唐相路,博士生导师,校青年拔尖,《Petroleum Science》青年编委,美国石油地质学家协会(AAPG)、国际沉积学家协会(IAS)会员,北京市自然科学奖第一完成人。先后就读于中国石油大学(华东)、中国科学院大学、中国石油大学(北京)、美国犹他大学(University of Utah)。研究领域为非常规油气地质学。近年来主要开展页岩储层和致密储层精细表征、页岩油气成藏机理等研究。先后主持和参加国家自然科学基金、国家科技重大专项等项目20余项,获省部级科学技术奖一等奖6项、二等奖2项。相关成果在地学领域知名期刊《AAPG Bulletin》、《Fuel》等发表学术论文70余篇,被引超2000次,合著学术专著3部,授权发明专利9项,计算机软件著作权1项,制定行业标准1项。
招生方向:
本科:资源勘查工程、地质学、勘查技术与工程、地质工程等相关专业
硕士:地质资源与地质工程(学术型)、地质工程(专业型)、工程管理(专业型)
博士:地质资源与地质工程(学术型)、地质工程(专业型)
培养理念:
以兴趣为导向选择研究课题,采取指导、交流与相互探讨的培养方式,注重培养学生的批判性思考能力、综合分析和解决问题的能力,强调主动从事创造性科研活动,充分挖掘学生创新潜力。毕业生均进入三桶油、政府机构或继续深造。采用生活补贴+科研激励的方式促进学生成长。国家及学校奖学金>*0000元/年;科研组入学奖学金:一次性奖励保送研究生*0000元,一志愿报考380分及以上*0000元,360分及以上*0000元,360分以下*000元;科研组生活补贴*0000~*0000元/年;发表论文:Nature子刊*0000元/篇,1区*0000元/篇,2~4区*000元/篇,EI及核心*000元/篇,授权发明专利*000元/项;此外,还有学年奖、毕业奖等(≥*0000元)发放。受政策限制,详情咨询导师或者课题组同学。诚邀广大对石油地质有兴趣的同学加盟,共同开拓国际领先的非常规油气勘探。
联系方式:
邮箱:tangxl@cup.edu.cn
地址:北京市昌平区府学路18号,102249
重点项目:
1、国家自然科学基金:深层页岩纳米孔隙介质表面性质及其流体赋存的限域效应,主持.
2、国家自然科学基金:页岩气垂向散失的动力与微观通道及其控气作用,主持.
3、国家自然科学基金:陆相页岩储层岩石组构和孔隙结构特征及其对含气性的控制机理,骨干.
4、国家自然科学基金:页岩储层孔隙结构演化及其润湿性对流体运移的影响,骨干.
5、国家自然科学基金:未熟-低熟页岩低温催化生气机理及气体的地球化学表征,骨干.
6、国家科技重大专项:五峰-龙马溪组富有机质页岩储层精细描述与页岩气成藏机理,骨干.
7、战略合作项目:玛湖凹陷风城组页岩储层有利岩相及多尺度孔缝系统评价研究,主持.
8、揭榜挂帅项目:四川盆地古生界海相页岩储层发育机理及有效性评价,骨干.
9、揭榜挂帅项目:川南龙马溪组页岩储层成岩演化过程及对含气性的控制机理研究,骨干.
获奖情况:
1、海相页岩气富集机理与评价关键技术及应用成效,中国石油和化学工业联合会,科技进步奖一等奖,2023.
2、页岩储层流体赋存状态及储集能力定量评价关键技术及应用,中国发明协会,发明创业奖创新奖一等奖,2023.
3、页岩纳米孔隙结构及流体赋存机制研究,北京市人民政府,自然科学奖二等奖,2022.
4、绿色矿山青年科学技术奖,中关村绿色矿山产业联盟,青年科学技术奖,2022.
5、川南五峰—龙马溪组页岩气富集机理及评价关键技术,中关村绿色矿山产业联盟,科技进步一等奖,2021.
6、南方海相页岩成储-成藏机理及评价技术与应用,中国石油和化工自动化应用协会,科技进步一等奖,2020.
7、中国西部陆相致密油成藏富集机理及其应用成效,中国石油和化学工业联合会,科技进步奖一等奖,2019.
