贾趵,中国石油大学(北京)副研究员、博士生导师,2020年入选学校优秀青年学者培育计划。2018年毕业于美国堪萨斯大学(University of Kansas),化学与石油工程专业,获Frank Bowdish Outstanding Ph.D. Award。曾于美国北达科他大学(University of North Dakota)石油工程系担任助理教授、博士生导师;于美国环境与能源研究中心(Energy & Environmental Research Center)担任二级油藏工程师,主持/参与美国能源部与州政府非常规油气田开发相关项目多项。研究方向为非常规油气田开发与提高采收率,包括多孔介质渗流理论、地质工程一体化立体开发理论、超低渗流体相态与流动实验和模拟、二氧化碳提高采收率与碳埋存等,曾受聘担任美国德州大学奥斯汀分校(The University of Texas at Austin)石油与地质系统工程系提高采收率实验室主管。以第一作者身份在SPE Journal、 SPE Reservoir Evaluation & Engineering等期刊发表论文20余篇,SPE等会议论文10余篇;担任多个SCI期刊青年编委、客座编辑和审稿人工作。
邮箱:baojia90@cup.edu.cn; baojia90@gmail.com
谷歌学术主页:https://scholar.google.com/citations?user=1yKiWgsAAAAJ&hl=en
【招生专业】:
& 学术型硕士:石油与天然气工程082000
& 专业型硕士:石油与天然气工程085706
& 学术博士:石油与天然气工程082000
& 工程博士:资源与环境085706
【教育背景】:
& 2014-08至2018-12 University of Kansas(美国) 博士
& 2012-06至2014-08 New Mexico Institute of Mining and Technology(美国) 石油与天然气工程 硕士
& 2008-08至2012-06 中国石油大学(华东) 油气储运工程 学士
【研究方向】:
& 页岩油气、致密油气和油页岩高效开发
& 二氧化碳提高采收率与碳埋存
& 地层储能与地热开发
【主要荣誉和奖励】:
& 全球前2%顶尖科学家
& 中国发明协会创新奖二等奖
& 中国石油大学(北京)优秀青年学者
& SPE Journal杰出审稿人奖
& Frank Bowdish Outstanding PhD Award
【工作经历】:
& 2021-04至今 中国石油大学(北京) 副研究员
& 2020-08至2020-12 北达科他大学(University of North Dakota)石油工程系(美国) 助理教授
& 2019-03至2020-08 能源与环境研究中心(Energy & Environmental Research Center)(美国) 油藏工程师
【科研项目】:
[15] 国家自然科学基金面上基金,5247040153,超临界水原位转化油页岩机理研究,2025-2028,48万,在研,主持
[14] 长庆油田分公司勘探开发研究院,2023年2023-2024年油藏评价页岩油攻关试验区效果评价,2023-2024,53万,在研,参与、第二负责人
[13] 中国石油天然气股份有限公司西南油气田分公司勘探开发研究院,金秋区块致密河道砂岩地质工程一体化建模及EUR主控因素研究,2023-2024,29.7万,在研,主持
[12] 中国石油天然气股份有限公司勘探开发研究院,页岩油国内外技术调研及分析研究,2023-2024,34.8万,结题,主持
[11] 中国石油化工股份有限公司石油勘探开发研究院,油页岩原位开采止水一体化方法及机理研究,2022-2024,29.5万,在研,主持
[10] 大庆油田有限责任公司和黑龙江省科技厅,古龙页岩油提高采收率关键问题研究,2021-2025,971.805万,在研,参与
[9] 中石油战略合作科技专项-准噶尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论及关键技术研究,均衡压裂与气驱/吞吐一体化提产技术及效果评估研究,2019-2024,9310万,在研,参与、专题负责人
[8] 中央高校基本科研基金,2462021QNXZ004,页岩岩石物理特性的多尺度测量和模拟,2021-2024,60w,在研,主持
[7] 美国能源部Department of Energy,Subtask 3.1 - Bakken Rich Gas Enhanced Oil Recovery,2020-2020,~$3,000,000,结题,参与
[6] 美国北达科他州State Energy Research Center (SERC),Crude Oil Swelling with Injected Produced Gas and CO2 as a Potential Mechanism for Enhanced Oil Recovery (EOR) in the Bakken,2019-2020,$117,611,结题,主持
[5] 美国北达科他州North Dakota Pipeline Authority和North Dakota Industrial Commission,Assessment of Bakken and Three Forks Natural Gas Compositions,2019-2020,$300,650,结题,参与
[4] 美国北达科他州North Dakota Industrial Commission,Underground Storage of Produced Natural Gas – Conceptual Evaluation and Pilot Project(s),2019-2021,~$6,000,000,结题,参与
[3] 马拉松石油公司Marathon Petroleum Corporation(美国),Evaluation and Quantification of CO2 Sorption in Bakken Shale and Interactions Between C02 and Three Forks Rock and Brine,2019-2020,$525,000,结题,参与
[2] 切萨皮克能源公司Chesapeake Energy(美国),Gas Huff and Puff to improve oil recovery in the Eagle Ford,2016-2018,~$110,000,结题,参与
[1] 美国能源部Department of Energy,Nanoparticle-Stabilized CO2 Foam for CO2 EOR Application,2010-2015,$ $1,158,822,结题,参与
【部分一作/通讯期刊论文】:
