
Knowledge and Information Systems (2020) 62:1279–1312
https://doi.org/10.1007/s10115-019-01382-x

REGULAR PAPER

Trajectory splicing

Qiang Lu1 · Rencai Wang1,3 · Bin Yang2 · Zhiguang Wang1

Received: 23 September 2018 / Revised: 25 June 2019 / Accepted: 30 June 2019 / Published online: 18 July 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
With continued development of location-based systems, large amounts of trajectories become
available which record moving objects’ locations across time. If the trajectories collected by
different location-based systems come from the same moving object, they are spliceable
trajectories, which contribute to representing holistic behaviors of the moving object. In this
paper, we consider how to efficiently identify spliceable trajectories. More specifically, we
first formalize a splicedmodel to capture spliceable trajectories where their times are disjoint,
and the distances between them are close. Next, to efficiently implement themodel, we design
three components: a disjoint time index, a directed acyclic graph of sub-trajectory location
connections, and two splice algorithms. The disjoint time index saves a disjoint time set of
each trajectory for querying disjoint time trajectories efficiently. The directed acyclic graph
contributes to discovering groups of spliceable trajectories. Based on the identified groups,
the splice algorithm findmaxCTR finds maximal groups containing all spliceable trajectories.
Although the splice algorithm is efficient in some practical applications, its running time is
exponential. Therefore, an approximate algorithm findApproxMaxCTR is proposed to find
trajectories which can be spliced with each other with a certain probability within polynomial
run time. Finally, experiments on two datasets demonstrate that themodel and its components
are effective and efficient.

Keywords Trajectory computation · Trajectory fusion · Trajectory recovery ·
Trajectory linking

B Qiang Lu
luqiang@cup.edu.cn

Rencai Wang
rcwang3@iflytek.com

Bin Yang
byang@cs.aau.dk

Zhiguang Wang
cwangzg@cup.edu.cn

1 Beijing Key Lab of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing, China

2 Department of Computer Science, Aalborg University, Aalborg, Denmark

3 IFLYTEK CO.,LTD, Hefei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01382-x&domain=pdf
http://orcid.org/0000-0001-8217-2305

1280 Q. Lu et al.

1 Introduction

Information technology is almost everywhere in our daily life, which collects various infor-
mation from different digital devices [4,10]. Specially, the location-based systems based on
mobile devices, such asGPS,mobile phones, and near-field communication (NFC) terminals,
generate large amounts of trajectories of moving objects. Usually, each individual system
uses its unique ID code to identify each trajectory. For example, a mobile phone network
identifies a trajectory by its telephone number, while anNFC system identifies it by its device-
id. Since multiple systems may capture a same moving object at different times and places,
each system gathers the object’s partial trajectories. Recovering a complete trajectory of a
moving object from these partial trajectories collected in various systems, named trajectory
splicing, is essential for many applications, such as anomaly behavior detection [21,22],
data fusion, and trajectory data mining [46]. The following case shown in Fig. 1 elaborates
trajectory splicing.

Every weekday, Alice and Bob go to work by walking and taking the subway, as shown
in Fig. 1. Their movements generate six partial trajectories: W1, S1, O1, W2, S2, and O2,
where the mobile sport software captures W1 and W2; the subway check-in system captures
S1 and S2; the office check-in system captures O1 and O2. Their complete trajectories can
be recovered based on spatiotemporal locations of these partial trajectories. For example, S2
is more likely to splice with W2 than W1, because endpoint spatial positions of S2 are closer
to those of W2, and the time interval of S2 [8:23,9:14] can be embedded into the time gap
of W2 (8:20, 9:16). Similarly, O2 can splice with W2. So, connecting W2, S2, and O2 can
repair Bob’s whole trajectory.

According to the above case, finding a group of spliceable trajectories must satisfy the
following three requirements. The first is the disjoint time constraint that requires that
time intervals of spliceable trajectories in the group should not overlap with each other. The
second is the spatial constraint that requires that the distances between their endpoints
should be nearby with each other. The third is the maximal group constraint that requires
that the group of spliceable trajectories should be maximal and should not be contained by
other groups. That means connecting as many spliceable trajectories as possible to recover a
complete trajectory.

However, it is non-trivial to find spliceable trajectories to satisfy the above constraints
owing to the following three challenges. The first challenge is that the process of finding
trajectories that satisfy the disjoint time constraint is very time-consuming. The process
includes two steps: querying sub-trajectories in all time gap of a trajectory and counting the
number of sub-trajectories that belong to the same trajectory. For example, in Fig. 1, W2 has
three time gaps: (−∞,8:00), (8:20,9:16), and (9:21,+∞). Querying sub-trajectories whose
time intervals are in the three time gaps can obtain the sub-trajectory set {AB,EF,FS, S,C}.
Then, the count basedon the second step canget the set {S1(1),S2(1),W1(1),O1(1),O2(1)},
where W1(1) means W1 has one sub-trajectory in these time gaps. Since W1 has two sub-
trajectories DE and FS, the time interval of W1 must overlap with that of W2. Therefore, the
disjoint time set of W2 is {S1,S2,O1,O2}. If all trajectories have total M time gaps in the
database, it needs to execute M2 queries for finding disjoint time sets of all trajectories (Sect.
4). Although the index based on B+-tree [7] or the data model of symbolic trajectories [13,
17,29,35,40] can speed up each query, the time of total queries is still very long because M2

is usually a vast number.
The second challenge is that the discovery of a group of spliceable trajectories is difficult.

Relations between spliceable trajectories contain two categories. One is the direct splice

123

Trajectory splicing 1281

Fig. 1 The case of trajectory
splicing

which connects two trajectories without using other spliceable trajectories. The other is the
indirect splice which connects two trajectories by using other spliceable trajectories. For
example, in Fig. 1, W2 and S2 are connected directly, while W2 and O2 are connected by S2.
The indirect splice makes the process of splicing trajectories complicated because it needs to
find other trajectories to determine whether the two trajectories can be connected or not. To
the best of our knowledge, known group pattern mining [8,9,19,24–27,36,45] or trajectory
clustering [24,25] cannot find groups of spliceable trajectories, because they discover groups
of trajectories according to the similarity between them rather than the relation of direct
(indirect) splice. Although fuzzy trajectory linking [38] is close to the challenge, it can only
find two direct splice trajectories and is not suitable for mining multiple trajectories that are
the direct or indirect splice.

The third challenge is that it must find as many spliceable trajectories of a moving object
as possible. In general, if a method wants to acquire a group of spliceable trajectories which
are not contained by other groups, it needs to traverse all possible combinations of spliceable
trajectories for a moving object. For example, in the above case, to recover Bob’s trajectory,
these groups, such as {W2,S2}, {W2,O2}, {S2,O2}, and {W2,S2,O2}, must be traversed.
Namely, it needs to find a group of spliceable trajectories which most compactly fill up a
specific spatiotemporal range. So, it is a bin-packing problem and is NP-hard [23].The design
of an approximation scheme or heuristic method is the key to deal with the problem.

In order to deal with the above challenges, a spliced model is defined to formalize the
above requirements of spliceable trajectories. Based on the spliced model, trajectories are
segmented into sub-trajectories according to a speed threshold. A B+-tree [7] is used to save
these sub-trajectories. For speeding up the process of finding disjoint time sets, the index of
disjoint time called DT-index is constructed to keep intermediate results of searching the
disjoint time set in each time slice.Moreover, the DT-index is a multi-resolution structure like
a quadtree and can save intermediate results of time slices with different lengths, supporting
queries with different time intervals. For example, assuming that the DT-index consists of
intermediate results of one, two, and four days, if a query time interval is 4.5 days, the
DT-index can find disjoint time sets within the four days, and the B+-tree can find disjoint
time sets within the 0.5 days. Based on the above two indexes, an algorithm queryDTsTR is
proposed to obtain all disjoint time sets within a specific time interval.

123

1282 Q. Lu et al.

In order to find spliceable trajectories, a directed acyclic graph of sub-trajectory location
connections called STLC-DAG is created to connect sub-trajectories by their times and
locations. Once the algorithm createSTLC-DAG has created the graph, it can obtain the
spliceable sets of trajectories that can splice with a specific trajectory. For example, in the
above case, the algorithm can find S2’s spliceable set {W2}, W2’s {S2,O2}, and O2’s {W2}.
Moreover, these spliceable sets form a splice graph, where each node is a trajectory, and
the edge between two nodes represents that the two trajectories are spliceable. For instance,
the node S2 has one edge which connects the node W2, and W2 has edges which connect
S2 and O2. Thus, in the splice graph, a clique is a group of spliceable trajectories. For
addressing the third challenge, an algorithm findMaxCTR is proposed to find all maximal
groups of spliceable trajectories by listing all maximal cliques [34] in the graph. Although
its worst running time is O(3N/3), it can run very fast in many practical applications because
the splice graph is usually very sparse [6]. Based on findMaxCTR and the splice graph,
an approximate algorithm findApproxMaxCTR is proposed to find all maximal groups of
approximate spliceable trajectories. Moreover, its running time is O(N 2).

The main contributions in the paper are summarized as follows:

– A splicedmodel is introduced that can capture asmany spliceable trajectories of amoving
object as possible so that it can recover the complete trajectory of the moving object.

– The DT -index is designed to speed up the identification of the disjoint time set of each
trajectory in a specific time interval.

– An algorithm findMaxCTR and its approximated algorithm findApproxMaxCTR are
proposed to find maximal groups of spliceable trajectories or approximate spliceable
trajectories, respectively.

– An empirical study conducted on real-world trajectories demonstrates that the proposed
spliced model and algorithms are able to efficiently splice trajectories.

The remainder of the paper is organized as follows. In Sect. 2, we define the necessary
concepts and formalize the spliced model. Then, we propose the two algorithms which
discover groups of spliceable trajectories that satisfy the above definition in Sect. 3. Section 4
represents the theoretical analysis of these algorithms. Section 5 reports experimental results.
We review the related work in Sect. 6 and conclude the paper in Sect. 7.

2 Problem definition

We introduce the necessary concepts and formalize the problem in the following section.
Frequently used notation is listed in Table 1.

2.1 Basic concepts

A sample point p = 〈i d, l c, t〉 indicates that amoving object with identifier id is in location
lc at timestamp t . A sample point may be a GPS, a photograph taken by a camera that is
deployed at a road intersection or a check-in record. A trajectory (denoted as TR) is a
time-ordered sequence of sample points with a unique identifier. For example, in Fig. 2,
TRA = 〈a1, a2, . . . , a9〉 is a trajectory of a moving object with identifier A.

However, a trajectory may not represent a continuous movement of a moving object
because the moving object cannot be tracked at some time by a specific technology, such
as W2 in Fig. 1. To represent the continuous movement of the moving object, we introduce
the concept of complete trajectory (denoted as CTR), which is a time-ordered sequence

123

Trajectory splicing 1283

Table 1 Notation

Notation Definition

Ω A TR database

p A sample point 〈id, lc, t〉
TRi The i th TR in Ω

DTi A TRi ’s disjoint time set

SPi A set of TRs that can be spliced with TRi

STR j
i The j th sub-trajectory of i th TR

T The time interval of query

N The number of TRs in T

M The number of all STR in T

CTR A complete trajectory consists of spliceable TRs

fst(S) Return the first element in sequence S

lst(S) Return the last element in sequence S

d(p, q) The Euclidean distance between two sample points p and q

d(STR j
i , STRnm) The Euclidean distance between two STRs

ti(STR) The time interval of a sub-trajectory STR

ti(TRi) The time interval set of trajectory TRi

gap(STR j
i , STRnm) The gap between two sub-trajectories

gap(TRi) The gap set of t i(TRi)

Fig. 2 Trajectory splicing

of all sample points that represent the same moving object but with different identifiers in
different tracking systems. Thus, a complete trajectory may contain multiple trajectories that
represent the same move object. For example, Fig. 2 shows the complete trajectories of two

123

1284 Q. Lu et al.

moving objects: CTR1 = {TRA,TRB ,TRC }, which includes the trajectories with identifiers
A, B, and C , and CTR2 = {TRD,TRE }, which includes the trajectories with identifiers D
and E .