8、页岩气分析测试关键技术及评价方法体系研究与应用,自然资源部,国土资源科学技术奖二等奖,2018.
学术专著:
1、Pore Structure and Its Influencing Factors of Shale Oil Reservoir in Jianghan Basin, China. Scientific Research Publishing, Inc. USA,P233,2020.
2、中国典型海相和陆相页岩储层孔隙结构及含气性.科学出版社,P388,2018.
3、页岩气发展模式与启示.华东理工大学出版社,P240,2017.
论文及专利:
2023年
Tang, X., Jiang, Z., Yuan, Z., Jiao, Y., Lin, C., & Liu, X. (2023). Pore Water and Its Multiple Controlling Effects on Natural Gas Enrichment of the Quaternary Shale in Qaidam Basin, China. Energies, 16(17), 6170.
Miao, H., Jiang, Z., Tang, X., Wang, G., Wu, Q., Fan, W., & Zheng, H. (2023). Strata Uplift Controlled Deep Shale Gas Accumulation Modes: A Case Study from the Weiyuan Block, Sichuan Basin. Energy & Fuels, 37(17), 12889-12904.
Miao, H., Jiang, Z., Tang, X., Deng, Z., Zhang, C., Liang, Z., & Shi, Y. (2023). Hydrocarbon generation potential and organic matter accumulation patterns in organic-rich shale during the mesoproterozoic oxygenation event: evidence from the Xiamaling formation shale. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 134.
Duan, X., Wu, Y., Jiang, Z., Hu, Z., Tang, X., Zhang, Y., ... & Chen, W. (2023). A New Method for Predicting the Gas Content of Low-Resistivity Shale: A Case Study of Longmaxi Shale in Southern Sichuan Basin, China. Energies, 16(17), 6169.
Wu, W., Liang, Z., Xu, L., Liu, Y., Li, Y., Tang, X., ... & Chen, Y. (2023). The Effect of Thermal Maturity on the Pore Structure Heterogeneity of Xiamaling Shale by Multifractal Analysis Theory: A Case from Pyrolysis Simulation Experiments. Minerals, 13(10), 1340.
Zhang, F., Jiang, Z., Zhang, Y., Hu, B., Yang, Z., Yang, Y., Tang, X., & Han, Y. (2023). A New Method for Converting T 2 Spectrum into Pore Radius. Journal of Earth Science, 34(4), 966-974.
Zhao, W., Yang, L., Jiang, Z., He, W., Huang, L., Chang, Q., Tang, X., & Ye, H. (2023). Geneses of multi-stage carbonate minerals and their control on reservoir physical properties of dolomitic shales. Marine and Petroleum Geology, 153, 106216.
唐相路, 萧汉敏, 姜振学, 刘学伟, 杨再权, 刘格, & 张帆. (2023). 基于合金注入与大视域图像技术的致密储层孔隙与喉道表征. 石油实验地质, 45(1), 185-192.
王昱超, 姜振学, 唐相路, 刘晓雪, 贺世杰, 邵泽宇, ... & 宋德康. (2023). 柴达木盆地三湖地区第四系七个泉组含水泥页岩 气体吸附及流动能力分析. Natural Gas Geoscience, 34(2).
姜振学, 梁志凯, 申颍浩, 唐相路, 吴伟, 李卓, ... & 郭婕. (2023). 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向. 地球科学, 48(1), 110-129.
2022年
Yang, Z., Tang, X., Xiao, H., Zhang, F., Jiang, Z., & Liu, G. (2022). Water film thickness of tight reservoir in Fuyu oil layer of Cretaceous Quantou Formation in Songliao Basin and its influence on the lower limit of seepage. Marine and Petroleum Geology, 139, 105592.
Shi, Y., Tang, X., Wu, W., Jiang, Z., Xiang, S., Wang, M., ... & Xiao, Y. (2022). Control of complex structural deformation and fractures on shale gas enrichment in southern Sichuan Basin, China. Energy & Fuels, 36(12), 6229-6242.
He, S., Tang, X., Shao, Z., Jiang, Z., Wang, B., Liu, X., ... & Xu, M. (2022). Pore Structure Characteristics, Genesis, and Its Controlling Effect on Gas Migration of Quaternary Mudstone Reservoir in Qaidam Basin. Geofluids, 2022.
