姓名: 于海洋
职称: 教授、博士生导师
电子邮箱: haiyangyu.cup@139.com
联系电话: 010-89733032
所在系所: 石油工程学院、碳中和示范性能源学院
研究方向: 非常规油气渗流与提高采收率、二氧化碳高效利用及封存
教学情况: 本科课程《油层物理》、《提高采收率》、《气藏工程》
研究生课程《高等油层物理》
教育与工作经历:
2001-2005 大连理工大学 动力工程 本科
2005-2008 清华大学 热能工程 硕士
2008-2012 美国德州大学奥斯汀分校(UT-Austin) 石油工程 博士
2012-2015 中国石油大学(北京) 讲师,校青年拔尖人才
2015-2020 中国石油大学(北京) 副教授
2020至今 中国石油大学(北京) 教授
科研教学荣誉奖励:
[1] 国家级青年人才,2021.
[2] 中国石油和化工自动化行业协会技术发明一等奖,2020(排名第二):致密气藏非均匀导流能力压裂井产量和压力分析技术及应用
[3] 中国石油和化工自动化行业协会科技进步一等奖,2020(排名第八):超低渗油藏动态裂缝模拟与高效排驱关键技术及规模应用
[4] 陕西省科技进步二等奖,2020(排名第四):鄂尔多斯盆地西部多层系特低渗油藏高效开发技术突破及规模应用
[5] 中国石油和化学工业联合会科技进步奖二等奖, 2019(排名第二):超/特低渗透油藏裂缝动态表征与开发调整应用
[6] 中国石油学会石油工程专业委员会,优秀会议论文一等奖, 2018
[7] 中国石油学会海洋石油分会,优秀会议论文奖, 2018
[8] 中国石油学会,第十届青年学术年会优秀论文特等奖, 2017
[9] 中国石油大学(北京)2020-2022学年度优秀教师,2022
[10] 校级教学成果一等奖,2021、2019
[11] 中国石油工程设计大赛优秀指导教师,2021
[12] 首批国家级一流本科课程《油层物理》,2020
[13] 中国石油大学(北京)科技创新优秀指导教师,2020
[14] 中国石油大学(北京)石油工程学院院长奖-最佳贡献奖, 2015
[15] 中国石油大学(北京)青年教学骨干教师, 2015
[16] 中国石油大学(北京)青年拔尖人才, 2012
[17] SPE提高采收率年会最佳论文奖, 2010
主持纵向项目(项目负责人):
[1] 中组部国家级人才支撑项目,非常规油气渗流与提高采收率,2021.12-2026.12
[2] 国家自然科学基金-面上项目,页岩油注天然气开发油气两相渗流微尺度效应及增油机理, 2021.01-2024.12
[3] 国家自然科学基金-面上项目,致密油藏碳化水驱提高采收率机理研究,2019.01-2022.12
[4] 国家自然科学基金-石油化工联合基金,致密油藏同井缝间注采机理研究,2018.01-2020.12
[5] 国家自然科学基金-青年基金,含油多孔介质中超磁性纳米颗粒的传递机理研究,2014.01-2016.12
[6] '十三五'国家科技重大专项子课题,致密油藏碳化水+表面活性剂驱采油技术研究, 2017.01-2020.06
[7] '十三五'国家科技重大专项子课题,分段压裂水平井油藏工程方法研究,2017.01-2020.12
[8] 国家重点研发计划子课题,典型行业企业能源管理绩效参数指标体系及绩效提升途径研究,2016.07-2018.12
[9] 油气资源与探测国家重点实验室基金,二氧化碳提高页岩油采收率及埋存机理,2021.12-2023.12
[10] 页岩油气富集机理与有效开发国家重点实验室基金,页岩油CO2吞吐采油技术研究,2018.08-2019.07
[11] 校基金-学院自主项目,微纳米孔隙油气流动微尺度效应,2020.1-2022.12
[12] 校青年拔尖人才基金,超磁性纳米颗粒传递机理及聚合物驱试井研究,2013.01-2015.12
主持横向课题(项目负责人):
[1] 盆5井区储层污染综合治理技术研究,中石油新疆油田,2022.8-2024.6
[2] 超低渗透油藏注CO2开发技术政策研究,中石油长庆油田,2022.7-2023.12
[3] 超低渗油藏水平井渗流距离测试及压裂裂缝间距评价优化,中石油长庆油田,2022.7-2022.12
[4] 二氧化碳微气泡在驱油-封存过程中的溶解动力学和稳定性实验研究,中石化工程院,2021.9-2022.8
[5] 碳化水强化渗吸置换效率与二氧化碳埋存可行性实验研究,中石油长庆油田,2021.9-2022.6
[6] 中东油田流体物性实验、参数测定及水驱油实验,中石油勘探院,2021.4-2021.12
[7] 侏罗系底水油藏控水材料基础实验研究,中石油长庆油田,2021.02-2021.12
[8] 超高压裂缝性致密挥发油藏早期合理开发技术研究,中石油塔里木油田,2020.10-2023.9
[9] 超低渗-致密油储层注烃类气体补充能量方式可行性实验评价,中石油长庆油田, 2019.08-2020.10
[10] 致密岩心高温高压渗吸机理研究,中石油勘探院,2019.10-2020.08
[11] 水平井同井缝间注采可行性研究,中石油大庆油田,2018.11-2019.08
[12] 特低渗气田渗流机理研究,中海油上海分公司,2015.12-2016.12
社会与学术兼职:
[1] 国家领军期刊《Petroleum Science》副主编
[2] 中国工程院院刊《Engineering》青年编委
[3] 核心期刊《石油科学通报》执行编委
[4] 国家标准化管理委员会能源管理分技术委员会 委员
[5] 国际标准化组织(ISO)工作组专家
[6] 浙江清华长三角研究院 客座研究员
[7] 中国石油大学(北京)石工学院学术委员会 委员
[8] 中国石油大学(北京)油气田开发学科学术带头人助理
[9] 教育部博士论文评审专家
[10] 国家自然科学基金项目审评专家
[11] 美国石油工程师学会 会员
代表性期刊论文:
[1] Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery. Fuel, 2022.
[2] Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Advances in Geo-Energy Research, 2022.
[3] Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021.
[4] Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering, 2021.
[5] Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel, 2021.