In a trajectory, two sample points, pi and pi+1, are connectable if speed(pi , pi+1) ≥ e,
where e is a speed threshold and

speed(pi , pi+1) = d(pi , pi+1)

|pi+1.t − pi .t | (1)

where d(pi , pi+1) returns the Euclidean distance between sample points pi and pi+1. Given
a sequence of sample points in a trajectory TRi , if any two consecutive sample points in
the sequence are connectable, the sequence is connectable in that it shows one continuous
movement. Moreover, if other connectable sequences do not contain a connectable sequence,
the connectable sequence is called sub-trajectory (denoted as STR). In particular, we use
STR j

i to denote the j th sub-trajectory in trajectory TRi . For example, trajectory TRA in
Fig. 2 has 4 sub-trajectories: STR1

A = 〈a1, a2, a3〉, STR2
A = 〈a4, a5〉, STR3

A = 〈a6〉, and
STR4

A = 〈a7, a8, a9〉. A sub-trajectory is the atomic computational unit in this paper.
The time interval of the sub-trajectory, denoted as t i(STR), is [first(STR).t , last(STR).t],

where the functionfirst(·) and last(·) return thefirst and last sample points in the sub-trajectory
STR, respectively. The time interval of the trajectory is the set of time intervals of all its
sub-trajectories, denoted as t i(TRi) = ⋃

STR j
i ∈TRi ti(STR

j
i).

The gap between two sub-trajectories STR j
i and STRn

m , denoted as gap(STR j
i , STR

n
m), is

defined by Eq. 2.

gap(STR j
i , STR

n
m) = (last(STR j

i).t, f irst(STRn
m).t) (2)

Moreover, the gap of trajectory TRi in the time interval T, denoted as gap(TRi), is defined
by Eq. 3.

gap(TRi) = T − ti(T Ri) = T −
⋃

STR j
i ∈TRi

ti(STR j
i) (3)

For example, the time interval of trajectory TRA, denoted as ti(TRA), is {[t1, t2], [t3, t4],
[t5, t5], [t6, t7]}. Given T=[t0, t8], we have gap(TRA) = {(t0, t1), (t2, t3), (t4, t5), (t5, t6), (t7,
t8)}.

2.2 Spliceable trajectories

If two trajectories TRi and TR j can be spliced into a complete trajectory, they must meet
the disjoint time constraint that requires that their interval times should not overlap each
other, namely ti(TRi) ⊂ gap(TR j). Given a trajectory TRi , all the trajectories that meet the
disjoint time constraint with TRi constitute the disjoint time set of TRi , denoted as DTi . In
Fig. 2, since ti(TRB) ⊂ gap(TRA) and ti(TRC) ⊂ gap(TRA), we haveDTA = {TRB ,TRC }.

In addition to the aforementioned temporal constraint, if TRi and TR j are spliceable, they
must also meet the spatial constraint, meaning that the sub-trajectories from TRi and TR j

must be close enough to each other. To formally define the spatial constraint, we introduce
two concepts—spliceable pair and spliceable trajectories.

Definition 1 Given two sub-trajectories STR j
i and STRn

m from two trajectories, respectively,
and a distance threshold γ , if they do not overlap each other on the time dimension and

123

Trajectory splicing 1285

the distance between them is less than γ 1, the two sub-trajectories STR j
i and STRn

m form a

spliceable pair , denoted as 〈STR j
i , STR

n
m〉.

Definition 2 Given some trajectories, if the sub-trajectories in the given trajectories can
constitute a sub-trajectory sequence 〈STR j

i , . . . , STR
n
m〉 such that any two neighbor sub-

trajectories are a spliceable pair, these trajectories are called spliceable trajectories.

Based on the above two definitions, we first introduce the concept—complete trajectory
to formulate the maximal group constraint, which requires that the group of spliceable trajec-
tories should not be contained by other groups. Then, we define the splice degree to quantify
the complete trajectory.

Definition 3 If other groups of spliceable trajectories do not contain a group of spliceable
trajectories, the group forms a complete trajectory, denoted as CTR.

Definition 4 The splice degree, which consists of two factors: the ratio of the sum of the
distances between different trajectories to the distance of CTR and the ratio of the sum of
time gaps to the time interval ofCTR, is used to quantify the compactness level of connections
between trajectories in a CTR, defined by Eq. 4.

dg(CTR) =
∑

〈STR j
i ,STR

n
m 〉∈CTR d(STR j

i , STR
n
m)

distance(CTR)

×
∑

〈STR j
i ,STR

n
m 〉∈CTR gap(STR

j
i , STR

n
m)

time(CTR)
(4)

where 〈STR j
i , STR

n
m〉 is a spliceable pair in the CTR; d(STR j

i , STR
n
m) is the distance between

two sub-trajectories STR j
i and STRn

m ; distance(CTR) is the sum of distances between two
consecutive sample points inCTR, namely distance(CTR) = ∑

pi∈CTR d(pi , pi+1), in which
pi and pi+1 are two consecutive sample points in the CTR; time(CTR) = last(CTR).t −
first(CTR).t .

Based on the definition, dg(CTR) ∈ (0, 1) and the smaller the splice degree dg(CTR), the
closer trajectories in the complete trajectory CTR. For example, in Fig. 2, assuming that the
distance factors in Alice and Bob are the same value 0.02, dg(Alice) = 0.02× (((8 : 27−8 :
25) + (9 : 00 − 8 : 52) + (9 : 13 − 9 : 10))/(9 : 13 − 8 : 15)) ≈ 0.0448, and dg(Bob) =
0.02× ((8 : 23−8 : 20)+ (9 : 16−9 : 14)+ (9 : 23−9 : 21)/(9 : 23−8 : 00)) ≈ 0.0017.
So, due to dg(Bob) < dg(Alice), the complete trajectory of Bob is better than that of Alice.

2.3 Problem definition

According to the above definitions, we formulate the problem of trajectory splicing by the
trajectory splicing query.

Definition 5 From a dataset of trajectories, according to a query time interval, the trajectory
splicing query discovers a complete trajectory sequence CTRS = 〈CTR1, . . . ,CTRn〉, where
each complete trajectory CTR is ranked by its splice degree.

1 Namely (ti(STRnm) ⊂ gap(STR j
i , STR j+1

i)) ∩ (t i(STR j
i) ⊂ gap(STRn−1

m , STRnm)) ∩ (d(last(STR j
i),

f irst(STRnm)) ≤ γ).

123

1286 Q. Lu et al.

Fig. 3 The overview of trajectory splicing query

Based on the trajectories shown in Fig. 2, the trajectory splicing query finds a com-
plete trajectory sequence 〈CTR1,CTR2〉, where CTR1 = {TRD,TRE } and CTR2 =
{TRA,TRB ,TRC }.

3 The trajectory splicing query

We design a framework to execute the trajectory splicing query, which consists of three main
modules: indexing, query processing, and splicing, as shown in Fig. 3.

In the indexing module, we first utilize the speed threshold e between two sample points
to split trajectories into sub-trajectories (STRs). Then, we use a B+-tree to index these sub-
trajectories by their time intervals and create a disjoint time index (DT -index) to record the
disjoint time set (DT) of each trajectory.

In the query processing module, based on the B+-tree and the DT -index, we devise an
algorithm queryDTsTR to search all sub-trajectories (STRs) and disjoint time sets (DTs) in a
given time interval T .

In the splicing module, we first find spliceable trajectories by constructing the directed
acyclic graphof sub-trajectory location connections (denoted asSTLC-DAG).Next,wedesign
an algorithm findMaxCTR to find a complete trajectory set, and an approximate algorithm
findApproxMaxCTR to obtain the approximate complete trajectory set where each complete
trajectory (CTR) represents a set of trajectories that can be spliced asmuch as possible. Finally,
the two sets are ordered by the function of splice degree (Eq. 4) and form two sequences: a
CTR sequence and an approximate CTR sequence, respectively.

3.1 Indexing sub-trajectories and the disjoint time set

3.1.1 B+-Tree

To index a sub-trajectory STR, we first map it into a two-dimensional point in a coordinate
systemby applying the interval-spatial transform [7] to its time interval ti(STR). For example,
STR1

A in Fig. 2 is mapped into a point (t1, t2) according to ti(STR1
A).

Then, we insert the node STR into a B+-tree by comparing its two-dimensional point with
points of other nodes in the tree according the following rule [7]. Given two distinct points
P1 = (x1, y1) and P2 = (x2, y2), P1 < P2 iff (a) y1 < y2; or (b) y1 = y2 and x1 < x2.

123

Trajectory splicing 1287

3.1.2 The disjoint time index

(1) Computing disjoint time set

To support finding the disjoint time set DTi of each trajectory TRi in the different time
intervals, we first partition the time dimension into time slices that have the same length d ,
e.g., an hour or a day. Then, precompute DTi in every time slice, denoted asDTk,di , where the
superscripts k and d represent the time interval [(k − 1) × d ,k × d]. For example, as shown
in Fig. 2, in the first time slice [0,d], DT0,dA = {B,C, D} by searching trajectories that meet
the disjoint time constraint (Sect. 2.2) in the above B+-tree.

However, assuming the query time interval T that contains n time slices, we cannot
ensure to obtain the correct disjoint time set DTi in T only with the intersection of DTk,di s
on these n time slices. This is because sample points in a trajectory TR j may not appear
in a time slice so that DTk,di on the time slice does not contain the trajectory TR j . For

example, in Fig. 2, since the trajectory TRE does not appear in [2d, 3d], DT3,dD = φ and

DTD = DT1,dD ∩ DT2,dD ∩ DT3,dD = φ. But, obviously DTD = {E} in [0, 3d].
In order to overcome the above fault, the precomputation DFi of each trajectory TRi in

any time slice needs to be executed by Eq. 5.

DFn+1,d
i = ¬DTn+1,d

i − ¬DTn,d
i (5)

where¬DTk,di = Pk,d
i −DTk,di ; Pk,d

i is a set which contains all trajectories that appear in the

kth time slice except the trajectory TRi . For example, in Fig. 2, P1,d
A = P2,d

A = {B,C, D, E}
and P3,d

A = {B,C}. And, ¬DT1,dA = {B,C, D, E} − {B,C, D} = {E}, ¬DT2,dA = {D, E}
and ¬DT3,dA = φ. Then, DF2,d

A = {D}, and DF3,d
A = φ, as shown in Fig. 4.

With DTk,di and DFk,d
i on each time slice, the disjoint time set DTi of each trajectory TRi

in the query time interval T can be computed by Eq. 6 (The proof in Appendix A).

DTi (T) = Pi − [(Pi − DT1,di) ∪ DF2,d
i ∪ . . . ∪ DFn,d

i] (6)

Fig. 4 DT -index

123

1288 Q. Lu et al.

where |T | = n × d , d is the length of the time slice, n represents the nth time slice, and
Pi is a set which contains all trajectories that appear in T except the trajectory TRi . For

example, in Fig. 4, if T = [0, 3d],DTD(T) = P0,3d
D −[(P0,3d

D −DT1,dD)∪DF2,d
D ∪DF3,d

D] =
{A, B,C, E} − [({A, B,C, E} − {E}]) ∪ {A} ∪ φ] = {E}.

