当前位置: 主页 > 副教授 >

孙庆骁

点击数:   更新日期: 2023-09-05

孙庆骁-个人照片.jpg

  孙庆骁,男,1996年生,博士,特任岗位副教授,入选“CCF体系结构优秀博士学位论文激励计划”。2017年本科毕业于中国石油大学(北京)计算机科学与技术专业,2023年于北京航空航天大学获计算机系统结构博士学位。研究方向主要围绕高性能计算和计算机体系结构,同时对并发运行时系统、性能自动调优、加速器架构扩展等领域进行探索。在SC、TC、TPDS、TACO、IPDPS、ICPP、ICS、CLUSTER、PARCO等国际会议和期刊上发表学术论文十余篇,其中发表于CLUSTER’21和TC’22的文章分别获得最佳论文提名和IEEE Computer亮点论文;研究成果支撑国家自然科学基金面上项目和企业横向项目中关键指标的完成。担任HPCChina 2023程序委员会委员、THPC期刊审稿人。曾获北京市优秀毕业生、博士研究生国家奖学金、北京航空航天大学年度三好学生等荣誉。 

联系方式:

办公地址:主楼B座1513

E-mail:qingxiao.sun@cup.edu.cn

通信地址:北京市昌平区府学路18号中国石油大学(北京)信息学院计算机系102249

实验室主页:https://www.ssslab.cn/

 

受教育情况:

2013年9月-2017年6月,中国石油大学(北京)计算机科学与技术系,工学学士

2014年9月-2017年6月,中国石油大学(北京)英语系(双学位),文学学士

2017年9月-2023年6月,北京航空航天大学计算机学院,计算机系统结构方向,工学博士

 

学术服务:

HPCChina 2023程序委员会委员、论坛讲者

THPC期刊审稿人、PASC会议审稿人、PLDI workshop AE审稿人

 

获奖和成果:

CCF体系结构优秀博士学位论文激励计划(2023年8月)

北京市优秀毕业生(2023年7月)、博士研究生国家奖学金(2020年12月)

北京航空航天大学优秀研究生(2021年1月)、年度三好学生(2019年11月)

 

发明专利:

1.杨海龙;孙庆骁;张静怡。一种基于流多处理器内核独占和预留的GPU服务质量保障方法。专利号:201811325650.8

2.杨海龙;孙庆骁。一种基于卷积神经网络的稀疏张量存储格式自动选择方法。专利号:202011430624.9

3.杨海龙;敦明;孙庆骁;李云春。一种基于数据划分和计算分配的稀疏张量典范分解方法。专利号:202011639166.X

 

代表性论文:

[1]Qingxiao Sun, Yi Liu, Hailong Yang, Ruizhe Zhang, Ming Dun, Mingzhen Li, Xiaoyan Liu, Wencong Xiao, Zhongzhi Luan, and Depei Qian. CoGNN: Efficient Scheduling for Concurrent GNN Training on GPUs[C]. International Conference for High Performance Computing, Networking, Storage and Analysis, 2022. (SC 2022, CCF A)

[2]Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. SpTFS: Sparse Tensor Format Selection for MTTKRP via Deep Learning[C]. International Conference for High Performance Computing, Networking, Storage and Analysis, 2020. (SC 2020, CCF-A)

[3]Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. Input-aware Sparse Tensor Storage Format Selection for Optimizing MTTKRP[J]. IEEE Transactions on Computers, 2022. (TC 2022, IEEE Computer Spotlight, CCF-A)

[4]Qingxiao Sun, Yi Liu, Hailong Yang, Zhonghui Jiang, Xiaoyan Liu, Ming Dun, Zhongzhi Luan, and Depei Qian. csTuner: Scalable Auto-tuning Framework for Complex Stencil Computation on GPUs[C]. IEEE International Conference on Cluster Computing, 2021. (CLUSTER 2021, Best Paper Candiate, CCF-B)

[5]Qingxiao Sun, Yi Liu, Hailong Yang, Zhonghui Jiang, Zhongzhi Luan, and Depei Qian. StencilMART: Predicting Optimization Selection for Stencil Computations across GPUs[C]. IEEE International Parallel & Distributed Processing Symposium, 2022. (IPDPS 2022, CCF-B)

[6]Qingxiao Sun, Yi Liu, Hailong Yang, Zhongzhi Luan, and Depei Qian. SMQoS: Improving Utilization and Energy Efficiency with QoS Awareness on GPUs[C]. IEEE International Conference on Cluster Computing, 2019. (CLUSTER 2019, CCF-B)

[7]Qingxiao Sun, Yi Liu, Hailong Yang, Mingzhen Li, Zhongzhi Luan, and Depei Qian. QoS-aware Dynamic Resource Allocation with Improved Utilization and Energy Efficiency on GPU[J]. Parallel Computing, 2022. (PARCO 2022, CCF-B)

[8]Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. The Deep Learning Compiler: A Comprehensive Survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2020. (TPDS 2020, CCF-A)

[9]Chao Yu, Yuebin Bai, Qingxiao Sun, and Hailong Yang. Improving Thread-level Parallelism in GPUs Through Expanding Register File to Scratchpad Memory[J]. ACM Transactions on Architecture and Code Optimization, 2018. (TACO 2018, CCF-A)

[10]Jianjin Liao, Mingzhen Li, Hailong Yang, Qingxiao Sun, Biao Sun, Jiwei Hao, Tianyu Feng, Fengwei Yu, Shengdong Chen, Ye Tao, Zicheng Zhang, Zhongzhi Luan, and Depei Qian. Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU[C]. IEEE International Parallel & Distributed Processing Symposium, 2023. (IPDPS 2023, CCF-B)

[11]Mingzhen Li, Yi Liu, Hailong Yang, Yongmin Hu, Qingxiao Sun, Bangduo Chen, Xin You, Xiaoyan Liu, Zhongzhi Luan, and Depei Qian. Automatic Code Generation and Optimization of Large-scale Stencil Computation on Many-core Processors[C]. International Conference on Parallel Processing, 2021. (ICPP 2021, CCF-B)

[12]Ming Dun, Yunchun Li, Hailong Yang, Qingxiao Sun, Zhongzhi Luan, and Depei Qian. An optimized tensor completion library for multiple GPUs[C]. Proceedings of the ACM International Conference on Supercomputing, 2021. (ICS 2021, CCF-B)

[13]Ming Dun, Yunchun Li, Qingxiao Sun, Hailong Yang, Wei Li, Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. Towards Efficient Canonical Polyadic Decomposition on Sunway Many-core Processor[J]. Information Sciences, 2021. (CCF-B)

[14]孙庆骁, 刘轶, 杨海龙, 王一晴, 贾婕, 栾钟治, 钱德沛. GNNSched:面向GPU的图神经网络推理任务调度框架[J]. 计算机工程与科学, 2024. (CCF中文推荐T2类期刊)

[15]廖建锦, 孙庆骁, 杨海龙, 栾钟治, 钱德沛. 满足工作流执行时限的可抢占虚拟机实例配置和调度方法研究[C]. CCF全国计算机体系结构学术年会, 2020. (最佳论文提名)