[6] Three-Dimensional Numerical Simulation of Multiscale Fractures and Multiphase Flow in Heterogeneous Unconventional Reservoirs with Coupled Fractal Characteristics. Geofluids, 2021.
[7] Determination of minimum near miscible pressure region during CO2 and associated gas injection for tight oil reservoir in Ordos Basin China. Fuel, 2020.
[8] Semi-analytical Modelling of Water Injector Test with Fractured Channel in Tight Oil Reservoir. Rock Mechanics and Rock Engineering, 2020.
[9] Feasibility Study of Improved Unconventional Reservoir Performance with Carbonated Water and Surfactant. Energy, 2019.
[10] Application of Cumulative-in-situ-injection-production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changqing Oilfield, China. Fuel, 2019.
[11] Interference well-test model for vertical well with double-segment fracture in a multi-well system. Journal of Petroleum Science and Engineering, 2019.
[12] Interference testing model of multiply fractured horizontal well with multiple injection wells. Journal of Petroleum Science and Engineering, 2019.
[13] Pressure-Transient Analysis of Water Injectors Considering the Multiple Closures of Waterflood-Induced Fractures in Tight Reservoir: Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2019.
[14] A compositional model for CO2 flooding including CO2 equilibria between water and oil using the Peng-Robinson equation of state with the Wong-Sandler mixing rule. Petroleum Science, 2019.
[15] Simulation study of allied in-situ injection and production for enhancing shale oil recovery and CO2 emission control. Energies, 2019.
[16] Analytical interference testing analysis of multi-segment horizontal well. Journal of Petroleum Science and Engineering, 2018.
[17] An Innovative Model to Evaluate Fracture Closure of Multi-Fractured Horizontal Well In Tight Gas Reservoir Based on Bottom-Hole Pressure. Journal of Natural Gas Science and Engineering, 2018.
[18] A Novel Well-Testing Model to Analyze Production Distribution of Multi-Stage Fractured Horizontal Well. Journal of Natural Gas Science and Engineering, 2018.
[19] A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir. SPE Journal, 2017.
[20] The Physical Process and Pressure-Transient Analysis Considering Fractures Excessive Extension in Water Injection Wells. Journal of Petroleum Science and Engineering, 2017.
[21] Semi-Analytical Modeling for Water Injection Well in Tight Reservoir Considering the Variation of Waterflood-Induced Fracture Properties–Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2017.
[22] A Semianalytical Approach to Estimate Fracture Closure and Formation Damage of Vertically Fractured Wells in Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 2016.
[23] Investigation of Nanoparticle Adsorption During Transport in Porous Media. SPE Journal, 2015.
[24] Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 2015.
[25] Well testing interpretation method and application in triple‐layer reservoirs by polymer flooding. Materialwissenschaft Und Werkstofftechnik, 2015.