If T is too long, there aremany time splices in T , and Eq. 6 containsmany union operations
of DF so that the computation of Eq. 6 is time-consuming. To alleviate the situation, we
partition the time dimension into multiple levels of time slices. For instance, one level of
time slices is a day, and another level is a week or month. So, if |T | is one month, Eq. 6 can
be computed by only one DF on the month level of time slices rather than by about 30 DFs
on the day level.

(2) The structure of disjoint time index

Based on the above analysis, we design the disjoint time index (called DT-index) which
includes a DT-tree and a DF-tree that saves the disjoint time set DT of each trajectory and
its precomputation DF on different levels of time slices, respectively, as shown in Fig. 4.
The two trees have the same structure. The DT-tree (DF-tree) consists of a single root node,
leaf nodes, and non-root, non-leaf nodes. The detailed data structures of these nodes are as
follows.

A root node, which may have multiple children, saves their IDs. As ID is both a time interval
and a filename, when querying a time interval T , its children and their files are located
quickly.

A leaf node stores pairs of 〈i,DTi 〉 or 〈i,DFi 〉 in a specific time slice. For example, in Fig. 4,
DT3,d records pairs 〈A, {B,C}〉, 〈B, {A,C}〉 and 〈C, {A, B}〉.
A non-root, non-leaf node only has two children. It stores its children I Ds and pairs of
〈i,DTi 〉 or 〈i,DFi 〉, where DTi or DFi can be computed by Eqs. 6 or 5, respectively.

For the DT-index, a bottom-up approach based on time slices is used to construct the
DT -tree and the DF-tree. For each time slice on the bottom level, the leaf node DTk,d can be
obtained by searching trajectories that meet the disjoint time constraint from B+-tree. Then,
the leaf nodeDFk,d is created by Eq. 5. If k is even, the content of its parent node (a non-root,
non-leaf node) can be generated by Eqs. 6 or 5. In this order, non-root, non-leaf nodes in
other levels in the two trees can be created. When the depth of the two trees reaches the limit,
e.g., three levels of time slices, a root node is created based on its children.

Apparently, in order to obtain the disjoint time sets DT in T , a top-down traversal approach
is used to find nodes whose time intervals are in T . Once it finds each of those nodes, it will
omit searching its children and turn to search its siblings. The approach can obtain nodes
whose time intervals are as long as possible. Since these found nodes may be in different
levels while all operations in Eq. 6 are at the same level, Eq. 7 deduced from Eq. 6 is used to
compute a final result based on different levels of time slices.

DTi (T) = Pi − {[(Pi − DT1,t1i) ∪ DF2,t1
i ∪ . . . DFn,t1

i]
︸ ︷︷ ︸

l1

∪

...︸︷︷︸
l2...lk−1

∪ [(Pi − DT1,tki) ∪ DF2,tk
i ∪ . . . DFn,tk

i]
︸ ︷︷ ︸

lk

} (7)

where li is a level of time slices.
For example, let T = [0, 3d] and PA = {B,C, D, E}, as shown in Fig. 4. Traversing

in the DT-tree can obtain a node set {DT1,2dA ,DF1,2d
A ,DT3,dA ,DF3,d

A }. According to Eq. 7,

DTA(T) = PA − {[(PA − DT1,2dA) ∪ φ] ∪ [(PA − DT3,dA) ∪ φ]} = {B,C}.

123

Trajectory splicing 1289

3.2 Processing query

With the B+-tree and the DT -index, we implement an algorithmQueryDTsTRwhich quickly
finds the disjoint time set DT of each trajectory and all sub-trajectories (denoted as STRSet)
in a time interval T , as shown in Algorithm 1.

Algorithm 1: queryDTsTR
Input: B+-tree, DT-Index, T
Output: DT(T), STRSet

1 STRSet,DT (T1),R(T1),R(T2), P=readsTR(B+-tree, T) ;
2 DT (T2)= Equation 7 ;
3 DT = (DT (T 1) ∪ R(T1)) ∩ (DT (T 2) ∪ R(T2)) ;
4 return DT,STRSet ;

The query time interval T consists of two parts: One is a set of two time intervals without
any time slices in the DT -index, denoted as T1 = {t1, t2}; the other is the time interval that
containsn time slices in the DT -index, denoted asT2. For example, givenT = [8 : 3511 : 25]
and the minimal time slice is an hour, T1 = {[8 : 35 9 : 00], [11 : 00 11 : 25]}, and
T2 = [9 : 00 11 : 00]. With the B+-tree, it is easy to find all trajectories P and their sub-
trajectories STRSet in T . Meanwhile, searching these sub-trajectories can obtain a trajectory
set R(T1) where each trajectory appears in T1 but not in T2, a trajectory set R(T2) where
each trajectory appears in T2 but not in T1, and a disjoint time set DT (T1) in the part T1.
The function readSTR at Line 1 implements the above process. Then, with the DT -index,
the code at Line 2 computes the disjoint time set DT (T2) by Eq. 7. At last, the code at Line
3 gets the disjoint time set DT in T .

The algorithm can run very fast based on the following two reasons. One is that, in general,
compared with the part T2, the part T1 is very short such that there are fewer sub-trajectories
(STRs) in T1. Hence, finding the disjoint time set DT (T1) is fast. The other is that, since
the disjoint time set DT of each trajectory has been saved based on multiple timescales in
the DT-index, only a small amount of nodes need to be searched from the index in order to
compute the disjoint time set DT (T2) by Eq. 7. So, finding DT (T2) is also fast.

3.3 Splicing trajectory

3.3.1 Finding spliceable trajectories

We design an algorithm createSTL-DAG to discover spliceable trajectories by constructing a
directed acyclic graph of sub-trajectory location connections (STLC-DAG), which is defined
as STLC-DAG = (V , E), where

– the vertex set V consists of all sub-trajectories (STRSet), a start vertex s, and an end
vertex e, namely V = {STRSet} ∪ {s, e};

– the edge set E consists of two categories of directed edges. One, denoted as Es , is the
directed edge that connects two sub-trajectories in the same trajectory. The other, denoted
as Ed , is the directed edge that connects a spliceable pair 〈STR j

i , STR
n
m〉, as shown in

Fig. 5.

123

1290 Q. Lu et al.

Fig. 5 STLC-DAG

According to the above definition of the graph STLC-DAG, edges in Ed , which represent
spliceable pairs, are the key to determine whether two different trajectories can be spliced.
However, if distances between any two sub-trajectories (vertexes) from different trajectories
need to be computed, the process of constructing edges in Ed is slow. In order to speed up
the process, if some edges in Ed cannot cause the result of splicing trajectories to change,
these edges will be omitted according to Definition 6 and the following lemmas.

Definition 6 In the graph STLC-DAG, if there is a path, which is from the start vertex to
the end vertex and contains all sub-trajectories of trajectories on the path, the path is called
spliced path. Moreover, trajectories on the spliced path are spliceable trajectories.

In Fig. 5, the path, which passes through a vertex sequence 〈s, STR1
C , STR1

B , STR2
B ,

STR2
C , STR3

C , STR3
B , STR4

C , e〉, is a spliced path, while the path 〈s, STR1
A, STR1

C , STR2
C ,

STR3
A, STR3

C , STR4
C , STR4

A, e〉 is not a spliced path because it lacks the sub-trajectory STR2
A.

So, only trajectories on a spliced path can form a complete trajectory by the definition of the
spliced path. Assuming all vertexes in the graph are sorted by their start time, the following
lemmas can be deduced.

Lemma 1 In the splice path sp, if there exists a directed edge between two sub-trajectories
STR j

i and STRn
m from two different trajectories, there are not other sub-trajectories in the

time gap between them, namely ti(STR) ∩ gap(STR j
i ,STR

n
m) = φ, where STR ∈ sp.

Lemma 2 Given two trajectories that meet the disjoint time constraint, if they are spliceable
trajectories, there must be a path through all sub-trajectories from them in the graph STLC-
DAG.

Lemma 3 Assuming the trajectory TRi cannot splice with the trajectory TRm, and the trajec-
tory TRm can be spliced with the trajectory TRk, if TRi and TRk both are on a spliced path,
the path must not contain sub-trajectories from the trajectory TRm.

The proofs of Lemma 1, 2, and 3 are omitted due to their simplicity. According to Lemma
2, in the process of constructing a spliced path, if the current vertex is the sub-trajectory
STR j

i , the next vertex that is selected to connect with STR j
i must be the first sub-trajectory

in the sequence of sub-trajectories, where all sub-trajectories belong to the same trajectory,
and their time intervals are in the time gap between two sub-trajectories STR j

i and STR j+1
i .

123

Trajectory splicing 1291

Since there are the multiple sequences in the graph, all first vertexes from these sequences
constitute a candidate vertex set (CVS), which is defined by Eq. 8.

CVS(STR j
i) = {STRn

m |STRn
m = first({ti(STRk

m) ⊂ gap(STR j+1
i ,km , STR j

i)}),m ∈ DTi }
(8)

For example, in Fig. 5, CVS(STR1
A) = {STR1

B , STR1
C , STR1

D, STR2
E }.

Lemma 3 shows that when a trajectory cannot splice with another trajectory, the edges
between the two trajectories can be deleted. Moreover, the deletion does not cause the result
of spliceable trajectories to change.

The pseudocode of constructing the graph STLC-DAG is shown in Algorithm 2. The input
arguments: the sub-trajectory set STRSet and the disjoint time set DT , are results of running
the algorithm queryDTsTR, and γ is a distance threshold. The algorithm 2 will return a set
SP = {SP1, . . . , SPn}, where each SPi is a group of spliceable trajectories.

Algorithm 2: createSTLC-DAG
Input: STRSet, γ, SP = DT
Output: SP

1 sortByStartTime(STRSet) ;
2 DAG.V = ST RSet ∪ {s, e} ;
3 DAG.E .Es = createEsEdge(STRSet, s, e) ;
4 C = φ ;
5 for k = 0; k < len(STRSet); k + + do

6 STR j
i = STRSet[k] ;

7 for each STRv
k ∈ sort ByDes(C .get(STR j

i)) do
8 sg = 0 ;
9 repeat

10 if !exist Path(STRv
k , STR

j
i , SPk , DAG) then

11 DAG.E .Ed .delEdges(TRk , TRi) ;
12 SPi = SPi − k ;
13 SPk = SPk − i ;
14 C .del(〈T Ri , T Rm 〉) ;
15 sg = |C |;
16 else
17 sg = sg − 1 ;

18 〈STRv
k , STR

j
i 〉 ← C .next(STRv

k , STR
j
i);

19 until 〈STRv
k , STR

j
i 〉
= φ && sg > 0;

20 canT RSet = CVS(STR j
i) ;

21 for each STRnm ∈ canT RSet do

22 if d(STR j
i , STRnm) ≤ γ then

23 DAG.E .Ed .addEdge(STR j
i , STRnm) ;

24 else

25 C .add(〈STRnm , STR j
i 〉) ;

26 return SP ;

Initially, the algorithm sorts all sub-trajectories in STRSet by their start time, creates all
vertexes, and connects these vertexes that belong to the same trajectory (Line 1–3). C is
a container that saves pairs of sub-trajectories which are likely to be indirectly spliced by

123

1292 Q. Lu et al.

other sub-trajectories (Line 4). For each sub-trajectory STR j
i in STRSet, its candidate vertex

set CVS(STR j
i) is firstly obtained by Eq. 8. Then, the algorithm creates a directed edge

between the two sub-trajectories STR j
i and STRn

m , where STRn
m is from CVS(STR j

i), if the
distance between the two trajectories is less than γ ; otherwise, it adds the sub-trajectory pair
〈STR j

i , STR
n
m〉 into the C (Lines 20–25) because they may be spliced indirectly.