Liu, X., Jiang, Z., Liu, S., Zhang, B., Zhang, K., & Tang, X. (2022). Molecular simulation of methane adsorption capacity of matrix components of shale. Nanomaterials, 12(22), 4037.
Shi, X., Wu, W., Shi, Y., Jiang, Z., Zeng, L., Ma, S., Tang, X., & Zheng, M. (2022). Influence of Multi-Period Tectonic Movement and Faults on Shale Gas Enrichment in Luzhou Area of Sichuan Basin, China. Energies, 15(18), 6846.
Zhang, F., Jiang, Z., Xiao, H., Hu, B., Chen, P., Tang, X., ... & Wang, Q. (2022). Testing origin of reservoir quality difference of tight sandstones in the Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 137, 105507.
唐相路, 姜振学, 邵泽宇, 龙国徽, 贺世杰, 刘晓雪, & 王昱超. (2022). 第四系泥岩型生物气储层特征及动态成藏过程. 现代地质, 36(02), 682.
唐相路, 姜振学, 邵泽宇, 侯泽生, 贺世杰, 刘晓雪, & 王昱超. (2022). 第四系弱成岩泥页岩孔隙结构及物性特征. 石油实验地质, 44(2), 210-218.
薛子鑫, 姜振学, 郝绵柱, 唐相路, 李生杰, 聂舟, ... & 陈瑞华. (2022). 川南深层页岩有机质石墨化对储层孔隙的控制作用. 中南大学学报: 自然科学版, 53(9), 3532-3544.
2021年
Tang, X., Jiang, Z., Jiang, S., Wang, H., He, Z., & Feng, J. (2021). Structure, burial, and gas accumulation mechanisms of lower Silurian Longmaxi Formation shale gas reservoirs in the Sichuan Basin (China) and its periphery. AAPG Bulletin, 105 (12), 2425-2447.
Tang, X., Jiang, Z., Song, Y., Luo, Q., Li, Z., Wang, G., & Wang, X. (2021). Advances on the Mechanism of Reservoir Forming and Gas Accumulation of the Longmaxi Formation Shale in Sichuan Basin, China. Energy & Fuels, 35(5), 3972-3988.
Tang, X., Wu, W., Zhong, G., Jiang, Z., He, S., Liu, X., ... & Yang, J. (2021). Characteristics and Origin of Methane Adsorption Capacity of Marine, Transitional, and Lacustrine Shales in Sichuan Basin, China. Geofluids, 2021.
李兆丰, 唐相路, 黄立良, 常秋生, 杨磊磊, 杨再权. 准噶尔盆地玛湖凹陷风城组页岩岩相发育特征[J]. 能源与环保, 2021, 43(04): 108-114.
肖阳, 萧汉敏, 姜振学, 唐相路, 张帆, 朱林, 李晓慧. 恒速与高压压汞实验表征致密砂岩储层孔喉结构差异性分析[J]. 能源与环保, 2021, 43(03): 59-63.
2020年
Jiang, Z., Yan, S., Tang, X., Zhuo, L. I., Xingmeng, W. A. N. G., Guozhen, W, & Hengyuan, Q. (2020). Controlling factors of marine shale gas differential enrichment in southern China. Petroleum Exploration and Development, 47(3), 661-673.
Zhou, T., Su, J., Fan, S., Li, Z., Liu, X., & Tang, X. (2020). Pore structure and controlling factors of dolomite-bearing high-salinity shale reservoir in Qianjiang Formation, Jianghan Basin, China. Interpretation, 8(4), T675-T686.
宋岩, 高凤琳, 唐相路, 陈磊, 王幸蒙. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(12): 1501-1512.
吴伟, 薛子鑫, 石学文, 姜振学, 王鑫, 刘晓雪, 贺世杰, 唐相路, 姜鸿阳. 有机质成熟度对南方海相页岩储层孔隙的控制作用[J]. 能源与环保, 2020, 42(07): 98-104.
姜振学, 宋岩, 唐相路, 李卓, 王幸蒙, 王国臻, 薛子鑫, 李鑫, 张昆, 常佳琦, 仇恒远. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(03): 617-628.
