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Geographic information system (GIS) is an integrated collection of computer software and data used to view and manage
information about geographic places, analyze spatial relationships, and model spatial processes. With the growing popularity and
wide application of GIS in reality, performance has become a critical requirement, especially for mobile GIS services. To attack this
challenge, this paper tries to optimize the performance of GIS services by deploying them into edge computing architecture which
is an emerging computational model that enables efficient offloading of service requests to edge servers for reducing the
communication latency between end-users and GIS servers deployed in the cloud. Stochastic models for describing the dynamics
of GIS services with edge computing architecture are presented, and their corresponding quantitative analyses of performance
attributes are provided. Furthermore, an optimization problem is formulated for service deployment in such architecture, and a
heuristic approach to obtain the near-optimal performance is designed. Simulation experiments based on real-life GIS per-
formance data are conducted to validate the effectiveness of the approach presented in this paper.

1. Introduction

Geographic information system (GIS) has been a hot technique
for providing the tools for capturing, storing, analyzing, and
displaying spatial data [1]. In order to provision GIS services
with high Quality of Service (QoS), performance of the system
is a critical issue [2]. In recent years, there have been several
research works dedicating to optimizing the performance of
GIS services from different aspects [2–4].

Edge computing is an emerging technique of optimizing
computing systems by performing data processing at the
edge of the network near the source of the original data [5]. It
pushes applications, data, and services away from central-
ized points (i.e., the cloud) to the logical extremes of a
network, and thus, the communication latency for pro-
cessing user requests can be significantly reduced [6, 7], as
well as fault-tolerance [8], privacy [9–12], and security [13]
being enhanced. With edge computing architecture, the
performance as well as scalability of GIS systems can be
dramatically enhanced [14].

Although there have been some research studies fo-
cusing on improving the QoS of GIS services by applying
edge computing techniques, few of them paid attention to
the performance evaluation issue. +ere lacks of analytical
approaches for evaluating as well as optimizing the per-
formance of GIS systems which is able to quantitatively
indicating the impact after deploying GIS services into the
systems with edge computing paradigm. It is quite a chal-
lenging work to capture the dynamics of the GIS systems,
especially after constructing them with edge computing
architecture, since the introduction of the edge layer makes it
quite complicated for task scheduling and request pro-
cessing. Furthermore, whether to dispatch the request to the
near-end edge servers or far-end cloud servers for obtaining
the optimal QoS remains largely unexplored.

In this paper, we make an attempt at filling this gap by
presenting a performance evaluation and optimization study
of the GIS services deployed in the edge computing archi-
tecture. A theoretical model for capturing the dynamics of
the edge computing systems running GIS services is
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presented, and its corresponding quantitative analysis is
conducted. With the analytical results, an optimization
problem is formulated and a service deployment scheme is
designed for obtaining the near-optimal performance of GIS
services. With performance data generated from real-world
GIS systems, simulation experiments are conducted to
validate the effectiveness of the approach.

+e remainder of this paper is organized as follows. In
Section 2, we discuss the related work most pertinent to this
paper. In Section 3, we present a theoretical model for
formulating the GIS systems with edge computing archi-
tecture, and provide quantitative analysis of the model. In
Section 4, we formulate an optimization problem and design
a performance optimization approach. In Section 5, we
conduct real-life data based experiments to validate the
efficacy of our scheme. Finally, we conclude the paper in
Section 6.

2. Related Work

2.1. Performance Evaluation. A straightforward approach of
performance evaluation is to obtain the performance metrics
by direct measurement. Due to the dynamics of the system
and environments, a series of experimental measurements
are commonly required and statistical techniques are applied
for handling the original measurement data. Truong and
Karan [15] designed a mobile application of performance
measurement and studied the impact of performance and
data quality for mobile edge cloud systems. Morabito et al.
[16] constructed a real testbed to evaluate the container-
based solutions in IoTenvironment at the network edge, and
analyzed the power and resource consumption for perfor-
mance evaluation. Chen and Kunz [17] combined mea-
surement and emulation and designed a network emulator
for performance evaluation of optimal protocols. Qi et al.
[18] collected data from 18,478 real-world APIs and 6,146
real-world apps, and designed a data-driven approach for
web service recommendation. Baptista et al. [19] deployed a
web-based GIS and used two datasets as the benchmark to
evaluate the performance of several optimization techniques
in Web GIS.

Although the measurement-based approaches are ef-
fective in performance evaluation, their overhead is so ex-
pensive that sometimes especially in the design phase of a
computing system, one may not be able to afford imple-
menting all the feasible schemes for comparison in reality
[20]. +erefore, an alternative type of approaches has
emerged, which applied theoretical models to formulate a
system and then provide quantitative analysis by solving the
models. With significantly lower overhead, the model-based
approaches are able to evaluate the performance of the
schemes before their implementations, making them in-
creasingly popular in system design and improvement.
Wang et al. [21] applied queueing theory to formulate an
edge computing system, based on which a near-optimal
offloading scheme for the Internet of Vehicles was designed.
Ni et al. [22] generalized Petri net models and conducted
performance evaluation of resource allocation strategies in
edge computing environments. Li et al. [23] presented a

performance estimation approach using M/M/k queueing
model in Internet of +ings (IoT) environments, which
further helped to explore the optimal QoS-aware service
composition scheme.