The code on Lines 7–19 is used to decide whether the two sub-trajectories in the pair
〈STRv

k , STR
j
i 〉 from C can be spliced. If there is a path between them, it shows they may

be spliced; otherwise, they cannot be spliced according to Lemma 2. So, delete all edges
between the two trajectories that they belong to based on Lemma 3 (Line 11). Meanwhile,
update their spliceable trajectory sets (Lines 12–13) and delete the pair from C (Line 14).
The above deletion of edges causes a change in the path that connects two sub-trajectories
from the pair in C so that the two sub-trajectories cannot be spliced. So, all pairs in C must
be checked again. sg is a signal that represents whether all pairs have been checked or not.
The function next Pair returns next pair in C (Line 18).

The function exist Path (Algorithm 3) decides whether there is a path from the two sub-
trajectory STRv

k and STR j
i (Line 10) by the depth-first search. If it finds the path, the path

must be a spliced path according to Lemma 4 and 5.

Algorithm 3: existPath
Input: STRv

k , STR
n
m , SPk , fCTR,DAG

Output: true or f alse
1 if STRv

k = STRnm then
2 return true;

3 STRv
k .marked = true ;

4 for each STRy
x ∈ DAG.neighbour(STRv

k) do
5 if (! STRy

x .mark)&& (x ∈ SPk ∪ fCTR) then
6 SPk = SPk ∩ SPx ;
7 fCTR ← k;

8 if existPath(STRy
x , STR

n
m , SPk , fCTR,DAG) then

9 return true ;

10 return f alse ;

Lemma 4 Assuming that Algorithm 2 is processing the current pair 〈STRv
k , STR

j
i 〉, the sub-

trajectory STR j
i is a temporary end vertex, and sub-trajectories from the same trajectory

before trajectory STRv
k constitute a temporary trajectory, if a path from STRv

k to STR j
i

found by the function exist Path contains sub-trajectories from different temporary tra-
jectories, these temporary trajectories can form a spliced path. The proof is provided in
“Appendix B”.

When Algorithm 2 is processing an end pair 〈STRv
k , e〉, a temporary trajectory equates a

trajectory. So, if a path from STRv
k to e found by Algorithm 2 contains different trajectories,

these trajectories can form a spliced path. So, based on Lemma 4, it can easily deduce
Lemma 5.

Lemma 5 If and only if a path found by Algorithm 3 contains sub-trajectories from
two different trajectories, the two trajectories can be spliced. The proof is provided in
Appendix B

123

Trajectory splicing 1293

After Algorithm 2 finishes its running, if there exists an edge between two trajectories
in the graph STLC-DAG, the two trajectories can be spliced according to Theorem 1. At the
same time, the algorithm can find groups of spliceable trajectories SP , where each SPi is a
set of trajectories that can be directly or indirectly spliced with the trajectory TRi based on
Theorem 2.

Theorem 1 If there exists a directed edge between two trajectories in the graph STLC-DAG,
the two trajectories can be spliced.

Theorem 2 For each SPi ∈ SP, where SP is one of the output parameters of algorithm 2,
SPi is a set of trajectories that can splice with the trajectory TRi .

The above two proofs are provided in Appendix B.

3.3.2 Findingmaximum spliceable trajectories

Definition 7 In the graph STLC-DAG, if no other spliced paths can contain a spliced path,
the spliced path is called maximal spliced path.

According to Definition 7, the trajectories on the maximal spliced path form a complete
trajectory CTR which satisfies the trajectory splicing query according to Definition 5. With
groups of spliceable trajectories (SP) obtained by Algorithm 2, we first create a SP-set graph.
Then, we demonstrate that a maximal clique in the graph is a maximal group of spliceable
trajectories, and design an algorithm of listing all maximal cliques in order to get all complete
trajectories.

The SP-set graph (V , E), where V = {v|v = i, SPi ∈ SP} and E = {〈i, j〉| j ∈
SPi , SPi ∈ SP}, can be created by SP. In the graph, vertex i represents the trajectory TRi .
SPi is the set of neighbor vertexes of vertex i . Each edge shows that two vertexes are spliced
with each other according to Theorem 2. Based on Lemma 6, a maximal clique in the graph
is a complete trajectory CTR.

Lemma 6 In the SP-set graph, a clique is a group of spliceable trajectories, and a maximal
clique is a complete trajectory. The proof is provided in Appendix B

We utilize a depth-first search algorithm (CLIQUES [34] to discover all complete trajec-
tories. The algorithm can ensure to find all maximal cliques without duplications according
to Theorem 1 of [34]. The detailed pseudocode is listed in Algorithm 4. The parameter SUBG
denoted as Eq. 9 is a subgraph where each vertex is the trajectory that can splice with the
trajectories on the spliced path fCTR.

SUBG =
⎧
⎨

⎩
i |i ∈

⋂

s∈fCTR
SPs

⎫
⎬

⎭
(9)

Let CAND be a set of remaining candidates in SUBG. At the initial stage, SUBG =
CAND = V and fCTR = φ. The code on Line 2 finds a vertex i whose degree is a maximum
in the subgraph SU BG. Owing to max |SUBG ∩ SPi |, |CAND − SPi | is minimal because
CAND ⊆ SUBG. So, each branch in the depth-first search is minimal.

The operations SUBG∩SPb andCAND∩SPb (Lines 7–8) may lead to wrong spliced path
because SPb contains TRs that indirectly splice with TRb. So, when the path fCTR is added
into fCTRSet, fCTR must be checked by Definition 6 (Lines 11–13).

123

1294 Q. Lu et al.

Algorithm 4: findMaxCTR
Input: SP, SUBG = V ,CAND = V , fCTR = φ

Output: fCTRSet: a fCTR set
1 if SUBG! = φ then
2 i = subscript(max |SUBG ∩ SPi |), i ∈ SUBG;
3 branch = CAND − SPi ;
4 while branch ! = null do
5 b = takeFirst(branch) ;
6 fCTR ← b;
7 SUBGb = SUBG ∩ SPb;
8 CANDb = CAND ∩ SPb;
9 f indMaxCT R(SP, SUBGb,CANDb, fCTR);

10 CAND = CAND − {b};
11 else
12 if isSplicePath(fCTR) then
13 fCTRSet ← fCTR;

14 return fCTRSet;

3.3.3 Finding approximate maximal spliceable trajectories

Algorithm 4 can find complete trajectories (CTRs) as many as possible. But, its running time
of the algorithm is exponential (Lemma 9 in Sect. 4). In practical applications, the maximum
length of spliced paths can be known or predefined. For example, in the above case (Sect. 1),
we can know howmany systems capture trajectories. So, the number of spliceable trajectories
on a spliced path must be less than(or equal to) the number of systems. Meanwhile, most of
the practical applications can tolerate a maximal spliced path that contains a small number
of wrong trajectories which cannot splice with another trajectory in the spliced path.

Therefore, we modify Algorithm 4 to discover spliced paths, where, in each path, the
number of trajectories is no more than a predefined value (d) under the condition that the
probability of which a spliced path is a maximal splice path is more than a specific value (p).
Moreover, these spliced paths are called approximate maximal spliced paths.

According to Lemma 6, a maximal spliced path is a maximal clique in the SP-set graph. If
the number of vertexes in the maximal clique is d , the number of edges in the maximal clique
is d(d − 1)/2. According to Eq. 9, the maximal spliced path can be obtained by executing
d − 1 intersections between SPs. If k intersections have been performed, SUBG obtained by
these intersections also can form a subgraph, where the number of edges is

∑k+1
i=1 (d− i). The

closer the number of edges in the subgraph is to d(d − 1)/2, the more similar the subgraph
is to the maximal clique. Therefore, the probability that the subgraph is a maximal clique is
computed by Eq. 10.

p =
∑k+1

i=1 (d − i)

d(d − 1)/2
= (2d − k − 1)k

d(d − 1)
(10)

min(k) st . p ≥ s (11)

where k is the number of intersections; Eq. 11 represents the minimal number of intersections
that satisfies the probability obtained by Eq. 10 which is greater than or equal to s. For
example, if d = 11 and p = 0.8, min(k) = 6. If d = 11 and p = 0.9, min(k) = 9.
Therefore, if a spliced path is obtained by computing k intersections, the probability that the
spliced path is a maximal spliced path is more than p.

123

Trajectory splicing 1295

Algorithm 5: findApproxMaxCTR
Input: SP, SUBG = V ,CAND = V , d, k, c = 0, fCTR = φ

Output: fCTRSet:a fCTR set
1 if SUBG! = φ then
2 if c = k then
3 if |CAND| ≤ (d − k) then
4 fCTR ← CAND;

5 else
6 fCTR ← takeFirst(CAND, d − k);

7 fCTRSet ← fCTR;
8 return ;

9 i = subscript(max |SUBG ∩ SPi |), i ∈ SUBG;
10 branch = CAND − SPi ;
11 while branch ! = null do
12 b = takeFirst(branch) ;
13 fCTR ← b;
14 SUBGb = SUBG ∩ SPb;
15 CANDb = CAND ∩ SPb;
16 fCTRSet = f ind ApproxMaxCT R(SP, SUBGb,CANDb, d, k, c + 1, fCTR);
17 CAND = CAND − {b};
18 else
19 fCTRSet ← fCTR;

20 return fCTRSet;

Based on the above analysis, we design an algorithm findApproxMaxCTR to find approx-
imate maximal spliced paths quickly. The detailed pseudocode of findApproxMaxCTR is
listed in Algorithm 5. The algorithm is similar to Algorithm 4 except the code on Lines 2–8.
The additional parameters are as follows: d , k, and c, where d is used to limit the number
of spliceable trajectories in one complete trajectory; k, which is used to limit the time of
intersection between two SPs, is a recursive depth of the algorithm; and c records the current
time of computing intersections in a spliced path fCTR. The code on Lines 2–8 shows how
to deal with trajectories in CAND when c = k. If the size of CAND is less than d − k, all
trajectories in CAND are added into fCTR (Lines 3–4). If the size is more than d − k, the first
(d − k) trajectories are added into fCTR (Line 6).

4 Time complexity analysis

In this section, we quantify the running time of the above algorithms and ignore algorithms
in the preprocessing step, such as the construction of B+-tree and DT -index, because they
can run offline. Let T(function) be the running time of the function, M be the number of
sub-trajectories, and N be the number of trajectories.

Lemma 7 For the algorithm queryDTsTR, if the query time interval T consists of time slices
from the DT-index, namely T1 = 0 and T2
= 0, the running time of queryDTsTR is O(N 2);
if the query time interval T does not contain the time slice for the DT-index, namely T2 = 0
and T1
= 0, the running time of queryDTsTR is O(M2).

Proof Since all sub-trajectories are indexed by B+-tree, the time of querying m sub-
trajectories is O(log|Ω|

b + M). |Ω| and b are constant. And, log|Ω|
b � M . So, the running

123

1296 Q. Lu et al.

time of reading all sub-trajectories in T is O(M). At the same time, R(T1) and R(T2) can be
obtained. If T1 = 0, DT (T1)does not need to be computed. Therefore, T (readSTR) = O(M).
If T1
= 0, the running time of computing DT (T1) is O(M2). And, T (readSTR) = O(M2).
If T2 = 0, Eq. 7 does not need to be computed. So, T (queryDTsTR) = O(M2).

If T2
= 0, given that T2 consists of k time slices which are in different levels in DT -index,
k nodes in the DT -index need to be read. Each node contains no more than N items in
which there are at most N TRs. According to Eq. 7, T (Eq. 7)=O(kN 2). The running time
of intersection between DT (T1) and DT (T2) is O(N 2). So, T(queryDTsTR) is O(N 2). ��

Lemma 8 The running time of the algorithm createSTLC-DAG is O(M2N 2).

