个人简介:
梁天博,男, 1986年4月生,博士,副研究员,校青年拔尖人才,博士生导师(可招收学术与工程博士)。
研究领域:致密储层渗流机理与化学提高采收率方法。
所属系所:储层改造与开发工程研究所
联系方式:liangtianboo@163.com;btliang@cup.edu.cn
教育经历:
2020-至今 中国石油大学(北京)非常规天然气研究院,副研究员
2017-2019 中国石油大学(北京)非常规天然气研究院,助理研究员(青年拔尖人才)
2012-2016 美国University of Texas at Austin,石油工程,博士
2009-2011 美国University of California at Davis,材料科学与工程,硕士
2005-2009 清华大学,材料科学与工程,学士
科技奖励:
[1] 致密油气藏兼顾强化缝网网系与储层供给的纳米增效压裂技术与应用,中国石油和化学工业联合会,科技进步一等奖(省部级),2022年,排名5/8。
[2] 致密油藏高效压裂与增能一体化技术及应用,中国石油和化工自动化应用协会,科技进步一等奖(省部级),2021年,排名1/15。
[3] 准噶尔盆地西北缘开发区块压裂提产技术及工业化应用,新疆维吾尔自治区人民政府,科技进步二等奖(省部级),2021年,排名2/9。
[4] 致密油气藏高密均匀造缝耦合基质深度改性压裂技术与应用,中国石油和化学工业联合会,科技进步一等奖(省部级),2019年,排名7/15。
主持基金项目:
[1] 分离压微尺度效应作用下的压裂液渗吸提高采收率机理,国家自然科学基金面上项目,2023-2026。
[2] 微支撑剂在粗糙微缝内的运移与支撑规律研究,国家能源页岩油研发中心开放基金项目,2020-2021。
[3] 纳米乳液压裂液提高 致密油藏采收率的机理探索,中国石油科技创新基金项目,2018-2020。
[4] 致密油储层的水锁 机理与表面活性剂体系辅助返排的优选研究,校青年拔尖人才科研启动基金项目,2017-2020。
期刊文章:
【第一作者】
[1] Liang, T., Zhao, X., Yuan, S., Zhu, J., Liang, X., Li, X., Zhou, F., 2021. Surfactant-EOR in Tight Oil Reservoirs: Current Status and a Systematic Surfactant Screening Method with Field Experiments. J. Pet. Sci. Eng. 196. https://doi.org/10.1016/j.petrol.2020.108097
[2] Liang, T., Wei, D., Zhou, F., Li, X., Yuan, L., Wang, B., Lu, J., 2020. Field Experiments on Multi-Stage Chemical Diversion in Low-Permeability HPHT Reservoirs. J. Pet. Sci. Eng. 187. https://doi.org/10.1016/j.petrol.2019.106738
[3] Liang, T., Xu, K., Lu, J., Nguyen, Q., DiCarlo, D., 2020. Evaluating the Performance of Surfactants in Enhancing Flowback and Permeability after Hydraulic Fracturing through a Microfluidic Model. SPE J. 25, 268–287. https://doi.org/10.2118/199346-PA
[4] Liang, T., Li, Q., Liang, X., Yao, E., Wang, Y., Li, Y., Chen, M., Zhou, F., Lu, J., 2018. Evaluation of Liquid Nanofluid as Fracturing Fluid Additive on Enhanced Oil Recovery from Low-Permeability Reservoirs. J. Pet. Sci. Eng. 168, 390–399. https://doi.org/10.1016/j.petrol.2018.04.073
[5] Liang, T., Luo, X., Nguyen, Q., DiCarlo, D.A., 2018. Computed-Tomography Measurements of Water Block in Low-Permeability Rocks: Scaling and Remedying Production Impairment. SPE J. 23, 762–771. https://doi.org/10.2118/189445-PA
[6] Liang, T., Shao, L., Yao, E., Zuo, J., Liu, X., Zhang, B., Zhou, F., 2018. Study on Fluid-Rock Interaction and Reuse of Flowback Fluid for Gel Fracturing in Desert Area. Geofluids. https://doi.org/10.1155/2018/8948961
[7] Liang, T., Zhou, F., Shi, Y., Liu, X., Wang, R., Li, B., Li, X., 2018. Evaluation and Optimization of Degradable-Fiber-Assisted Slurry for Fracturing Thick and Tight Formation with High Stress. J. Pet. Sci. Eng. 165, 81–89. https://doi.org/10.1016/j.petrol.2018.02.010
[8] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2017. Flow Physics of How Surfactants Can Reduce Water Blocking Caused by Hydraulic Fracturing in Low Permeability Reservoirs. J. Pet. Sci. Eng. 157, 631–642. https://doi.org/10.1016/j.petrol.2017.07.042
[9] Liang, T., Gu, F., Yao, E., Zhang, L., Yang, K., Liu, G., Zhou, F., 2017. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs. Geofluids. https://doi.org/10.1155/2017/9350967
[10] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2017. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-Ins and Surfactant Additives. SPE J. 22, 1,011-1,023. https://doi.org/10.2118/175101-PA
[11] Liang, T., Yang, Z., Zhou, F., Liu, Z., Qu, H., Yang, K., Sun, J., 2017. A New Approach to Predict Field-Scale Performance of Friction Reducer Based on Laboratory Measurements. J. Pet. Sci. Eng. 159, 927–933. https://doi.org/10.1016/j.petrol.2017.09.076
[12] Liang, T., Zhou, F., Lu, J., DiCarlo, D., Nguyen, Q., 2017. Evaluation of Wettability Alteration and IFT Reduction on Mitigating Water Blocking for Low-Permeability Oil-Wet Rocks after Hydraulic Fracturing. Fuel 209, 650–660. https://doi.org/10.1016/j.fuel.2017.08.029
[13] 梁天博, 苏航, 昝晶鸽, 等. 变黏滑溜水性能评价及吉木萨尔页岩油藏矿场应用. 石油科学通报, 2022, 02: 185-195
[14] 梁天博, 马实英, 魏东亚, 等. 低渗透油藏水锁机理与助排表面活性剂的优选原则. 石油学报, 2020, 41(06): 745-752.