2.2. Performance Optimization. +e performance optimi-
zation is commonly based on the evaluation results and thus
used to optimize the performance of a system by designing
new policies, selecting the best candidate, or enhancing the
existing ones. One popular way is to collect the performance
data of the policies by either measurement-based approaches
or model-based approaches and search for the optimal one.
Sometimes due to the extremely large search space, such
search-based optimization approaches may meet with
search-space explosion problems, and thus how to search for
the optimal solution with high efficiency has become a hot
topic. Mebrek et al. [24] considered the QoS and energy
consumption in edge computing for IoT, formulated a
constrained optimization problem, and designed an evo-
lutionary algorithm-based approach for searching the fea-
sible solutions. Wu et al. [25] designed a service composition
scheme for mobile edge computing systems by combining
simulated annealing and genetic algorithm. Zhang et al. [26]
used neural network models for search-based optimization
and designed a proactive video push scheme for reducing
bandwidth consumption in hybrid CDN-P2P VoD Systems.
Xu et al. [27] designed a multiobjective evolutionary algo-
rithm based on decomposition for adaptive computation
offloading for edge computing in 5G-envisioned Internet of
Connected Vehicles (IoCV).

Another feasible way is to build a mathematical model
illustrating the relationships between the system parameters
and the performance metrics, based on which optimization
problems can be formulated and optimal policies can be
obtained. Zhang et al. [28] presented a graph-based model
for service composition and designed an optimization ap-
proach of service composition with QoS correlations. Mao
et al. [29] formulated the resource management as a Markov
decision process, and further applied deep reinforcement
learning to construct an optimization algorithm. Chen et al.
[30] applied queueing theory to capture the dynamics in the
mobile edge computing environment, formulated a sto-
chastic optimization problem and designed an energy-effi-
cient task offloading and frequency scaling scheme for
mobile devices.

2.3. Summary. Although there have been several cutting-
edge research works dedicating to performance evaluation
and optimization for edge computing systems, this topic
remains largely unexplored in geographic information
systems. Since it has been shown by the existing literature
that edge computing is able to improve the performance of
the computing systems, especially for real-time services, we
believe that a comprehensive study on the performance
evaluation and optimization of GIS services deployed in
edge computing architecture will have theoretical reference
and practical value for the design, management, and im-
provement of geographic information systems.
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Previously, we have conducted some research works on
the topic of model-based performance evaluation and opti-
mization in edge computing service systems.We have applied
queueing network model to the performance evaluation of
IoT services deployed in edge computing paradigm [31], and
further put forward a simulation-based optimization ap-
proach of efficient service selection [32]. With queueing
theory, we also proposed a multiqueue approach of energy-
efficient task scheduling for sensor hubs in IoT using Lya-
punov optimization technique [33]. In [34], we investigated
the task scheduling and resource management problem and
designed an equivalent linear programming problem which
could be efficiently and elegantly solved at polynomial
computational complexity. In addition, we have explored
generalized stochastic Petri net models for model-based
performance evaluation and search-based optimization for
both performance and reliability metrics [35]. However, the
performance modeling, analysis, and optimization meet with
new challenges in the background of GIS, due to the char-
acteristics of different task arrivals and service procedures.
+is paper is our first attempt at studying the model-based
evaluation and optimization issue for GIS services.

3. AnalyticalModel for Performance Evaluation

In this section, we apply queueing theory to construct an
analytical model for performance evaluation of GIS services in
edge computing paradigm. We firstly present the atomic
queueing model of a GIS server and then propose a queueing
network model for evaluating the overall performance of an
edge computing system. +e quantitative analyses of the
performance metrics are also presented by solving the models
mathematically.+emain notations and definitions which will
be used in the following discussions are provided in Table 1.

3.1. Queueing Model of a GIS Server. An atomic service
represents a type of relationship-based interactions or
activities between the service provider and the service
consumer to achieve a certain business goal or solution
objective [36]. In a GIS system, there are a number of
atomic services that can provide different functionalities.
For example, users upload requests to view satellite pictures
of a certain area, sensors upload the temperature, humidity,
and other data of a certain area in real time, and servers
analyze and process a large amount of existing data. Due to
the difference in the amount of calculation, some services
with a small amount of calculation can be usually com-
pleted on the local devices, while some services with heavy
computational workload should be deployed on more
powerful edge servers.

+e dynamic behavior of atomic services includes the
following three basic parts. First, the request arrives at the
service node and completes specific tasks according to
their needs. +ese requests can be simple requests from
users, routine sensing tasks on sensors, or complex data
analysis in data centers. Second, because the resources on
the service node are not unlimited, requests sometimes
have to wait in the queue until the service is available. If

the current queue is empty, the incoming request will be
processed by the service immediately without waiting in
line. +ird, after the request is processed, it leaves the
system.

In a real-life GIS service system, a single server can
handle a number of different types of services, and the
capacity of each queue should be finite. +us, we consider a
multiqueue, finite-capacity, and single-server queueing
model, where each queue specifically deals with tasks of the
same priority.

It has been shown that the task arrivals above the session
level in distributed systems can be basically formulated by
Poisson distribution [37]. And according to the known data,
we can figure out that the service rate of GIS system obeys
the general distribution. +erefore, we formulate a GIS
server by a q-M/G/1/Ki queueing model [38].

We consider a scenario consisting of a set Q of q (|Q| �

q) queues. Each queue qi, where i ∈ Q � 1, 2, . . . , q􏼈 􏼉 spe-
cifically deals with tasks with the same priority, is connected
to the same server. Usually, tasks arrive to qi according to the
i.i.d. Poisson process with rate λi and are processed by the
server under a general independent service rate μi. +e order
in which the server accesses the queue is determined by the
queue selection rule (QSR) or the queue scheduler. To fa-
cilitate our analysis, we define the state of the multiqueue
model as a q-tuple array x � [n1, n2, . . . , nq], where
ni ∈ [0, Ki] represents the number of tasks in qi at the
current moment.