Proof Let P = ∑N
i=1 |DTi |, where DTi ∈ DT . So, N ≤ P ≤ N 2. The running time

of creating vertexes (Line 3) and edges (Line 4) both are O(M). In each loop (Line 5),
T (getCandSet) = O(mk), where mk = |CVS(i, j)|. And, the number of loops between
Lines 21 and 25 also is mk . T (addEdge) and T (add) both are O(1). The number of creating
all edges in Ed (Lines 20–25) is

∑M
k=1 mk since len(STRSet) = M . According toCVS(STR j

i)

(Eq. 8), mk ≤ DTi .
Sincemore sub-trajectories in TRi result in less |DTi |, the number of all edges is

∑M
k=1 mk

and
∑M

k=1 mk ≤ kM
N × P , where k � N . Moreover, running time of pseudocode on Lines

20–25 is O(MN × P). If all edges are added into DAG (Line 23), C is empty. If all edges are
added into C (Line 25), the longest time that exist Path runs is M

N × P because delEdges
(Line 11) can delete some edges. T (exist Path) depends on the number of vertexes and edges
between the two sub-trajectories STRv

k and STRn
m . So, T (exist Path) = O(M + M

N × P).
The running time of operations on Lines 11–17 all is O(1). The running time of pseudocode

on Lines 5–19 is O(MN × P × (M + M
N × P)) = O(M

2

N × P + M2

N2 × P2).

Thus, T (createSTLC-DAG)= O(M+ M
N ×P+ M2

N ×P+ M2

N2 ×P2) = O(M
2

N ×P+ M2

N2 ×
P2) = O(M

2

N × (P + P2

N)). Owing to P ≤ N 2, T (createSTLC-DAG) = O(M2N 2) ��

Lemma 9 The running time of the algorithm findMaxCTR is O(3N/3).

Proof See Theorem 3 of [34]. ��

Lemma 10 Let D be a maximal degree of vertexes in the SP-set graph. The running time of
the algorithm findApproxMaxCTR is O(N (N −D)CD−1

k−1). Moreover, if k in Eq. 11 is a small
numerical value, the running time of the algorithm findApproxMaxCTR is O(CN 2), where
C is a constant.

Proof When the algorithmexecutes (depth 0) the code onLine 11 for the first time, |branch| =
N − D. The algorithm will go to the branch SPb, where the maximal degree of vertex b is D.
Therefore,|SUBGb| ≤ D.When it executes (depth 1) the code on Line 11 for the second time,
|branch| ≤ D−1.When it executes the code on Line 11 for the third time, |branch| ≤ D−2.

Each branch repeats the above process until the depth of iteration reaches k. As the depth
increases, |branch| decreases. Moreover, in depth k−1, |branch| ≤ D−k+1. According to
Theorem 1 of [34], the algorithm generates all maximal cliques without duplication. So, each
branch in the depth 1 is looked at as a combination CD−1

k−1 . The running time of SUBG∩ SPi
on Line 9 is O(N). Thus, T (findApproxMaxCTR) = O(N (N − D)CD−1

k−1). When k is small,

CD−1
k−1 is also small. Then, T (findApproxMaxCTR) = O(CN 2). ��

123

Trajectory splicing 1297

Table 2 Parameters

Notation Definition

γ The threshold of the distance between STRs

d The maximal length of a spliced path

p Eq. 10

k Top k complete trajectories (CRTs) sorted by Eq. 4

5 Experiments

In this section, we present the evaluation of the trajectory splicing query (Definition 5) and
its algorithms based on two large real-world trajectory data sets. The first one is Geolife [47,
48], which is used to verify the effectiveness of our algorithms because it records labeled
trajectories. The other is camera trajectory, which contains trajectories generated by the
road safety cameras. Moreover, camera trajectory is mainly used to test the running time
of algorithms, especially the algorithm queryDTsTR based on the DT -index, because it has
large amounts of trajectories.

We use the two algorithms findMaxCTR and findApproxMaxCTR to implement the tra-
jectory splicing query, respectively. Moreover, we implement the above two algorithms in
Java language on a Linux server with Intel Xeon quad-core and 8 GB of main memory. The
parameters used in the following experiments are defined in Table 2.

5.1 Evaluation on geolife

5.1.1 Data set and parameter setting

In the experiment, we extract trajectories from GeoLife in 2008 as the test dataset. This test
dataset contains 4405 trajectories from 32 users. Each segment of those trajectories has been
labeled by one of 11 transportation modes, which are bike, boat, bus, car, run, subway, taxi,
train, walk, airplane, and others. These segments are considered from 11 different datasets.
So, segments from the same user with the same label make up the trajectory defined in the
paper, denoted as TR. Each segment is the sub-trajectory defined in the paper, denoted as
STR. The test dataset contains 138 TRs and 4405 STRs, listed in Table 3.

The function dist(i, j) is the Euclidean distance between two TRs with two labels i and
j , respectively. Table 4 lists maximum, mean, and variance of dist(i, j). For example, the
first row in Table 4 represents the mean, variance, and max distance between bike-TRs and
other-TRs, which are 109,477m, 146,006m, and 212,719m, respectively. We set four values

Table 3 Composition of TR
Datasets

Id Dataset TR STR Id Dataset TR STR

1 Airplane 1 2 7 Subway 7 108

2 Bike 14 301 8 Taxi 13 71

3 Boat 1 1 9 Train 4 12

4 Bus 22 426 10 Walk 28 756

5 Car 16 337 11 Other 30 2383

6 Run 2 8

123

1298 Q. Lu et al.

Table 4 Mean, Variance and Max in dist(i, j)

Dist Mean (m) Var (m) Max (m) Dist Mean (m) Var (m) Max (m)

1, 11 109, 477 146, 006 212, 719 4, 9 133, 446 173, 046 255, 808

1, 4 14, 576 0 14, 576 5, 10 55, 642 328, 973 2, 415, 622

1, 8 293, 078 0 293, 078 5, 11 34, 362 118, 063 1, 063, 245

2, 10 1500 2777 12, 075 5, 7 8564 39, 313 267, 034

2, 11 11, 257 84, 761 1, 023, 086 5, 8 11, 348 20, 908 76, 762

2, 4 2549 3654 12, 689 5, 9 13, 957 0 13, 957

2, 5 10, 001 17, 305 52, 276 7, 10 5850 7080 31, 996

2, 7 13, 171 20, 661 44, 042 11, 7 41, 265 132, 648 637, 270

2, 8 58, 703 118, 024 269, 712 7, 8 2265 4143 11, 631

3, 4 59, 156 73 59, 207 8, 10 15, 221 26, 122 77, 098

4, 10 12, 583 84, 028 986, 741 11, 8 223, 333 1, 214, 825 8, 328, 956

4, 11 23, 340 110, 415 1, 066, 120 8, 9 761, 691 951, 360 1, 828, 952

4, 5 124, 336 548, 462 2, 517, 981 9, 10 66, 511 98, 627 235, 890

4, 6 601 1315 5516 11, 9 468, 275 466, 053 1, 245, 493

4, 7 5894 11, 273 56, 182 11, 10 20, 986 109, 772 1, 125, 060

4, 8 6966 18, 875 77, 229

for the parameter γ , which are γ = m, γ = m + v, γ = m + 1.5v and γ = max , where m,
v, and max are mean, var, and max in Table 4, respectively.

5.1.2 findMaxCTR vs findApproxMaxCTR

In order to evaluate the effectiveness of the two algorithms that splice trajectories from the
above 11 datasets, we define recall, precision, and completeness as Eqs. 12, 13, and 14.
recall represents the ability of which the two algorithms can recover complete trajectories
(CTR) from the above 11 datasets; precision can show the degree of which top k CTRs contain
user trajectories in Geolife; completeness is the degree that one complete trajectory recovers
a user trajectory.

recall = numa/numb (12)

where numb is the number of user trajectories in the test dataset and numa is the number of
user trajectories found by one of the two algorithms. In this experiment, numb = 32 due to
total 32 user trajectories in the dataset.

precision = numc/k (13)

where numc is the number of complete trajectories that contain a user trajectory; k refers to
top k complete trajectories ranked by Eq. 4.

completeness = |label(CTR) ∩ (userTra)|
|label(userTra)| (14)

where the function label(.) returns the set of transportation modes in a trajectory;
|label(userTra)| is the number of labels that appear in a user trajectory userTra in the
dataset; and |label(CT R) ∩ label(userTra)| is the number of labels that appear both in
CTR and userTra.

123

Trajectory splicing 1299

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
m+v
m+1.5v
max
approxm
approxm+v
approxm+1.5v
approxmax

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

findMaxCTR
d=10,p=0.9
d=10,p=0.8
d=7,p=0.9

(a) (b)

Fig. 6 findMaxCTR versus findApproxMaxCTR on recall

The recall results of findMaxCTR and findApproxMaxCTR that run on different γ s are
shown in Fig. 6a, where m, m + v, m + 1.5v, and max are four parameter values for
γ . The first four curves are results of findMaxCTR, and the last four curves are results
of findApproxMaxCTR. Apparently, the higher the completeness, the lower the recall. With
increasing γ , recall rises because the two algorithms can findmore complete trajectories. For
example, as shown in Fig. 7a, findMaxCTR found 44,002 complete trajectories at γ = mean,
and 2,018,701 complete trajectories at γ = max . So, the running time of the two algorithms
becomes slowwhen gamma increases. The running time offindMaxCTR is 14 s onγ = mean
while 427 s on γ = max .

The recalls of the two algorithms that run on γ = mean + var are shown in Fig. 6b. In
general, findMaxCTR can find more user trajectories than findApproxMaxCTR. However, as
the parameters d or p become large, findApproxMaxCTR can find more user trajectories than
findMaxCTR. This is because findApproxMaxCTR is an approximate algorithm of findMax-
CTR, and according to Eq. 10, the larger the parameters d or p, the larger the parameter k
(the number of intersection in the SP-set graph), and the more likely it is to obtain clique in
the graph. Thus, findApproxMaxCTR is more similar to findMaxCTR. Moreover, owing to its
proximity, findApproxMaxCTR ignores the certain restrictions on the parameter gamma and
the disjoint time condition so that it can discover more user trajectories.

The running time of findMaxCTR versus findApproxMaxCTR on γ = m + v is illustrated
in Fig. 7b. findApproxMaxCTR runs faster than findMaxCTR because the time complexity of
findApproxMaxCTR is O(CN 2) while f indMaxCT R is O(3N/3). The time of findApprox-
MaxCTR running on three groups of parameters, (d = 10, p = 0.9), (d = 10, p = 0.8),
and (d = 7, p = 0.9), are 2.4s, 1.8s, and 1.6s, respectively, because the recursion depths of
findApproxMaxCTR, according to Eq. 11, are 7, 6, and 5, respectively. Moreover, the num-
ber of complete trajectories found by findApproxMaxCTR decreases as the recursion depth
becomes smaller.

The precision results of the two algorithms on different k values are shown in Fig. 8, where
findApproxMaxCTR runs with d = 10 and p = 0.9. Smaller or bigger γ is bad to promote
precision because smaller γ results in lower recall; bigger γ incurs more complete trajecto-
ries. On GeoLife, when γ = m + v or γ = m + 1.5v, the precision of findApproxMaxCTR
is better.

123

1300 Q. Lu et al.

m m+v m+1.5v max

N
um

 o
f C

T
R

×106

0

0.5

1

1.5

2

2.5

T
im

e(
s)

0

100

200

300

400

500

findMaxCTR d=10,p=0.9 d=10,p=0.8 d=7,p=0.9

N
um

 o
f C

T
R

×105

0

5

T
im

e(
s)

0

200

(a) (b)

Fig. 7 findMaxCTR versus findApproxMaxCTR on t ime

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
m+v
m+1.5v
max

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
m+v
m+1.5v
max

completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
m+v
m+1.5v
max

completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
m+v
m+1.5v
max

(a) (b)

(c) (d)

Fig. 8 precision of findMaxCTR and findApproxMaxCTR on different k

Compared with findMaxCTR on γ = m+v, as shown in Fig. 9, findApproxMaxCTRwith
d = 10 and p = 0.9 or p = 0.8 has higher precision because these approximate CTRs found
by findApproxMaxCTR are robust so that they can contain more right user trajectories.