[23] 超低渗致密砂岩和页岩储层渗流能力瞬态法评价进展,石油科学通报,2024, 9(4), 659-678.
[22] Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. ACS omega, 2024, 9(7), 7705-7718.
[21] Machine learning and UNet++ based microfracture evaluation from CT images. Geoenergy Science and Engineering, 2023, 226, 211726.
[20] Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm. Computational Geosciences, 2023, 27(4), 537-549.
[19] Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energy & Fuels, 2022, 36(21), 12917-12945.
[18] Mechanistic Understanding of Delayed Oil Breakthrough in Near-Critical Point Shale Oil Reservoirs. In SPE Eastern Regional Meeting (p. D031S005R003). 2022. SPE.
[17] Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petroleum Science, 2022, 19(4), 1757-1765. (高被引论文)
[16] Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 2021, 208, 109659.
[15] Pore pressure dependent gas flow in tight porous media. Journal of Petroleum Science and Engineering, 2021, 205, 108835.
[14] Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks. Journal of Natural Gas Science and Engineering, 2021, 91, 103756.
[13] Intelligent materials in unconventional oil and gas recovery. In Sustainable Materials for Oil and Gas Applications (pp. 175-206). 2020, Gulf Professional Publishing.
[12] An integrated approach of measuring permeability of naturally fractured shale. Journal of Petroleum Science and Engineering, 2020, 186, 106716.
[11] Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 82-93.
[10] Revisiting approximate analytical solutions of estimating low permeability using the gas transient transmission test. Journal of Natural Gas Science and Engineering, 2019, 72, 103027.
[9] Investigation of shale-gas-production behavior: evaluation of the effects of multiple physics on the matrix. SPE Reservoir Evaluation & Engineering, 2019, 23(01), 068-080.
[8] Measurement of CO2 diffusion coefficient in the oil-saturated porous media. Journal of Petroleum Science and Engineering, 2019, 181, 106189.
[7] Multiphysical flow behavior in shale and permeability measurement by pulse-decay method. In Petrophysical characterization and fluids transport in unconventional reservoirs (pp. 301-324). 2019, Elsevier.
[6] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236, 404-427. (高被引、热点论文)
[5] Insights into the Gas Transmission Test at Multiscale Based on Discrete-Fracture Model and History Matching. In SPE Eastern Regional Meeting (p. D033S004R005). 2018. SPE.
[4] Experimental and numerical investigations of permeability in heterogeneous fractured tight porous media. Journal of Natural Gas Science and Engineering, 2019, 58, 216-233.
[3] Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. Journal of Petroleum Science and Engineering, 164, 31-42.
[2] A workflow to estimate shale gas permeability variations during the production process. Fuel, 220, 879-889.
[1] Different flow behaviors of low-pressure and high-pressure carbon dioxide in shales. SPE Journal, 23(04), 1452-1468.