With this description, we can clearly describe the current
occupation of each queue with the state vector x. Fur-
thermore, we have to introduce a secondary variable s to
describe the queue currently being serviced. In this sense,
another form of [x; s] ∈ Rq+1, s ∈ 1, 2, . . . , q􏼈 􏼉, can give a
more compact representation. Figure 1 illustrates an ex-
ample of a queueing model where x � [3, 0, 2; 1].

Since the service time follows the general distribution, the
memoryless feature of state evolution in traditional Markovian
queueing models does not hold. To facilitate the analysis, we
choose our observation time for the moments when the task
has just completed its service procedure. At these points, the
Markovian attribute is retained and the arrival and service
processes are restarted. For the sake of distinction, [x; s∗] (s
with a superscript ∗) is used to emphasize the observation of
time as the state of themoment of departure. It should be noted
that the corresponding state probabilities of [x; s] and [x; s∗]

are denoted as px;s and πx;s∗, respectively.

3.1.1. Queue Transition Probability (QTP). Considering the
state [x; s∗], the state transitions to this state can be either (i)
from any arbitrary states [x; r∗] or (ii) from the null state
[0, 0, . . . , 0; r∗]. And the QTP is different in these two cases.
In Case (i), the QTP is related to the queue selection rule
(QSR). For example, in the case of the QSR is FCFS (first-
come-first-served), the corresponding queue transfer
probability is

βFCFSr⟶s �
ns

􏽐
q
j�1 nj

. (1)
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However, in Case (ii), the QTP depends only on task
arrival rates, which is represented as

βr⟶s �
λs

􏽐
q
j�1 λj

. (2)

In equation (2), the QSR is ignored since the QTP is
merely related to the task arrival rates in Case (ii). For
convenience, we do not need to label QSR unless it must be
used.

3.1.2. Task Arrival Probability (TAP). +e TAP of k arrival
tasks during the service interval in the M/G/1/∞ model is
represented as

Table 1: Notations and definitions.

Notations Definitions
ti +e i-th terminal
T Number of terminals T
hj +e j-th type of tasks
H Number of applications H
qj Size of offloading request for hj

sj Size of offloading response for hj

cj Amount of hj’s computation
pi,j Probability for ti to generate hj

hi,j Task generated by ti for hj

αi,j,0 Probability that hi,j is executed by ti

αi,j,1 Probability that hi,j is offloaded form ti to edge server
λi

Task generation rate of ti

hT
i,j

Task hi,j which is executed by ti

λT
i,j

Task arrival rate of hT
i,j

h
Edge
i,j

Task hi,j which is offloaded form ti to edge server

λEdgei,j
Task arrival rate of h

Edge
i,j

μi Service rate of ti

μEdge Service rate of the edge server
μT

i,j Service rate of each task hT
i,j

μEdgei,j
+e service rate of each task h

Edge
i,j

LT
i,j

Average queue length of hT
i,j

L
Edge
i,j

Average queue length of h
Edge
i,j

tT
i,j Average response time of hT

i,j

t
Edge
i,j

Average response time of h
Edge
i,j

r
T⟶ Edge
i

Uplink transmission rate

t
T⟶Edge
i,j

Transmission delay from ti to edge server

r
Edge⟶ T

i
Downlink transmission rate

t
Edge⟶T

i,j
Transmission delay from edge server to ti

ξi Energy consumption for completing each computational unit of ti

eT
i,j Energy consumption caused by executing hT

i,j

ξEdge Energy consumption for completing each computational unit in edge server
e
Edge
i,j Energy consumption caused by executing h

Edge
i,j

ωi Transmission energy consumption of ti

e
T⟶Edge
i,j Energy consumption from ti to edge server
ωEdge Transmission energy consumption of edge
e
Edge⟶T

i,j Energy consumption from edge server to ti

ti,j Total time consumption for executing hi,j

ei,j Total energy consumption for executing hi,j

τ Balance factor between energy and time

q1

q1

q2

q3

λ1

λ2

λ3

K1

K2

K3

μ1

μ2

μ3

n1

n3

Task
arrivals

Task
departures

Server

Figure 1: 3-M/G/1/Ki model when K1� 5, K2� 6, K3� 4, n1� 3,
n2� 0, n3� 2, and q1 is being serviced.

4 Security and Communication Networks



αk � 􏽚
∞

0

(λt)
k

k!
e

− λt
b(t)dt, 0≤ k<∞, (3)

where b(t) is the probability density function (PDF) of the
service time. When we solve the multiqueue model, the
extension of αk to multiqueue TAP is easily represented as

αl1,l2,...,lq;s � 􏽚
∞

0
􏽙

q

j�1

λjt􏼐 􏼑
lj

lj!
e

− λjt⎛⎝ ⎞⎠bs(t)dt, 0≤ li <∞,

�
1

􏽑
q

i�1 li!
􏽚
∞

0
􏽙

q

i�1
λjt􏼐 􏼑

lj⎛⎝ ⎞⎠e
− 􏽐

q

m�1λmt
bs(t)dt,

(4)

where αl1,l2,...,lq;s is expressed as the joint probability with lk
arrival tasks in qk for ∀k during the service interval of qs, and
bs(t) is the corresponding probability density function of the
queue model. More specifically, the limited capacity of each
queue should be taken into account. In the case of q-M/G/1/
Ki, the formula in equation (4) needs to bemodified properly
further. +us, since there are already ni tasks in qi, the
maximum number of tasks allowed by qi is Ki − ni. And then
the TAP can be expressed as 􏽐