[26] Transport and retention of aqueous dispersions of superparamagnetic nanoparticles in sandstone. Journal of Petroleum Science and Engineering, 2014.
[27] 裂缝性非均质致密储层自适应应力敏感性研究. 石油钻探技术, 2022.
[28] 致密砂岩逆向渗吸作用距离实验研究. 力学学报, 2021.
[29] 碳化水驱提高采收率研究进展. 石油科学通报, 2020.
[30] 致密油藏碳化水驱提高采收率方法. 大庆石油地质与开发, 2019.
[31] 水平井同井注采技术. 大庆石油地质与开发, 2019.
[32] 压裂水平井裂缝和水平井筒不规则产油试井分析. 大庆石油地质与开发, 2018.
[33] 致密油藏多级压裂井异井异步注采可行性研究. 石油科学通报, 2018.
[34] 能源管理体系评价指标与应用现状分析. 中国标准化, 2018.
[35] 致密油藏多级压裂水平井同井缝间注采可行性. 石油学报, 2017.
[36] 多段压裂水平井不均匀产油试井模型. 中国石油大学学报:自然科学版, 2017.
[37] ISO50006、ISO50015与ISO50047的比较与探究. 标准科学, 2016.
代表性会议论文:
[1] Application of inter-fracture injection and production in a cluster well to enhance oil recovery. SPE Annual Technical Conference and Exhibition, 2019.
[2] Allied in-situ injection and production for fractured horizontal wells to increase hydrocarbon recovery in tight oil reservoirs: a case study in Changqing Oilfield. International Petroleum Technology Conference, 2019.
[3] A Novel Multi-Well Interference Testing Model of a Fractured Horizontal Well and Vertical Wells. SPE Annual Technical Conference and Exhibition, 2018.
[4] Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir. SPE Improved Oil Recovery Conference, 2018.
[5] Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study. SPE Annual Technical Conference and Exhibition, 2017.
[6] A Novel Well Testing Inversion Method for Characterization of Non-Darcy Flow Behavior in Low Permeability Reservoirs. SPE Annual Technical Conference and Exhibition, USA, 2017.
[7] Successful Application of Well Testing and Electrical Resistance Tomography to Determine Production Contribution of Individual Fracture and Water-Breakthrough Locations of Multifractured Horizontal Well in Changqing Oil Field, China. SPE Annual Technical Conference and Exhibition, 2017.
[8] Transport and Retention of Aqueous Dispersions of Paramagnetic Nanoparticles in Reservoir Rocks. SPE Improved Oil Recovery Symposium, 2010.
国家发明专利(排名第1):
[1] 动态渗吸装置和用于动态渗吸实验的实验方法. ZL201811482680.X,2022年授权
[2] 用于确定通过萃取实验萃取出的油量的方法和装置. ZL201911215681.2,2020年授权
[3] 高温高压条件下强化碳化水的渗吸系统. ZL201711054256.0,2020年授权
[4] 用于确定碳化水驱油过程中碳化水对储层伤害程度的方法. ZL201910187496.0,2020年授权
[5] 水平井井下气液分离井上回注采油系统及其方法. ZL201810032101.5,2020年授权
[6] 水平井井下气液分离回注采油系统及其方法. ZL201810032637.7,2020年授权
[7] 渗吸萃取装置及渗吸萃取实验方法. ZL201810980994.6,2020年授权
[8] 高温高压条件下碳化水的驱替系统及其方法. ZL201711046782.2,2020年授权
[9] 注水诱发微裂缝二维扩展的物理模拟实验方法. ZL201710735940.9,2019年授权
[10] 拉链式布缝的双压裂水平井异井异步注水采油方法. ZL201710078828.2,2019年授权
[11] 对称式布缝的分组异井异步注CO2采油方法. ZL201710078827.8,2019年授权
[12] 对称式布缝的异井异步注CO2采油方法. ZL201710078521.2,2019年授权
[13] 多级压裂水平井缝间间隔CO2驱采油方法. ZL201610564574.0,2018年授权
[14] 多级压裂水平井缝间间隔注水吞吐采油方法. ZL201610253549.0,2018年授权
[15] 多级压裂水平井缝间间隔注水吞吐采油方法. ZL201610195661.3,2018年授权
[16] 水平井多参数组合找水测量装置. ZL201510730997.0,2018年授权
[17] 利用地震纵波传播时间预测地层孔隙压力的方法. ZL201510166143.4,2017年授权
起草标准:
国家标准GB/T39532-2020《能源绩效测量和验证指南》
国家标准GB/T39775-2021《能源管理绩效评价导则》