2019年
Tang, X., Jiang, S., Jiang, Z., Li, Z., He, Z., Long, S., & Zhu, D. (2019). Heterogeneity of Paleozoic Wufeng-Longmaxi Formation shale and its effects on the shale gas accumulation in the Upper Yangtze Region, China. Fuel, 239, 387-402.
Tang, X., Jiang, Z., Jiang, S., Cheng, L., Zhong, N., Tang, L., & Zhou, W. (2019). Characteristics, capability, and origin of shale gas desorption of the Longmaxi Formation in the southeastern Sichuan Basin, China. Scientific reports, 9(1), 1035.
Fan, C., Tang, X*., Zhang, Y., Song, Y., Jiang, Z., Luo, Q., & Li, B. (2019). Characteristics and formation mechanisms of tight oil: A case study of the Huahai Depression, Jiuquan Basin, Northwest China. Energy Exploration & Exploitation, 37(1), 296-314.
Fan, C., Tang, X*., Zhang, Y., Song, Y., Jiang, Z., Luo, Q., & Li, B. (2019). Characteristics and origin of the pore structure of the lacustrine tight oil reservoir in the northwestern Jiuquan Basin, China. Interpretation, 7(3), T625-T636.
Tang, L., Song, Y., Jiang, Z., Pang, X., Li, Z., Li, Q., Li, W., Tang, X., Pan, A. (2019). Influencing Factors and Mathematical Prediction of Shale Adsorbed Gas Content in the Upper Triassic Yanchang Formation in the Ordos Basin, China. Minerals, 9(5), 265.
Tang, L., Song, Y., Li, Q., Pang, X., Jiang, Z., Li, Z., Tang, X., Yu, H., Sun, Y., Fan, S., Zhu, L. (2019). A Quantitative Evaluation of Shale Gas Content in Different Occurrence States of the Longmaxi Formation: A New Insight from Well JY‐A in the Fuling Shale Gas Field, Sichuan Basin. Acta Geologica Sinica‐English Edition, 93(2), 400-419.
Huang, H., Chen, L., Dang, W., Luo, T., Sun, W., Jiang, Z., Tang, X., Zhang, S., Ji, W., Shao, S., Huang, Y. (2019). Discussion on the rising segment of the mercury extrusion curve in the high pressure mercury intrusion experiment on shales. Marine and Petroleum Geology, 102, 615-624.
罗鹏, 刘晓雪, 郭宇衡, 唐相路*, 郑梦天, 李凌艳, 赵颖. (2019). 不同沉积类型富有机质页岩孔隙结构差异特征[J]. 能源与环保, 12, 53-60.
周雯, 姜振学, 仇恒远, 金晓春, 王瑞湖, 岑文攀, 唐相路, 李鑫, 王国臻, 曹香妮, 孙玥. (2019). 桂中坳陷下石炭统鹿寨组页岩气成藏条件和有利区预测[J]. 石油学报, 40(07), 798-812.
2018年
Tang, X., Jiang, Z., Jiang, S., Li, Z., Peng, Y., Xiao, D., & Xing, F. (2018). Effects of organic matter and mineral compositions on pore structures of shales: A comparative study of lacustrine shale in Ordos Basin and Marine Shale in Sichuan Basin, China. Energy Exploration & Exploitation, 36(1), 28-42.
Huang, H., Sun, W., Ji, W., Chen, L., Jiang, Z., Bai, Y., Tang, X., Du, K., Qu, Y., Ouyang, S. (2018). Impact of laminae on gas storage capacity: A case study in Shanxi Formation, Xiasiwan Area, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 60, 92-102.
Huang, H., Chen, L., Sun, W., Xiong, F., Ji, W., Jia, J., Tang, X., Zhang, S., Gao, J., Luo, B. (2018). Pore-throat structure and fractal characteristics of Shihezi Formation tight gas sandstone in the Ordos Basin, China. Fractals, 26(02), 1840005.
Li, X., Jiang, Z., Song, Y., Zhai, G., Bao, S., Li, Z., Tang, X., Wang, P., Li, T., Wang, G., Zhou, W., Qiu, H., Miao, Y. (2018). Porosity evolution mechanisms of marine shales at over-maturity stage: Insight from comparable analysis between Lower Cambrian and Lower Silurian inside and at the margin of the Sichuan Basin, South China. Interpretation, 6(3), T739-T757.