∞
mi�Ki− ni

αl1 ,...,mi,...,lq;s. Fur-
thermore, assuming that the queues Qk+1 to Qq are com-
pletely filled with tasks, αl1 ,l2 ,...,lq;s is formulated as follows:

􏽘

∞

mk+1�Kk+1− nk+1

. . . 􏽘
∞

mq�Kq− nq

αl1 ,...,lk,mk+1 ,...,mq;s. (5)

3.1.3. State Transition Equations (STEs). After we have
solved the QTP and TAP, the state probability πx;s∗ of [x; s∗]

can be satisfied as the following STE to govern the dynamic
of the queueing system:

πx;s∗ � 􏽘

q

r�1
π0,...,0;r∗β0⟶sαn1,...,nq;s

+ 􏽘

q

r�1
􏽘

n1

l1�0
. . . 􏽘

nq

lq�0
πn1− l1 ,...,nq− lq;r∗ × βr⟶sαl1,...,lq;s

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(6)

In equation (6), the first term in the right-hand side is the
probability from the null state to [x; s∗], while the second
term is the probability from [x; r∗] to [x; s∗]. Based on the
above formulation, the STEs composed of all feasible states
can be expressed more concisely as a matrix-vector form:

Aππ � 0,

􏽘

Nq,π

i�0
πi � 1,

(7)

where Nq,π is the number of all feasible states, π is the
aggregation of πx;s∗ , and the state transition matrix
Aπ ∈ RNq,π×q,π consists of multiplications of QTP and TAP.

3.1.4. State Balance Equations (SBEs). Based on the QTP,
TAP, and π to set up the SBEs, the state probability px;s∗ of
[x; s] is easily to be solved. According to the fact that the task
flows must be conserved in the equilibrium status, SBEs can
be expressed in the following equation:

IAx;s + IDEMC
x;s � OAx;s + ODEMC

x;s . (8)

+e arrival process, including IAx;s and OAx;s, is owing
to new arrival task to the queue system, for example, from
[x−

r ; s] to [x; s] or from [x; s] to [x+
r ; s], which results in an

increment of task during the service interval of qs. Similarly,
the departure process, including IDEMC

x;s and ODEMC
x;s , is

owing to departure task from the queue system, for example,
from [x; r∗] to [x; s] or from [x; s] to [x−

s ; r], which results
in a decrement of task in the departure instant of qs. +us, all
of the state probabilities px;s can be obtained.

(i) Null state (xz � [0, 0, . . . , 0]) probability pxz;0:

pxz;0 �
λeff

􏽐
q
i�1 λi

􏽘

q

i�1
πxz;i∗βi⟶0. (9)

(ii) Full-loaded state (xF � [K1, K2, . . . , Kq]) probabil-
ity pxF;s, s≠ 0:

pxF;s � μ− 1
s λeffψs − 􏽘

n1≠K1 or...or nq≠Kq

Pn1 ,n2 ,...,nq;s, (10)

where ψs � 􏽐∀ni
πn1 ,...,ns,...,nq;s∗.

(iii) Arbitrary state probability px;s where s≠ 0:

px;s �
􏽐

q
i�1 λipx−

i
;s + λeff 􏽐

q
i�1 βi⟶sπx;i∗ − βs⟶iπx−

s ;i∗􏼐 􏼑

􏽐
q
i− 1 λi

.

(11)

And then several performancemeasures can be obtained.
For example, the average queue length Ls can be calculated
by

Ls � 􏽘

Ks

m�0
mPm;s − λeffμ

− 1
s , (12)

where Pm;s is the probability that there are m tasks in qs and
can be expressed by

Pm;s � 􏽘

q

i�1
􏽐

ns�m

Pn1 ,...,ns,...,nq;i, m> 0. (13)

In equation (13), λeff � λ(1 − Pks;s
). In particular, Pks;s

is
the probability when qs is completely filled with tasks.

3.2. Queueing Network Model of an Edge Computing System.
With the rapid development of the Internet and its appli-
cations, the single server cannot meet the needs of the vast
majority of users, which is now replaced by a two-tier or
even multitier group of server architecture. +erefore, we
introduce edge server into the GIS system to provide higher
quality of service.
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All the users and sensors and other individuals who can
send requests are called terminals. In the GIS system, the
edge server can overwrite all the tasks request of the ter-
minals. We define ti as the i-th (i ∈ T � 1, 2, . . . , T{ }) ter-
minal covered by the edge server E.

A terminal can run multiple applications concurrently,
and each application may contain many different tasks. We
use a setH (|H| � H) to include all types of these tasks of all
terminals in T, and hj (j ∈H � 1, 2, . . . , H{ }) is expressed
as the j-th type of tasks.

Each hj is profiled by 3-tuple array [qj, sj, cj], which is
characterized by the following: (i) qj, the size of the task
offloading request (including hj’s necessary description and
parameters) for hj sent by a terminal to the edge server; (ii)
sj, the size of the task offloading response (including hj’s
execution result) for hj received by a terminal from the edge
server; (iii) cj, the amount of hj’s computation.

ti has a probability pi,j(pi,j ∈ [0, 1], 􏽐j∈Hpi,j � 1) to
generate hj during its running period. And then we can use
hi,j to express hj generated by ti. +e total task generation
rate of ti is defined as λi.

+ere are two ways to completing hi,j, i.e., (i) executing it
locally, or (ii) offloading it remotely. On one hand, if hi,j is
executed by ti locally, time and energy consumption may be
taken due to the low computing capability of mi. On the
other hand, if hi,j is offloaded to the edge server, it may suffer
time and energy costs associated with the data transfer
between ti and the edge server although meanwhile it may
benefit from edge server’s powerful computing resources.
Such tradeoff will be carefully balanced by an approach for
obtaining global optimality which will be discussed in the
next section.