According to the F1 scores with considering recall and precision, as shown in Fig. 10,
findApproxMaxCTR surpasses findMaxCTR on the GeoLife dataset. This is because the recall

123

Trajectory splicing 1301

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

findMaxCTR
d=10,p=0.9
d=10,p=0.8
d=7,p=0.9

(a)
completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

findMaxCTR
d=10,p=0.9
d=10,p=0.8
d=7,p=0.9

(b)

Fig. 9 precision of findMaxCTR versus findApproxMaxCTR on γ = m + v

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

F
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

findmaxCTR1 m+1v
approx 1m+1v
findmaxCTR1 m+1.5v
approx 1m+1.5v

(a)
completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

F
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

findmaxCTR1 m+1v
approx 1m+1v
findmaxCTR1 m+1.5v
approx 1m+1.5v

(b)

Fig. 10 F1 score of findMaxCTR versus findApproxMaxCTR

of findApproxMaxCTR is close to that of findMaxCTR, while the precision of findApprox-
MaxCTR is much larger than that of findMaxCTR.

5.1.3 Comparison with the fuzzy trajectory linking method

Compared with our algorithms, the most similar work is the fuzzy trajectory linking method
(FTL) [38] which links two trajectories and evaluates whether they can be spliced with each
other with a certain probability. We choose findMaxCTR(γ = m + v and speed < 200km)
and naïve-Bayes-matching algorithm (nbayes, φr = 0.9, and speed < 200km) from FTL
to recover user trajectories from any two of the three datasets: walk, bus, and car. If a
user trajectory consists of two trajectories with the same personal ID, the user trajectory is
called right trajectory. The number of right trajectories recovered by the two algorithms is
illustrated in Fig. 11. findMaxCTR can find all right trajectories, while nbayes omits some of
them because FTL cannot describe all spliceable features between two trajectories with the
Poisson–Binomial distributionwhose assumption is that randomsamples are independent and
identically distributed (i.i.d). Trajectories from different datasets do not meet the condition
of i.i.d.

123

1302 Q. Lu et al.

Fig. 11 nbayes versus
findMaxCTR on right trajectories

walk-bus walk-car bus-car

tim
e(

m
s)

0

2

4

6

8

10

12

14

16

18

20

nbayes
findMaxCTR
whole right trajs

5.2 Evaluation on CameraTrajectory

5.2.1 Data set and parameter setting

In the dataset, a trajectory consists of sample points that are generated by road safety cameras,
which record information of vehicles that pass by them. The dataset has 10,104 trajectories
and 12,741,728 sample points over three months at Guyuan, China. Since we do not know
which trajectories in the dataset can be spliced in advance, for computing effectiveness
of the algorithm, we manually select 104 trajectories from the dataset as test trajectories
and randomly split these trajectories into 568 trajectories. After the two algorithms run, we
observe how many complete trajectories (CTRs) contain these test trajectories. Thus, we
can compare recall, precision, and F1 between the two algorithms. By setting thresholds
speed = 1 (m/s) and distance =10,000 (m), all trajectories in the dataset are split into sub-
trajectories. So, there is a total of 10,568 trajectories (TRs) and 1,812,568 sub-trajectories
(STRs) in the dataset.

5.2.2 findMaxCTR vs findApproxMaxCTR

With the parameter γ = 5000m, the results of findMaxCTR versus findApproxMaxCTR are
shown in Fig. 12, where (d = 7, p = 0.9), (d = 14, p = 0.9), (d = 28, p = 0.9), and
(d = 38, p = 0.9) are the four groups of parameters in findApproxMaxCTR. findMaxCTR
finds total 13,581 groups of spliceable trajectories. However, its recall is about 20% as shown
in Fig. 12a, because many spliceable trajectories found by it do not satisfy the function
isSplicePath so that they are discarded.

Compared with findMaxCTR, findApproxMaxCTR finds approximate maximal spliceable
trajectories which are not checked by isSplicePath. Therefore, it has a higher recall than
findMaxCTR when d is bigger. For example, when d = 38 and p = 0.9, its recalls are
82% on completeness = 1 and 93% on completeness = 0.85, respectively. However, when
d = 7, it has a lower recall because the code on Lines 2–8 prunes many branches that
contain spliceable trajectories in Algorithm 5. So, if d is in a reasonable range, findApprox-
MaxCTR is more robust than findMaxCTR because its approximate results are not filtered by
Definition 5.

When selecting the first 4000 results found by the two algorithms, the precisions of the
two algorithms are illustrated in Fig. 12b. Compared with findApproxMaxCTR, findMaxCTR
can find more user trajectories although it has a poor ability to find user trajectories with high

123

Trajectory splicing 1303

completeness
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

findMaxCTR
d=7,p=0.9
d=14,p=0.9
d=28,p=0.9
d=38,p=0.9

(a) recall
completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

pr
ec

is
io

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

findMaxCTR
d=7,p=0.9
d=14,p=0.9
d=28,p=0.9
d=38,p=0.9

(b)

(c) (d)

precision

completeness

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

F
1

0

0.02

0.04

0.06

0.08

0.1

0.12

findMaxCTR
d=7,p=0.9
d=14,p=0.9
d=28,p=0.9
d=38,p=0.9

F1

findMaxCTRd=7,p=0.9 d=14,p=0.9d=28,p=0.9d=38,p=0.9

N
u

m
 o

f
C

T
R

×105

0

1

2

T
im

e
(s

)

0

2000

4000

Max vs Approx time

Fig. 12 f indMaxCT R versus f ind ApproxMaxCT R

completeness. According to the F1 scores on Fig. 12c, findApproxMaxCTR with the fitted
parameters (d = 28 and p = 0.9) is better than findMaxCTR. However, searching for the
right parameter values is very troublesome since it needs to try many different parameter
values. So, from the view of simplicity, findMaxCTR is a good choice.

The time of findMaxCTR running on GeoLife (138 TRs) is about 160s, while its time on
CameraTrajectory (10568 TRs) is about 2816s, as shown in Figs. 7b and 12d. However, its
running time does not follow the exponential growth as its time complexity O(3N/3), because
the density2 of the SP-set graph is 0.56 on GeoLife while it is 0.0054 on CameraTrajectory.
Moreover, the running time of listing maximal cliques also depends on the density of the
graph. In Fig. 12d, with different parameter values, the time of findApproxMaxCTR running
on CameraTrajectory is about 13 s, 40 s, 79 s, and 157s, respectively. Its time is almost the
same because it runs much time on createSTLC-DAG whose time complexity is O(M2N 2),
while it runs a minimal amount of time on the step of finding approximate maximal spliced
path since the SP-set graph is very sparse (its density is 0.0054).

5.3 Evaluation on DT-index

A B+-tree and a DT -index are built on CameraTrajectory to evaluate their efficiencies of
querying disjoint time sets. The length of the minimal time slice is 8 days. In DT -index, the

2 https://en.wikipedia.org/wiki/Dense_graph.

123

https://en.wikipedia.org/wiki/Dense_graph

1304 Q. Lu et al.

Table 5 Components in DT -tree

Level DT -tree DF-tree

of DTNode Avg size(kb) # of DFNode Avg size(kb)

1 13 39,002 12 33,124

2 6 39,831 5 43,695

3 3 37,905 2 87,141

Fig. 13 B+-tree versus DT -index
on computing DT

8 days 24 days 40 days 3 months

tim
e(

m
s)

×104

0

0.5

1

1.5

2

2.5

3

3.5

4
interval tree
DT-index

DT -tree and the DF-tree both have three levels of nodes except their rood nodes. The sizes
of the B+-tree and theDT -index are 137Mb and 1.65Gb, respectively, after constructing the
two indexes. Table 5 lists the details of theDT -index. The sizes ofDTNodes in different levels
are almost the same because, according to Eq. 15, longer the time, smaller the change in the
disjoint time set of a trajectory. However, the change of sizes between DFNodes at different
levels is big, because there is a significant difference between the two neighboring ¬DTi s
so that the size of DFi is large based on DFn

i = ¬DTni − ¬DTn−1
i . Although the size of the

DT -index is very large, some lossless data compression algorithms, e.g., LempelZiv(LZ)
compression algorithm, can decrease its size. By LZ78 algorithm, the size of the DT -index
changes from 1.65Gb to 700Mb.

As mentioned earlier in queryDTsTR, if T2 = 0, it will search the disjoint time sets of all
trajectories in the B+-tree (called ITQuery). If T1 = 0, it will search all the disjoint time sets
in the DT -index (called DTQuery). After ITQuery and DTQuery run 10 times in different
time intervals (8, 24, 40 days, and 3 months), their average time is shown in Fig. 13.

Apparently, DTQuery runs faster than ITQuery because the time complexity of DTQuery
is O(N 2) while the time complexity of ITQuery is O(M2), and M � N . As the query time
grows, M becomes bigger but N does not change. So, the main factor that affects the running
time of DTQuery is only the I/O time of reading the disjoint time set from the DT -index
while the main factors that affect ITQuery include the time of reading trajectories from the
B+-tree and the time of computing the disjoint time sets in CPU.

6 Related work

6.1 Trajectory indexing and querying

In the paper, to find trajectories whose times are disjoint quickly, it needs to search for tra-
jectories according to the time intervals between their sub-trajectories. The interval tree [14],

123

Trajectory splicing 1305

which is built based on the time, supports to retrieve sub-trajectories in these time intervals.
Moreover, the indexes based on B+-tree [37] and R-tree [18,33,35,40] can efficiently pro-
cess the query of time intervals. Although these indexes can process the query, they cannot
efficiently deal with the query of time-disjoint sets because, in each query, they only support
to search in a specific time interval not in multiple time intervals so that they need many
queries of time intervals to discover these trajectories whose times are disjoint.

In addition to the disjoint time constraint on trajectories, spliceable trajectories require that
the gap distances between them are close enough that they constitute a complete trajectory.
Symbolic trajectories [13], which gives us a conceptual view to understand various behaviors
of the moving object [30], can capture these spliceable trajectories by a sequence of time-
dependent labels. The symbolic trajectory of a moving object is represented as a sequence
of units 〈u1, u2, . . . , un〉, where un is a pair 〈t, sb, se, l〉 in which i is a time interval, sb and
se are the locations of two endpoints of the unit, and l is a label. For example, for the case in
Sect. 1, the symbolic trajectory of Bob is the sequence 〈([8 : 00−8 : 20], H , A, walk), ([8 :
23 − 9 : 14], A, B, subway), ([9 : 16 − 9 : 21], B,C, walk), . . .〉.

Güting et al. [13,29,35,40] create the data model of symbolic trajectories and their indexes
to offer operations to search trajectories by the above sequenceof time-dependent labels.More
specially, these operations support to retrieve symbolic trajectorieswhich satisfy the condition
of the time interval, spatial distance, and a sequence of labels. For example, the retrieval SQL
ofBob transitions fromwalk to subway is “select pid f rom Case1 where trans matches ′∗
X(_walk)Y (_ subway)∗//Y .start−X .end ≤ duration(0 9000000)′ and pid = Bob”.
In order tomatch the symbolic trajectory from the database, the querymust know the sequence
of labels in advance. However, in the paper, the sequence of label is unknown before the
query begins to retrieve spliceable trajectories. So, symbolic trajectory methods do not apply
to queries for the spliced mode.