[15] 梁天博, 梁星原, 王洪达, 等. 致密气藏中防水锁剂的筛选方法及其微观机理. 科学技术与工程, 2020, 20(28): 11568-11573.
【非一作筛选】
[1] Su, H., Zhou, F., Wang, Q., Yu, F., Dong, R., Xiong, C., Li, J., Liang, T., 2021. Flow Physics of Polymer Nanospheres and Diluted Microemulsion in Fractured Carbonate Reservoirs: An Investigation into Enhanced Oil Recovery Mechanisms. SPE J. 26, 2231–2244. https://doi.org/10.2118/205381-PA
[2] Wang, B., Zhou, F., Yang, C., Wang, D., Yang, K., Liang, T., 2020. Experimental Study on Injection Pressure Response and Fracture Geometry during Temporary Plugging and Diverting Fracturing. SPE J. 25, 573–586. https://doi.org/10.2118/199893-PA
[3] Zhou, F., Su, H., Liang, X., Meng, L., Yuan, L., Li, X., Liang, T., 2019. Integrated Hydraulic Fracturing Techniques to Enhance Oil Recovery from Tight Rocks. Pet. Explor. Dev. 46, 1065–1072. https://doi.org/10.1016/S1876-3804(19)60263-6
[4] Xu, K., Liang, T., Zhu, P., Qi, P., Lu, J., Huh, C., Balhoff, M., 2017. A 2.5-D Glass Micromodel for Investigation of Multi-Phase Flow in Porous Media. Lab. Chip 17, 640–646. https://doi.org/10.1039/c6lc01476c
[5] Longoria, R.A., Liang, T., Huynh, U.T., Nguyen, Q.P., DiCarlo, D.A., 2017. Water Blocks in Tight Formations: The Role of Matrix/Fracture Interaction in Hydrocarbon-Permeability Reduction and Its Implications in the Use of Enhanced Oil Recovery Techniques. SPE J. 22, 1,393-1,401. https://doi.org/10.2118/185962-PA
【博士论文】
Water Block from Hydraulic Fracturing in Low Permeability Rocks: Experimental Studies on Causes and Potential Mitigation Methods. The University of Texas at Austin, 2016.
下载地址:https://repositories.lib.utexas.edu/handle/2152/45848
部分SPE会议文章:
[1] Liang, T., Achour, S.H., Longoria, R.A., DiCarlo, D.A., Nguyen, Q.P., 2016. Identifying and Evaluating Surfactant Additives to Reduce Water Blocks after Hydraulic Fracturing for Low Permeability Reservoirs. Presented at the SPE Improved Oil Recovery Conference, Society of Petroleum Engineers. https://doi.org/10.2118/179601-MS
[2] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., 2015. Enhancing Hydrocarbon Permeability After Hydraulic Fracturing: Laboratory Evaluations of Shut-ins and Surfactant Additives. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. https://doi.org/10.2118/175101-MS
[3] Liang, T., Longoria, R.A., Lu, J., Nguyen, Q.P., DiCarlo, D.A., Huynh, U.T., 2015. The Applicability of Surfactants on Enhancing the Productivity in Tight Formations. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154284
[4] Liang, X., Zhou, F., Liang, T., Wang, R., Su, H., Wang, X., 2020. Application of Liquid Nanofluid during Hydraulic Fracturing in Tight Reservoirs. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2899
[5] Zhao, X., Liang, T., Zhou, F., Yuan, S., Liang, X., 2020. Adsorption and Dispersion of Diluted Microemulsions in Tight Rocks. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-2101
[6] Yuan, S., Liang, T., Zhou, F., Liang, X., Yu, F., Li, J., 2019. A Microfluidic Study of Wettability Alteration Rate on Enhanced Oil Recovery in Oil-Wet Porous Media. Presented at the Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers. https://doi.org/10.2118/197715-MS
[7] Longoria, R.A, Liang, T., Nguyen, Q.P., DiCarlo, D.A., 2015. When Less Flowback Is More: A Mechanism of Permeability Damage and its Implications on the Application of EOR Techniques. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference. https://doi.org/10.15530/URTEC-2015-2154266
授权发明专利(第一发明人):
[1] 一种基于储层暂堵的施工方法及装置(CN202011155131.9)
[2] 一种基于分流模型与CT扫描的相对渗透率测定系统及方法(CN202110560922.8)
[3] 粗糙水力裂缝内支撑剂参数的确定方法、装置和设备(202010601935.0)
[4] 一种碳酸盐岩储层微观模型及其制备方法和应用(CN202011517063.6)
[5] 一种支撑剂沉降速率测量装置(CN202110381563.X)
[6] 一种低渗透岩石的相对渗透率测定系统及方法(CN202110550003.2)
[7] 一种模拟致密油藏微观模型制作方法(ZL201810839747.4)
[8] 一种致密储层均匀改造方法及系统(ZL201910661211.2)
[9] 一种基于极限限流设计的压裂方法及系统(ZL201910661839.2)