We define α � αi,j,k | i ∈ T, j ∈ H, k � 1 ‖ k � 0􏽮 􏽯 as the
selection probability to express the probability that terminal
selects whether to execute the task locally or offload it to the
edge server. For hi,j, the value of αi,j represents (i) the
probability that hi,j is offloaded from ti to the edge server, if
k � 1; or (ii) the probability that hi,j is executed by ti, if k � 0.
And we have αi,j,0 + αi,j,1 � 1.

So far, we have been able to model the tasks generated by
each terminal using the q-M/G/1/Ki model. For conve-
nience, we define the task hi,j which is executed by ti as hT

i,j

and the task hi,j which is offloaded to the edge server as h
Edge
i,j .

So, the task arrival rates λT
i,j of hT

i,j can be expressed as

λT
i,j � λipi,jαi,j,0, i ∈ T, j ∈H. (14)

Similarly, the task arrival rates λEdgei,j of h
Edge
i,j can be

expressed as

λEdgei,j � 􏽘

T

i�0
λipi,jαi,j,1, i ∈ T, j ∈H. (15)

+en, we assume that the service rate for the terminal ti is
μi and the service rate for the edge server E is μedge. With μi

μedge and the amount of hj’s computation cj, the service rate
μT

i,j of each task hT
i,j is easily obtained as

μT
i,j �

μi

cj

. (16)

Similarly, the service rate μEdgei,j of each task h
Edge
i,j is given

by

μEdgei,j �
μedge

cj

. (17)

Note that μi − 􏽐j∈Hλipi,jαi,j,0cj > 0, i ∈ T and
μEdge − 􏽐

T
i�0 􏽐j∈Hλipi,jαi,j,1cj > 0, i ∈ T are the hard con-

straint, whichmeans the service rate must be greater than the
task arrival rate to make sure the queue is stable.

+e average queue lengths of hT
i,j and h

Edge
i,j , represented

by LT
i,j and L

Edge
i,j , respectively, can be obtained. +erefore,

with Little’s law, the average response time of hT
i,j and h

Edge
i,j

can be obtained from the following expression:

t
T
i,j �

L
T
i,j

λT
i,j

,

t
Edge
i,j �

L
Edge
i,j

λEdgei,j

.

(18)

In addition, the size of tasks’ sending and receiving
delays are so tiny that they can be ignored. And the time
consumption caused by tasks to be offloaded on both ter-
minals and edge server should be paid attention to. We
define r

T⟶ Edge
i as the uplink data transmission rate from ti

to the edge server.+en, the transmission delay from ti to the
edge server can be given by

t
T⟶Edge
i,j �

λipi,jqj

r
T⟶ Edge
i

. (19)

Similarly, the downlink data transmission rate from the
edge server to ti is denoted by r

Edge⟶ T

i delay:

t
Edge⟶T

i,j �
λipi,jsj

r
Edge⟶ T

i

. (20)

4. Performance Optimization Approach for
Service Deployment

4.1. Problem Formulation

4.1.1. Energy Consumption Analysis. In recent years, energy
consumption has become a research hotpot in edge
computing [39–41]. How to provide better services to
meet the quality of service needs of users, while reducing
the energy consumption of the systems and the operating
cost of services, is one of the most important issues. It is
different from [41], and we consider not only the energy
consumption of mobile terminals, but also the energy
consumption of edge server. In the GIS system, the energy
consumption includes two aspects, i.e., task execution and
task transmission.

We define the energy consumption caused by executing
hi,j at ti and caused by executing hi,j at the edge server as eT

i,j

and e
Edge
i,j , respectively. And they can be expressed as follows:
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e
T
i,j � ξiλipi,jcj,

e
Edge
i,j � ξedgeλipi,jcj,

(21)

where ξi and ξEdge are the energy consumed for each cal-
culation at ti and at the edge server, respectively.

Considering the energy consumption in the uplink data
transmission process from ti to the edge server, the energy
consumption of ti for the transmission is

e
T⟶Edge
i,j � ωit

T⟶Edge
i,j , (22)

where ωi is the transmission energy consumption per unit
time of ti.

Similarly, the energy consumption of the edge server for
the transmission is

e
Edge⟶T

i,j � ωEdge
t
Edge⟶T

i,j , (23)

whereωEdge is the transmission energy consumption per unit
time of the edge server.

+e energy consumption used by the ti to receive an
offloading response is very low that it can be ignored. So far,
we have got the tasks’ response time and the energy con-
sumption of task execution and transmission.

4.1.2. Utility Function. With the help of time and energy
consumption of each part, we can build the corresponding
utility function.

+e total time consumed in executing the task includes
two aspects: (i) the time consumption of terminal executing
tasks, and (ii) the time consumption of the edge server
executing tasks. In Case (i), the time consumption is caused
by executing hT

i,j at ti, that is, tT
i,j. In Case (ii), the time

consumption is caused by transmitting the offloading re-
quest of h

Edge
i,j from ti to the edge server, executing h

Edge
i,j at the

edge server and transmitting the offloading request of h
Edge
i,j

from the edge server to ti, that is, t
T⟶Edge
i,j + t

Edge
i,j + t

Edge⟶T

i,j .
In summary, the total time consumption for executing

hij
is easily obtained:

ti,j � αi,j,0t
T
i,j + αi,j,1 t

T⟶Edge
i,j + t

Edge
i,j + t

Edge⟶T

i,j􏼐 􏼑. (24)

+e total energy consumed in executing the task includes
two aspects: (i) the energy consumption of terminal exe-
cuting tasks and (ii) the energy consumption of the edge
server executing tasks. In Case (i), the energy consumption is
caused by executing hT

i,j at ti, that is, eT
i,j. In Case (ii), the

energy consumption is caused by transmitting the offloading
request of h

Edge
i,j from ti to the edge server, executing h

Edge
i,j at

the edge server and transmitting the offloading request of
h
Edge
i,j from the edge server to ti, that is,

e
T⟶Edge
i,j + e

Edge
i,j + e

Edge⟶T

i,j .