Li, X., Jiang, Z., Wang, P., Song, Y., Li, Z., Tang, X., Li, T., Zhai, G., Bao, S., Xu, C., Wu, F. (2018). Porosity-preserving mechanisms of marine shale in Lower Cambrian of Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 55, 191-205.
唐令, 宋岩, 姜振学, 唐相路, 李卓, 李倩文, 孙玥. (2018). 渝东南盆缘转换带龙马溪组页岩气散失过程, 能力及其主控因素. 天然气工业, 38(12), 37-47.
2017年
Tang, X., Jiang, Z., Jiang, S., Cheng, L., & Zhang, Y. (2017). Characteristics and origin of in-situ gas desorption of the Cambrian Shuijingtuo Formation shale gas reservoir in the Sichuan Basin, China. Fuel, 187, 285-295.
Tang, X., Jiang, Z., Li, Z., Cheng, L., Zhang, Y., Sun, P., & Fan, C. (2017). Factors controlling organic matter enrichment in the Lower Cambrian Niutitang Formation Shale on the eastern shelf margin of the Yangtze Block, China. Interpretation, 5(3), T399-T410.
Jiang, S., Tang, X., Long, S., McLennan, J., Jiang, Z., Jiang, Z., ... & He, Z. (2017). Reservoir quality, gas accumulation and completion quality assessment of Silurian Longmaxi marine shale gas play in the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 39, 203-215.
Jiang, S., Tang, X., Cai, D., Xue, G., He, Z., Long, S., ... & Dahdah, N. (2017). Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China. Journal of Petroleum Science and Engineering, 150, 334-347.
Jiang, S., Xiao, D., Tang, X., Xing, F., Xiang, C., Pahnke, P., Tom, A., Lu, S. (2017). Nano to Micron-Sized Pore Types and Pore Size Distribution Revealed by Innovative Test Methods-Case Studies from Fluvial, Lacustrine and Marine Tight and Shale Oil and Gas Plays in China and US. Journal of Nanoscience and Nanotechnology, 17(9), 6296-6306.
蒋恕, 唐相路. (2017). 页岩油气富集的主控因素及误辩: 以美国, 阿根廷和中国典型页岩为例. 地球科学, 42(7), 1083-1091.
李卓, 姜振学, 唐相路, 王朋飞, 黄璞, 王国臻. (2017). 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学: 中国地质大学学报, 42(7), 1116-1123.
2016年
Tang, X., Jiang, Z., Jiang, S., & Li, Z. (2016). Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Marine and Petroleum Geology, 78, 99-109.
Tang, X., Jiang, Z., Jiang, S., Wang, P., & Xiang, C. (2016). Effect of organic matter and maturity on pore size distribution and gas storage capacity in high-mature to post-mature shales. Energy & Fuels, 30(11), 8985-8996.
Tang, X., Jiang, Z., Huang, H., Jiang, S., Yang, L., Xiong, F., ... & Feng, J. (2016). Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28, 338-346.
Wang, P., Jiang, Z., Chen, L., Yin, L., Li, Z., Zhang, C., Tang, X., Wang, G. (2016). Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam–He ion microscopy, nano-computerized tomography and gas adsorption analysis. Marine and Petroleum Geology, 77, 1323-1337.
Jiang, S., Peng, Y., Gao, B., Zhang, J., Cai, D., Xue, G.,Bao, S., Xu, Z., Tang, X., Dahdah, N. (2016). Geology and shale gas resource potentials in the Sichuan Basin, China. Energy Exploration & Exploitation, 34(5), 689-710.
唐相路, 冯洁, 姜振学, 李卓, 原园, 黄何鑫, 王朋飞, 温暖. 页岩油气储层的微观地质特征确定方法和装置[P]. 北京:CN105488349A,2016-04-13.
姜振学, 唐相路, 李卓, 黄何鑫, 杨佩佩, 杨潇, ... & 郝进. (2016). 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制. 地学前缘, 23(2), 126-134.
姜振学, 李卓, 唐相路, 李卫兵, 黄何鑫. 页岩全孔径孔隙体积的表征方法[P]. 北京:CN105445161A,2016-03-30.
