion air largely dimin-
ishes the economic performance, which is caused by the safety
margin left at every constant control section, and the preset oper-
ation of CO promoter mildly diminishes the economic perfor-
mance, which indicates that the economic benefits of integrated
optimization mostly come from the continuous operations.
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