In summary, the total energy consumption for executing
hi,j is easily obtained:

ei,j � αi,j,0e
T
i,j + αi,j,1 e

T⟶Edge
i,j + e

Edge
i,j + e

Edge⟶T

i,j􏼐 􏼑. (25)

In general, total time consumption and total energy
consumption in the GIS system can be easily obtained as
􏽐i∈T􏽐j∈Hti,j and 􏽐i∈T􏽐j∈Hei,j, respectively.

+erefore, the utility function can be built to evaluate the
overall benefit of the GIS system. We normalize the energy
consumption and time consumption, and thus the utility
function is defined as follows:

f � τ
􏽥t − 􏽐i∈T􏽐j∈Hti,j

􏽥t
+(1 − τ)

􏽥e − 􏽐i∈T􏽐j∈Hei,j

􏽥e
, (26)

where τ ∈ [0, 1] is the balance factor between energy
consumption and time consumption and 􏽥t � 􏽐i∈T􏽐j∈HtT

i,j

and 􏽥e � 􏽐i∈T􏽐j∈HeT
i,j are the total time consumption and

total energy consumption when the all tasks are executed
in terminal without offloading, respectively. We should
note that the closer τ is to 1, the more weight we put on
time consumption. On the contrary, the closer τ is to 0,
the more attention we pay on energy consumption.
+erefore, τ should be set properly by the system
manager to balance the tradeoff between performance
and energy consumption according to the requirements
in real-life scenarios.

4.1.3. Optimization Problem Formulation. With all the an-
alytical results presented in the above sections, we formulate
an optimization problem in GIS systems as follows:

max f, (27)

s.t. μEdge − 􏽘
T

i�0
􏽘

j∈H
λipi,jαi,j,1cj > 0, i ∈ T , (28)

μi − 􏽘
j∈H

λipi,jαi,j,0cj > 0, i ∈ T,
(29)

αi,j,k ∈ [0, 1], i ∈ T, j ∈H, k � 0‖k � 1‖, (30)

αi,j,0 + αi,j,1 � 1, i ∈ T, j ∈H, (31)

where constraints (28) and (29) are the hard constraint of the
GIS system of each terminal and the edge server, which is
used to make the queue system stable, respectively. And
constraint (30) is the value range of
αi,j,k, i ∈ T, j ∈H, k � 0‖k � 1. Constraint (31) limits the
total probability of offloading to the edge server, and local
execution of each task is 1:
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f � τ
􏽥t− � 􏽐i∈T􏽐j∈Hti,j

􏽥t
+(1 − τ)

􏽥e− � 􏽐i∈T􏽐j∈Hei,j

􏽥e
,

� 1 +
1 − τ

􏽥e
− 􏽘

i∈T
􏽘

j∈H
αi,j,0e

T
i,j + 􏽘

i∈T
􏽘

j∈H
1 − αi,j,0􏼐 􏼑 e

T⟶Edge
i,j + e

Edge
i,j + e

Edge⟶T

i,j􏼐 􏼑⎛⎝ ⎞⎠

+
τ
􏽥t

􏽘
i∈T

􏽘
j∈H

αi,j,0t
T
i,j + 􏽘

i∈T
􏽘

j∈H
1 − αi,j,0􏼐 􏼑 t

T⟶Edge
i,j + t

Edge
i,j + t

Edge⟶T

i,j􏼐 􏼑⎛⎝ ⎞⎠.

(32)

4.2. Optimization Approach. Due to the complexity of the
utility function, we propose a heuristic algorithm based
on differential evolution (DE) algorithm [42, 43] which
has good convergence properties with few control
variables.

DE is a parallel direct search method which utilizes
NPD-dimensional parameter vectors, expressed as

xi,G, i � 1, 2, . . . ,NP, (33)

as a population for each generation G, where NP is the
number of individuals in the population and does not
change during the optimization process, i represents the
i-th individual in the population, D is the dimension of the
decision space. In a GIS system, if there are T terminals
and H applications, the value of D is T × H. And all the
individuals in the population for the generation G is
represented as xG. +e j-th dimension variable of i-th
individual in the population for the generation G is de-
fined as

x
j

i,G, i � 1, 2, . . . ,NP, j � 1, 2, . . . , D. (34)

+e DE algorithm includes the following four parts.

4.2.1. Initialization. As shown in Algorithm 1, if the system
is unbeknown, the initial population should be chosen
randomly.

4.2.2. Mutation. +e core idea of DE is a new scheme for
generating trial parameter vectors, which is called as mu-
tation. DE generates new parameter vectors by using pa-
rameter F to add the weighted difference vector between two
individuals to a third individual. For each vector xi,G

(i � 0, 1, 2, . . . ,NP − 1), a perturbed vector vi,G+1 is gener-
ated according to Algorithm 2, with r1, r2, r3 ∈ [0,NP − 1],
i≠ r1 ≠ r2 ≠ r3. F ∈ (0, 2) is a real and constant factor, which
controls the amplification of the differential variation
(xr2 ,G − xr3 ,G).