黄璞, 姜振学, 程礼军, 王朋飞, 唐相路, 王智. (2016). 川东北牛蹄塘组页岩孔隙结构特征及其控制因素. 大庆石油地质与开发, (05), 156-162.
杨潇, 姜振学, 宋岩, 黄何鑫, 唐相路, 纪文明, 陈磊. (2016). 渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究. 高校地质学报, 22(2), 368-377.
原园, 姜振学, 喻宸, 王朋飞, 李廷微, 郭天旭, 赵若彤, 唐相路. (2016). 高丰度低演化程度湖相页岩储层特征——以柴达木盆地北缘中侏罗统为例. 地质学报, (2016 年 03), 541-552.
2015年
Tang, X., Jiang, Z., Li, Z., Gao, Z., Bai, Y., Zhao, S., & Feng, J. (2015). The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23, 464-473.
Jiang, Z., Tang, X., Cheng, L., Li, Z., Zhang, Y., Bai, Y., ... & Hao, J. (2015). Characterization and origin of the Silurian Wufeng-Longmaxi Formation shale multiscale heterogeneity in southeastern Sichuan Basin, China. Interpretation, 3(2), SJ61-SJ74.
Xiong, F., Jiang, Z., Tang, X., Li, Z., Bi, H., Li, W., & Yang, P. (2015). Characteristics and origin of the heterogeneity of the Lower Silurian Longmaxi marine shale in southeastern Chongqing, SW China. Journal of Natural Gas Science and Engineering, 27, 1389-1399.
Yang, L., Ge, H., Shen, Y., Zhang, J., Yan, W., Wu, S., & Tang, X. (2015). Imbibition inducing tensile fractures and its influence on in-situ stress analyses: a case study of shale gas drilling. Journal of Natural Gas Science and Engineering, 26, 927-939.
唐相路, 姜振学, 张莺莺, 高甜, 黄何鑫, 冯洁, 姚立邈. (2015). 渝东南地区页岩气富集区差异性分布成因. 西安石油大学学报: 自然科学版, 30(3), 24-30.
唐相路, 姜振学, 郝进, 李卓, 原园, 黄何鑫, 李卫兵, 杨佩佩. 页岩气储层特性预测方法和装置[P]. 北京:CN104462849A,2015-03-25.
姜振学, 冯洁, 唐相路, 原园, 李卓, 赵若彤, 王朋飞, 郝进. 页岩气储层的地质参数确定方法和装置[P]. 北京:CN104573339A,2015-04-29.
郝进, 姜振学, 邢金艳, 李卓, 唐相路, 苏娇. (2015). 一种改进的页岩气损失气含量估算方法. 现代地质, 29(6), 1475-1482.
王香增, 郝进, 姜振学, 郭超, 邢金艳, 李卓, 唐相路. (2015). 鄂尔多斯盆地下寺湾地区长 7 段油溶相页岩气量影响因素及其分布特征. 天然气地球科学, 26(4), 744-753.
2014年及之前
毕赫, 姜振学, 李鹏, 李卓, 唐相路, 张定宇, 许野. (2014). 渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响. 天然气地球科学, 25(8), 1275-1283.
邵国良, 杜社宽, 唐相路, 赵光亮, 戴龙, 张大权. (2013). 准噶尔盆地北三台凸起中下三叠统沉积体系与储层特征. 岩性油气藏, 25(3), 58-65.
杜忠明, 史基安, 孙国强, 季赟, 吴志雄, 唐相路. (2013). 柴达木盆地马仙地区下干柴沟组上段辫状河三角洲沉积特征. 天然气地球科学, 24(3), 505-511.
史基安, 唐相路, 张顺存, 张宏福, 肖燕. (2012). 东准噶尔西缘晚古生代火山岩的锆石 U—Pb 年龄和 Hf 同位素特征及构造意义, 47(4), 955-979.
张杰, 史基安, 张顺存, 殷建国, 唐相路. (2012). 准噶尔盆地西北缘晚石炭系—早二叠系火山岩岩石学和地球化学研究. 地质科学, 47(4), 980-992.
葸克来, 唐相路. (2010). 青岛市凤凰岛东海岸基岩风化及其对海岸侵蚀的影响. 西部探矿工程, 22(10), 175-177.