Spatiotemporal joins [32,49] find close pairs of trajectories from two datasets, respec-
tively, based on the distance between the pair of trajectories. Based on these close pairs,
the trajectory join [1] retrieves groups of moving objects that have similar movements at a
different time. Kexin Xie et al. [39] propose a spatiotemporal join method to associate seg-
ments of a trajectory with points of interest (POI) according to the distance between a POI
and a trajectory and duration which a trajectory is geographically near a POI. However, the
distances in these spatiotemporal joinmethods are the similarity between the two trajectories,
while the gap distance between two trajectories is the Euclidean distance. So spatiotemporal
joins are not fit to find spliceable trajectories defined in this paper because these spliceable
trajectories are not similar.

6.2 Trajectory pattern analysis andmining

The spliced model needs to find groups of spliceable trajectories from different systems.
Group pattern mining and trajectory clustering both find groups of moving objects based on
similarity of their trajectories in a specific time interval, such as flock [8,9,36], convey [19],
swarm [27], group [26], gathering [45], and trajectory clustering methods [24,25]. These
methods define different distance functions to evaluate the similarity between trajectories, and
design corresponding cluster algorithms to discover groups of similar trajectories. However,
these methods are not fit to find groups of spliceable trajectories because they find similar
trajectories while spliceable trajectories are not similar. Another line of research on frequent
trajectory mining targets at assigning travel cost-based weights to edges [15,16,42] and
paths [3,44] that are frequently traversed by trajectories, where the travel costs can be travel

123

1306 Q. Lu et al.

time or fuel consumption [11,12]. However, only frequently traversed edges and paths are
identified, which cannot be used directly to identify spliceable trajectories.

From the view of recovering complete user trajectories, a spliceable trajectory is one of the
transportation modes in the user complete trajectory. So, discovering spliceable trajectories
needs to decide whether other trajectories can splice with the current trajectory based on their
information about time, location, and transportation mode. Trajectory inference methods [5,
28,31,46] seem to be able to make the above decision since these methods can predict a
user’s location, infer his transportation mode, and predict when and where he will change
modes [28] based on the known trajectory information. However, these methods are not
good at dealing with the problem of splicing multiple trajectories owing to the two following
reasons. One is that the problem of trajectory splicing act on the different data sources while
trajectory inference methods act on a single data source. In multiple data sources, each data
source has a different ID code and contains trajectories of one transportation mode, and it
is difficult to know in advance whether trajectories from different data source belong to a
user movement. So, the model of the problem is not built on a user history trajectory. More
specifically, it is impossible to count the probability that one user switches one transportation
mode to another. But, a single data source makes trajectory inference methods know user
complete trajectory so that they can create their models based on user history trajectory.

The other is that they have different goals. The goal of our work is to match trajectories
so that they can form one group, while the goal of trajectory inference methods is to predict
a user’s location, infer his transportation mode, and so on. From the view of statistical
learning, our work is the clustering problem, while trajectory inference methods are the
regression problem. Preference learning is able to identify driver groups with similar driving
preferences and thus group their trajectories together [2,12,43]. However, it is unable to
identify individual drivers.

The fuzzy trajectory linking(FTL) [38] is close to our work. It finds pairs of trajectories
that belong to the same moving object by the two methods: (α1, α2)-filtering and naïve
Bayes matching. Compared with our methods, FTL can link (splice) two trajectories based
on the distribution of distances between any two time-order points from the two trajectories,
respectively. So, it avoids the disjoint time constraint in our work so that it can splice two
trajectories even if their sub-trajectories overlap with each other in time. However, it does
not support multiple trajectories splicing efficiently because the two above methods will be
invalid as more trajectories are involved in a spliced process. Nevertheless, our methods can
splice multiple trajectories. Driver identification is also similar to our work in the sense that
it also tries to identify trajectories from different drivers. However, it focuses on learning
distinctive representations of driving behaviors and then clusters the representations [20],
but ignores disjoint time and spatial closeness.

7 Conclusion

In this paper, we study the problem of trajectory splicing, which reconstructs individual com-
plete trajectories which enables to analyze holistic behaviors of individualmoving objects. To
content with the challenge that searching trajectories whose time intervals are disjoint is very
time-consuming, we propose the DT -index to improve the search efficiency. In addition,
we propose two algorithms: findMaxCTR and findApproxMaxCTR to discover spliceable
trajectories. Our experiments based on two real trajectory databases demonstrate the two
algorithms are able to solve the problem efficiently.

123

Trajectory splicing 1307

For future work, it is of interest to extend the spliced degree by considering other factors,
such as the number of the sub-trajectories, and the shape of the sub-trajectories, to evaluate
the quality of the reconstructed individual complete trajectory. It is also of interest to paral-
lelize [41] the proposed algorithms to improve the efficiency and to relax the time-disjoint
constraint to extend the spliced model to include more individual partial trajectories.

Acknowledgements We would like to thank Professor Christian S. Jensen for useful discussions and com-
ments. This work was supported by National Science and TechnologyMajor Project (no. 2017ZX05018-005),
National Natural Science Foundation of China (no. 61402532), Science Foundation of China University of
Petroleum-Beijing (no. 01JB0415), and China Scholarship Council.

Appendix A Computing disjoint time set

Lemma In the query interval time T , the disjoint time set DTi of each trajectory TRi can be
computed by Eq. 6.

Proof Let Qk,d
i be a trajectory set where each trajectory TR appears in T and its time interval

set ti(TR) does not overlap with TRi in the kth time slice. So, Qk,d
i = DTk,di ∪ Rk,d , where

Rk,d is a trajectory set in which each trajectory appears in T except in the kth time slice.
For example, in Fig. 2, assumed T = [0, 3d], R3,d

A = {D, E} and DT3,dA = {B,C}. Then,
Q3,d

A = {B,C, D, E}. Therefore,
DTi (T) = Q1,d

i ∩ Q2,d
i ∩ . . . ∩ Qn,d

i (15)

Due to Pi = P1,d
i ∪ P2,d

i ∪ . . . ∪ Pn,d
i ,

¬DTk,di ∪ Qk,d = Pi (16)

¬DTk,di ∩ Qk,d
i = φ (17)

According to Eqs. 5, 16 and 17, Eq. 15 can be deduced as follows.

DTi (T) = (Pi − ¬DT1,di) ∩ . . . ∩ (Pi − ¬DTn,d
i)

= Pi − [¬DT1,di ∪ (¬DT2,di − ¬DT1,di)

∪ . . . ∪ (¬DTn,d
i − ¬DTn−1,d

i)]
= Pi − [(Pi − DT1,di) ∪ DF2,d

i ∪ . . . ∪ DFn,d
i] (18)

��

Appendix B Finding spliced trajectory

Lemma 4. Assuming that Algorithm 2 is processing the current pair 〈STRv
k , STR

j
i 〉, the sub-

trajectory STR j
i is a temporary end vertex, and sub-trajectories from the same trajectory

before trajectory STRv
k constitute a temporary trajectory, if a path from STRv

k to STR j
i is

found by the function exist Path, temporary trajectories that the path have passed through
can form a spliced path.

123

1308 Q. Lu et al.

Proof Let Pc which is found by existPath be a path from STRv
k to STR j

i . We firstly prove

there must exist a path Pl from STRv
k to STR

j
i in the current graph STLC-DAG. Pl is an time-

ordered sequencewhere each STR ∈ {STRn
m |ti(STRv

k).st < ti(STRn
m).st < ti(STR j

i).st,m ∈
M(Pc)} ∪ {STRv

k , STR
j
i }. And, M(Pc) is a set of TRs that Pc have passed through except i

and k. We prove the problem according to the following situations.
If |M(Pc)| = 0 or |M(Pc)| = 1, Pc must be Pl .
If |M(Pc)| ≥ 2, suppose Pl does not exist in the current STLC-DAG. Let Pa be the path

contains the maximum number of STRs from Pl , where M(Pc) ⊆ M(Pa). Then, at least
one vertex STRn

m from Pl is not on Pa . According to time, let STRn
m be between Pa[i] and

Pa[i + 1], namely ti(Pa[i]).st < ti(STRn
m).st < ti(Pa[i + 1]).t , where Pa[i](Pa[j]) is a

i th or j th STR in Pa , mi (mi+1) is the subscript of Pa[i](Pa[i + 1]), and mi ,mi+1 ∈ m(Pc).
Therefore, before running the current pair, the algorithm has executed evaluation of the two
pair 〈Pa[i], STRn

m〉 and 〈STRn
m, Pa[i + 1]〉. The evaluation generated two following results.

One is that, if there does not exist a path between 〈Pa[i], STRn
m〉 or 〈STRn

m, Pa[i+1]〉, it shows
T Rm and T Rmi (T Rmi+1) cannot be spliced. So, mi /∈ SPm or mi+1 /∈ SPm . According to
exist Path (Algorithm 3), it cannot find that a path contains STRmi (STRmi+1) and STRm . It
contradicts with Pc. The other is that, if there does exist both above paths, STRn

m can be added
into Pa . It contradicts with Pa that has the maximum number of STRs from Pl . Therefore,
Pl must exist in the current STLC-DAG.

Then, since Pl from STRv
k to STR j

i exists in STLC-DAG, it implies that there must exists
a path Pb from the start vertex to STRv

k in the current STLC-DAG. And, Pb contains all STRs
of TRs between the start vertex and STRv

k (Pc has passed through these TRs). This is because
the algorithm has processed previous pair 〈STRrt , STRv

k 〉. And, there must exist a path Pt
similar to Pa between STRrt and STR

v
k owing to the path found by existPath. And so on, these

previous pairs form the Pb. Therefore, the Pb and Pl can form a spliced path. ��

Lemma 5 If and only if a path found by algorithm 3 contains sub-trajectories from two
different trajectories, the two trajectories can be spliced.

Proof If there exists a path, which is found by Algorithm 3, between any two sub-trajectories
from two trajectories, respectively, according to Lemma 4, the trajectories that the path passed
through can be spliced with the two sub-trajectories. So, the two two sub-trajectories can be
spliced. According to the definition 6, if two sub-trajectories are spliceable sub-trajectories,
there exists a spliced path that can pass through all sub-trajectories of the two trajectories. ��

Theorem 1 If there exists a directed edge between two trajectories, the two trajectories can
be spliced.

Proof Suppose there is an edge between STR j
i and STR

n
m , which the two STRs belong to TRi

and TR j , respectively, and TRi cannot be spliced with TRm . According to Lemma 5, at least
one pair of STRs from the two TRs, respectively, cannot be connected by a path that is found
by exist Path. But, a Algorithm 2 (Line 10) must have deleted all edges between TRi and
TR j if it finds that a pair between them cannot be connected by a path. Therefore, there is

not an edge between them. It contradicts the assumption that there is an edge between STR j
i

and STRn
m .

Theorem 2 For each SPi ∈ SP, where SP is one of output parameters of Algorithm 2, SPi is
a set of trajectories that can be spliced with the trajectory TRi .

123

Trajectory splicing 1309

Proof At initialized phase of Algorithm 2, SP = DT. Suppose one SPi has a subscript m,
and its corresponding TRm cannot be spliced with TRi . According to Lemma 5, there is not
a path between one pair 〈STR j

i , STR
n
m〉. And, SPi = SPi − m (Line 12 in Algorithm 2), has

been executed. It contradicts with SPi because SPi contains m. ��
Lemma 6. In SP-set graph, a clique is a group of spliceable trajectories, a maximal clique is
a complete trajectory.