4.2.3. Crossover. In order to improve the diversity of the
perturbed parameter vectors, crossover is introduced. To this
end, the vector

ui,G+1, (35)

with

u
�

j

i,G+1
�

v
�

j

i,G+1
, for j � 〈n〉D, 〈n + 1〉D, . . . , 〈n + L − 1〉D,

x�
j

i,G, otherwise,

⎧⎪⎨

⎪⎩

(36)

is formed. +e acute brackets 〈·〉D denote the modulo
function with modulus D. +e starting index, n ∈ [0, D − 1],
in equation (36) is a randomly chosen integer. +e integer L,
which represents the number of parameters that are going to
be exchanged, is drawn from [1, D] with the probability
Pr(L � v) � (CR)v− 1, where CR ∈ [0, 1] is the crossover
probability.+e random decisions for both n and L are made
anew for each process of crossover. +e crossover proce-
dures are presented by Algorithm 3.

4.2.4. Selection. In order to decide whether the new vector
ui,G+1 can become an individual in the population of gen-
eration G + 1, it will be compared to xi,G. If vector ui,G+1
yields a larger objective function value which is the utility
function in equation (34) than xi,G, xi,G+1 is set to ui,G+1,
otherwise xi,G+1 retains xi,G. In addition, the optimal pa-
rameter vector xbest,G is recorded for every generation G in
order to keep track of the progress that is made during the
optimization process. +e selection scheme is formally
presented in Algorithm 4.

Based on the following four parts, Algorithm 5 gives the
main program of DE algorithm, which provides an approach
on how to deploy the GIS services in the edge computing
system. +e near-optimal solutions for maximizing the
utility function while satisfying the constraints can be ob-
tained in an efficient way.

5. Evaluation

5.1. Experimental Setup. We conduct experiments based on
the data collected from a real-world GIS system which has
been deployed in reality providing real-time street view
mapping services. +e services are a kind of virtual reality
service that provides end-users a 360-degree view panorama
of the cities, streets, and other details. All the original data of
the mapping services have been collected from real world by
cars equipped with 3-dimensional laser scanners, global
navigation satellite systems (GNSS), inertial measurement
units (IMU), and panoramic cameras. Such original data
have been stored in cloud data centers and processed by GIS
servers. Upon the arrival of a task for users requesting a
mapping service at a certain location, the task is firstly
analyzed and initialized, and is divided into several subtasks
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to be processed on a few cluster nodes in a parallel way. Each
cluster node only processes a part of the original mapping
data, and after completing the data processing, it returns the
results to the centralized server for task convergence. +e
workflow of the GIS services is illustrated by Figure 2.

+ere are five nodes in our GIS systems. +e centralized
main server is equipped with an 8-core Intel Ice Lake CPU
working at the maximum frequency of 4.7 GHz, and
memory with capacity of 16GB. Each cluster node has a

CPU with 4 Intel Kaby Lake cores at maximum 3.8GHz
frequency as well as 16GB or 8GB memory.

+e performance data are collected from such the GIS
system during its service procedures for real-world users.
We use the data to initialize the system parameters such as
service rates and basic system architecture. Other parame-
ters that we are not able to obtain from the system are set
empirically shown as Table 2. +en, we apply our approach
to analyze the impact of deploying the GIS services into edge
computing architecture on the performance attributes, and
validate our analytical results. During the experiments, we

(1) for i � 1 to NP do
(2) for j � 1 to D do
(3) x

j

i,G � x
j

min + rand(0, 1) × (x
j
max − x

j

min)

(4) end for
(5) end for

ALGORITHM 1: Initialization(xG).

(1) G⟵ 1
(2) Initialization (xG)

(3) while G<T do
(4) xbest,G+1 � x1,G

(5) for i � 1 to NP do
(6) vi,G+1 � Mutation (xi,G)

(7) ui,G+1 � Crossover (vi,G+1, xi,G)

(8) xi,G+1 � Selection (ui,G+1, xi,G, xbest,G+1)

(9) end for
(10) G⟵G + 1
(11) end while

ALGORITHM 5: Differential evolution of service deployment.

(1) r1, r2, r3 ∈ [0, NP − 1]

(2) i≠ r1 ≠ r2 ≠ r3
(3) F ∈ (0, 2)

(4) vi,G+1 � xr1 ,G + F × (xr2 ,G − xr3 ,G)

ALGORITHM 2: Mutation(xi,G).

(1) n� rand[0, D] integer
(2) L� 1
(3) while (rand()<CR and L<D) do
(4) L� L+ 1
(5) end while
(6) for i � n to n + D do
(7) j � i%D

(8) if i≥ n and i≤ n + L − 1 then
(9) u

j

i,G+1 � v
j

i,G+1
(10) else
(11) u

j

i,G+1 � x
j

i,G

(12) end if
(13) end for

ALGORITHM 3: Crossover(vi,G+1, xi,G).

(1) if f(ui,G+1)>f(xi,G) then
(2) xi,G+1⟵ ui,G+1
(3) else
(4) xi,G+1⟵xi,G

(5) end if
(6) if f(xi,G+1)>f(xbest,G+1) then
(7) xbest,G+1⟵xi,G+1
(8) end if

ALGORITHM 4: Selection(ui,G+1, xi,G, xbest,G+1)

Task1 Task2

Task

Task3 Task4

Figure 2: An example of GIS service workflow.
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also have to tune some system parameters for illuminating
the effectiveness of our approach.

5.2. Experimental Results. In order to verify the applicability
of the strategy, extensive simulations experiments are carried
out to evaluate its efficacy. +e simulation results demon-
strate that the optimization approach based on the DE al-
gorithm performs well in both utility function value and
calculation time in different scenarios.

5.2.1. Efficacy Analysis. Although the DE algorithm cannot
guarantee the global optimality, the simulation experiments
show that the optimization algorithmhas a strong global search
ability. As shown in Figure 3, we illuminate the average utility
values of population and their optimal values, which shows that
our algorithm converges at about 300th generation.

We increase the dimension of decision space by in-
creasing the number of terminals to 50. As shown in Fig-
ure 4, the algorithm converges at about 900th generation and
the results are very close to the global optimal solutions.

With the further increase of the dimension of decision
space by increasing the number of tasks in each terminal to
50, we find that the results converge over 1000th generations
in Figure 5. +e experimental results shown in Figures 3 to 5
validate that our approach performs well in solving large-
scale optimization problems.

It has been well-known that, when the scale of the
problem is small, the problem can be solved by some tra-
ditional optimization algorithms accurately. However, with
the scale of the problem increases, the number of feasible
solutions increases exponentially, which leads to the com-
bination explosion of search space. And then, we analyze the
calculation time of our algorithm in different dimension of
decision space. Figure 6 shows that the computing time
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Figure 3: +e utility function value of each generation by the DE
algorithm, where T� 5 and H� 10.
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Figure 4: +e utility function value of each generation by the DE
algorithm, where T� 50 and H� 10.

Table 2: Parameter settings of the GIS system in experiments.

Name Comment Value
T Number of terminals [5, 25]
H Number of tasks in each terminal [10, 25]
λi Task generation rate of ti [0, 1]/s
pi,j Probability for ti to generate hj [0, 1]
qj Size of offloading request for hj [3, 5]MB
sj Size of offloading response for hj [1, 3]MB
cj Amount of hj’s computation [200, 400]MI
μi Service rate of ti 1.5δi MIPS
μEdge Service rate of the edge server 1000 MIPS

r
T⟶Edge
i

Uplink transmission rate [1, 3]MB/s

r
Edge⟶T

i Downlink transmission rate [3, 5]MB/s

ξi

Each calculation energy consumption
of ti

[8, 10]×

10− 3 J/MI

ξEdge Each calculation energy consumption
of edge

[3, 5]×

10− 3 J/MI

ωi

Transmission energy consumption of
ti

[100, 120]mW

ωEdge Transmission energy consumption of
edge [60, 80]mW

τ Balance factor between energy and
time [0, 1]
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Figure 5: +e utility function value of each generation by the DE
algorithm, where T� 50 and H� 50.
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increases linearly with the number of terminals, where H �

10 and T increases from 5 to 24. Similarly, Figure 7 shows
that the computing time increases linearly with the tasks of
each terminal, where T � 10 and H increases from 10 to 19.
Experimental results demonstrate that the DE algorithm is
efficient in solving large-scale problems.

5.2.2. Comparison Analysis. Since there has been no existing
well-developed scheme of service deployment optimization
scheme for GIS services, we compare our approach with
other three straightforward approaches which have been
widely applied in practise. +e first one is the random
scheduling algorithm usually performs well in load bal-
ancing.+e second approach is fixed algorithmwhichmeans
that 50% of tasks are offloaded to the edge server. +e third
one is greedy algorithm in which tasks will be offloaded to
the edge server as long as there is available resource.

We firstly tune the number of terminals T from 5 to 24,
with fixed value H � 10 and τ � 0.5, and the experimental
results are shown in Figure 8. With the increase of T, the
workload of the GIS system increases at both of the terminals

and the edge server. Meanwhile, the time consumption and
energy consumption increase so the utility function value
decreases. Figure 8 also illustrates that our approach per-
forms 50% better than the random algorithm, fixed algo-
rithm, and greedy algorithm in terms of utility value.

We then tune the parameter H which is the number of
tasks can be executed in each terminal from 10 to 19, and the
empirical results are shown by Figure 9. We have similar
conclusion that the scheme presented in this paper is 50%
better than the random approach.

Finally, we discuss the impact brought by the balance
factor τ, which trades off the weight between energy con-
sumption and time consumption. +e experimental results
are shown in Figure 10. With the increase of τ, we pay more
weight on optimizing the response time. In such scenario,
introducing edge computing layer can benefit dramatically
because of its additional computational capability. Since our
algorithm is able to fully utilize the edge layer and optimize
the global utility function, the utility values obtained by our
DE approach are increasingly higher than random sched-
uling with the increase of τ.
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Figure 6: Empirical results of calculation time with the increase of
the number of terminals.
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Figure 7: Empirical results of calculation time with the increase of
tasks in each terminal.
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Figure 8: Empirical results of utility value with the increase of the
number of terminals.
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Figure 9: Empirical results of utility value with the increase of tasks
in each terminal.
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6. Conclusion

As GIS services become increasingly popular in daily life, the
performance has drawn more and more attention.
Deploying GIS services into edge computing architecture is
an effective way for improving the performance. +is paper
conducts a quantitative study on the performance evaluation
and optimization issue in deploying GIS services into the
edge. Queueing models are presented for formulating the
GIS services, and their corresponding analyses are provided
in detail. Based on the analytical results, a heuristic approach
is designed for obtaining the near-optimal solution of service
deployment. Experiments based on the dataset collected
from real-life GIS service systems are conducted, and the
efficacy of the approach is validated.+is work is expected to
provide a theoretical reference of the evaluation and opti-
mization of edge computing GIS systems.
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