Proof A group of spliceable trajectories can be directly or indirectly spliced with each other.
Therefore, there exists an edge between any two of them. So, the group of spliceable trajec-
tories is a clique in the graph. If the clique is the maximal clique, the group of spliceable
trajectories on the maximal clique cannot be contained by other groups. So, the maximal
clique in the graph is a complete trajectory CTR. ��

References

1. Bakalov P, Hadjieleftheriou M, Tsotras VJ (2005) Time relaxed spatiotemporal trajectory joins. In: Pro-
ceedings of the 13th annual ACM international workshop on geographic information systems, ACM,New
York, NY, USA, pp 182–191

2. Dai J, Yang B, Guo C, Ding Z (2015) Personalized route recommendation using big trajectory data. In:
2015 IEEE 31st international conference on data engineering, pp 543–554

3. Dai J, Yang B, Guo C, Jensen CS, Hu J (2016) Path cost distribution estimation using trajectory data.
Proc VLDB Endow 10(3):85–96

4. Ding Z, Yang B, Chi Y, Guo L (2016) Enabling smart transportation systems: a parallel spatio-temporal
database approach. IEEE Trans Comput 65(5):1377–1391

5. Emrich T, Kriegel HP, Mamoulis N, Renz M, Züfle A (2012) Querying uncertain spatio-temporal data.
In: 2012 IEEE 28th international conference on data engineering, pp 354–365

6. Eppstein D, Löffler M, Strash D (2010) Listing all maximal cliques in sparse graphs in near-optimal
time. In: Algorithms and computation, no. 6506 in lecture notes in computer science, Springer Berlin
Heidelberg, pp 403–414

7. Goh CH, Lu H, Ooi BC, Tan KL (1996) Indexing temporal data using existing B+-trees. Data Knowl Eng
18(2):147–165

8. Gudmundsson J, van KreveldM (2006) Computing longest duration flocks in trajectory data. In: Proceed-
ings of the 14th annual ACM international symposium on advances in geographic information systems,
ACM, New York, NY, USA, pp 35–42

9. Gudmundsson J, van Kreveld M, Speckmann B (2004) Efficient detection of motion patterns in spatio-
temporal data sets. In: Proceedings of the 12th annual ACM international workshop on geographic
information systems, ACM, New York, NY, USA, pp 250–257

10. Guo C, Jensen CS, Yang B (2014) Towards total traffic awareness. SIGMOD Rec 43(3):18–23
11. Guo C, Yang B, Andersen O, Jensen CS, Torp K (2015) Ecomark 2.0: empowering eco-routing with

vehicular environmental models and actual vehicle fuel consumption data. GeoInformatica 19(3):567–
599

12. Guo C, Yang B, Hu J, Jensen CS (2018) Learning to route with sparse trajectory sets. In: IEEE 34th
international conference on data engineering, pp 1073–1084

13. Güting RH, Valdés F, Damiani ML (2015) Symbolic trajectories. ACM Trans Spat Algorithms Syst
1(2):7:1–7:51

14. HCormen T, ELeiserson C, LRivest R, Stein C (2009) Introduction to algorithm, 3rd edn. MIT Press,
Cambridge

15. Hu J, YangB, Jensen CS,MaY (2017) Enabling time-dependent uncertain eco-weights for road networks.
GeoInformatica 21(1):57–88

16. Hu J, Guo C, Yang B, Jensen CS (2019) Stochastic weight completion for road networks using graph
convolutional networks. In: IEEE 35th international conference on data engineering, pp 1274–1285

17. Hua L, Chenjuan G, Bin Y, Christian SJ (2016) Finding frequently visited indoor pois using symbolic
indoor tracking data. In: Proceedings of the 19th international conference on extending database technol-
ogy, pp 449–460

18. Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space.
In: International symposium on spatial and temporal databases, pp 208–227

123

1310 Q. Lu et al.

19. Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT (2008) Discovery of convoys in trajectory databases.
1:1068–1080

20. Kieu T, Yang B, Guo C, Jensen CS (2018a) Distinguishing trajectories from different drivers using incom-
pletely labeled trajectories. In: Proceedings of the 27th ACM international conference on information and
knowledge management, pp 863–872

21. Kieu T, Yang B, Jensen CS (2018b) Outlier detection for multidimensional time series using deep neural
networks. In: IEEE 19th international conference on mobile data management, pp 125–134

22. Kieu T, Yang B, Guo C, Jensen CS (2019) Outlier detection for time series with recurrent autoencoder
ensembles. In: 28th international joint conference on artificial intelligence

23. Korte B, Vygen J (2012) Combinatorial optimization, algorithms and combinatorics, vol 21. Springer,
Berlin

24. Lee JG,Han J,WhangKY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings
of the 2007ACMSIGMOD international conference onmanagement of data, ACM,NewYork, NY, USA,
pp 593–604

25. Lee JG, Han J, Li X (2015) A unifying framework of mining trajectory patterns of various temporal
tightness. IEEE Trans Knowl Data Eng 27(6):1478–1490

26. Li X, Ceikute V, Jensen C, Tan KL (2013) Effective online group discovery in trajectory databases. IEEE
Trans Knowl Data Eng 25(12):2752–2766

27. Li Z, Ding B, Han J, Kays R (2010) Swarm: mining relaxed temporal moving object clusters. Proc VLDB
Endow 3:723–734

28. Liao L, Patterson DJ, Fox D, Kautz H (2007) Learning and inferring transportation routines. Artif Intell
171(5–6):311–331

29. Sakr MA, Güting RH (2011) Spatiotemporal pattern queries. GeoInformatica 15(3):497–540
30. Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view

on trajectories. Data Knowl Eng 65(1):126–146
31. SuH, ZhengK,Huang J,WangH, ZhouX (2014) Calibrating trajectory data for spatio-temporal similarity

analysis. VLDB J 24(1):93–116
32. Sun J, Tao Y, Papadias D, Kollios G (2006) Spatio-temporal join selectivity. Inf Syst 31(8):793–813
33. Tao Y, Papadias D (2001) MV3r-Tree: A spatio-temporal access method for timestamp and interval

queries. In: Proceedings of the 27th international conference on very large data bases, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp 431–440

34. Tomita E, Tanaka A, Takahashi H (2006) The worst-case time complexity for generating all maximal
cliques and computational experiments. Theor Comput Sci 363(1):28–42

35. Valdés F, Güting RH (2014) Index-supported pattern matching on symbolic trajectories. In: Proceedings
of the 22NdACMSIGSPATIAL international conference on advances in geographic information systems,
ACM, New York, NY, USA, pp 53–62

36. Vieira MR, Bakalov P, Tsotras VJ (2009) On-line discovery of flock patterns in spatio-temporal data.
In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic
information systems, ACM, New York, NY, USA, pp 286–295

37. Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale
GPS track retrieval. In: 9th international conference on mobile data management, IEEE, pp 1–8

38. Wu H, Xue M, Cao J, Karras P, Ng WS, Koo KK (2016) Fuzzy trajectory linking. In: IEEE 32nd
international conference on data engineering, IEEE, pp 859–870

39. Xie K, Deng K, Zhou X (2009) From trajectories to activities: a spatio-temporal join approach. In:
Proceedings of the 2009 international workshop on location based social networks, ACM, NewYork, NY,
USA, pp 25–32

40. Xu J, Güting RH, Zheng Y (2015) The TM-RTree: an index on generic moving objects for range queries.
GeoInformatica 19(3):487–524

41. Yang B, Ma Q, Qian W, Zhou A (2009) TRUSTER: trajectory data processing on clusters. In: DASFAA,
pp 768–771

42. Yang B, Guo C, Jensen CS, KaulM, Shang S (2014) Stochastic skyline route planning under time-varying
uncertainty. In: IEEE 30th international conference on data engineering, pp 136–147

43. YangB,GuoC,MaY, Jensen CS (2015) Toward personalized, context-aware routing. VLDB J 24(2):297–
318

44. Yang B, Dai J, Guo C, Jensen CS, Hu J (2018) PACE: a path-centric paradigm for stochastic path finding.
VLDB J 27(2):153–178

45. Zheng K, Zheng Y, Yuan N, Shang S, Zhou X (2014) Online discovery of gathering patterns over trajec-
tories. IEEE Trans Knowl Data Eng 26(8):1974–1988

46. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):1–41

123

Trajectory splicing 1311

47. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from GPS
trajectories. In: Proceedings of the 18th international conference on world wide web, ACM, New York,
NY, USA, pp 791–800

48. Zheng Y, Xie X, Ma WY (2010) Geolife: a collaborative social networking service among user, location
and trajectory. IEEE Data Eng Bull 33(2):32–39

49. Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G (2005) Close pair queries in moving object
databases. In: Proceedings of the 13th annual ACM international workshop on geographic information
systems, ACM, New York, NY, USA, pp 2–11

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Qiang Lu received a B.S. degree from Shenyang University of Chem-
ical Technology, Shenyang, China, in 2000 and a Ph.D. degree from
China University of Petroleum-Beijing, China, 2006. From 2015 to
2016, he was a visiting scholar at the Department of Computer Science,
Aalborg University, Denmark. He is currently an Associative Professor
in the Department of Computer Science and Director of Computation
Intelligence Center at China University of Petroleum, Beijing. He is
also a faculty member in Beijing Key Lab of Petroleum Data Mining.
His research interests include spatial-temporal data processing, evolu-
tionary computing, and machine learning.

Rencai Wang received a B.S. degree from China University of
Petroleum-East China, in 2014 and an M.S. degree from China Uni-
versity of Petroleum-Beijing, China, in 2017. He is currently working
as a software engineer at IFLYTEK CO., LTD, responsible for data
analysis and mining on education, and the development of the edu-
cation cloud platform. His research interests include spatial–temporal
data management, trajectory computing, and data mining on behaviors
of the educational user.

123

1312 Q. Lu et al.

Bin Yang is a Professor in the Department of Computer Science at
Aalborg University, Denmark. He was at Aarhus University, Denmark
and at Max Planck Institute for Informatics, Germany. He received the
Ph.D. degree in computer science from Fudan University. His research
interests include machine learning and data management. He was a PC
co-chair of IEEE MDM 2018. He has served on program committees
and as an invited reviewer for several international conferences and
journals, including ICDE, IJCAI, TKDE, the VLDB Journal, and ACM
Computing Surveys.

Zhiguang Wang received a B.S. degree in physics from Inner Mongolia
Normal University in 1986, an M.S. degree in computer metering from
Jilin University in 1994, and a Ph.D. degree in computer science from
China University of Petroleum-Beijing. He is currently a Professor in
the Department of Computer Science at China University of Petroleum,
Beijing, severed as Director of Research Group of Large Scale Data
Processing and Visualization. He is also a faculty member in Beijing
Key Lab of Petroleum Data Mining, and a council member in Beijing
Education Federation. His current research interests include data man-
agement, distributed system, and spatial-temporal data mining.

123

	Trajectory splicing
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Basic concepts
	2.2 Spliceable trajectories
	2.3 Problem definition

	3 The trajectory splicing query
	3.1 Indexing sub-trajectories and the disjoint time set
	3.1.1 B+-Tree
	3.1.2 The disjoint time index

	3.2 Processing query
	3.3 Splicing trajectory
	3.3.1 Finding spliceable trajectories
	3.3.2 Finding maximum spliceable trajectories
	3.3.3 Finding approximate maximal spliceable trajectories

	4 Time complexity analysis
	5 Experiments
	5.1 Evaluation on geolife
	5.1.1 Data set and parameter setting
	5.1.2 findMaxCTR vs findApproxMaxCTR
	5.1.3 Comparison with the fuzzy trajectory linking method

	5.2 Evaluation on CameraTrajectory
	5.2.1 Data set and parameter setting
	5.2.2 findMaxCTR vs findApproxMaxCTR

	5.3 Evaluation on DT-index

	6 Related work
	6.1 Trajectory indexing and querying
	6.2 Trajectory pattern analysis and mining

	7 Conclusion
	Acknowledgements
	Appendix A Computing disjoint time set
	Appendix B Finding spliced trajectory
	References

