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A B S T R A C T   

Low-accommodation foreland basins have been of recent interest because their stratigraphic architectures pro-
vide insight into the interaction of tectonic subsidence and eustasy. Aptian-aged strata in Alberta, Canada 
(McMurray Formation and Wabiskaw Member) were deposited under the influence of a continental-scale river 
that longitudinally transported and debouched sediment into the southward-transgressing Boreal Sea in the 
distal, low-accommodation Western Canada Foreland Basin (WCFB). In this study, we present a high-resolution 
stratigraphic framework for the McMurray-Wabiskaw interval, which was deposited during a long-term trans-
gression. Using wireline logs from >20,000 wells and more than 500 cores, regional mapping focused on 
resolving stratigraphic relationships and the distribution of depositional environments across approximately 
60,000 km2 in the Athabasca Oil Sands Region of northeastern Alberta. The studied stratigraphic interval is part 
of a third-order sequence: the McMurray Formation developed during a period of relative sea-level fall, lowstand, 
and early transgression, while the overlying Wabiskaw Member was deposited during late transgression. Within 
the McMurray Formation, superimposed fourth-order sea-level fluctuations in this low accommodation setting 
created a complex amalgam of deltaic strata vertically and laterally juxtaposed with valley-fill deposits. Relative 
sea-level rises resulted in rapid transgressions in which the shorelines migrated >400 km landward. Thin (5–15 
m thick), widespread deltaic parasequence sets were deposited during subsequent sea-level highstands. During 
relative sea-level falls, fluvial meandering channel belts developed in downcutting valleys, with associated 
shorelines dramatically prograding basinward. In the Wabiskaw Member, continued sea-level rise coupled with 
potentially decreasing sediment supply resulted in the development of tide-influenced/dominated channels and 
bars in estuaries. The final phase of the third-order transgression was marked by a regional transgressive rav-
inement event and several southwestward backstepping wave-dominated shorefaces/strandplains. This low- 
accommodation foreland basin succession demonstrates a transition from deposition in continental fluvial and 
marginal-marine settings subject to high-frequency eustatic changes, to open-marine conditions over a long-term 
transgression.   

1. Introduction 

Foreland basins are elongate depositional regions created in response 

to flexural subsidence driven by thrust-sheet loading along convergent 
plate margins (Leckie and Smith, 1992; DeCelles and Giles, 1996). Basin 
subsidence rates are highest near the orogen and decrease toward the 
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stable craton, resulting in a wedge-shape sedimentary fill in transverse 
cross section, with the thickest strata located near the thrust belt 
(DeCelles and Giles, 1996; Decelles, 2012) (Fig. 1). The stratal archi-
tecture of foreland-basin deposits is controlled by the interaction of 
tectonic subsidence, sediment influx, and eustasy (Jervey, 1988; Devlin 
et al., 1993). Periods of isostatic uplift during basin evolution are also 
known to considerably influence the depositional systems and strata 
preservation (e.g., Heller et al., 1988). Due to relatively low subsidence 
rates and minimal topographic relief, the distal foreland basin is typi-
cally a low-accommodation setting (Schwans, 1995; Cant, 1996; Zaitlin 
et al., 2002), where the stratigraphic architecture of the sedimentary fill 
is largely controlled by eustatic sea-level changes (Schwans, 1995; 
DeCelles and Giles, 1996). In this region, minor sea-level changes can 
induce rapid transgressions that inundate large landward areas and 
dramatic regressions with multiple, downcutting fluvial valley systems 
and swiftly prograding shorelines (1–7 km/kyr; progradation of shore-
line over 300–700 km during 100–300 kyr) (cf. Bhattacharya et al., 
2019). The resulting deposits have stratigraphic architectures distinct 
from those in high-accommodation settings, where eustatic sea-level 
changes are frequently tempered by tectonic subsidence (e.g., Jackson, 

1984; Hayes et al., 1994; Cant and Abrahamson, 1996; Hubbard et al., 
2002; Deschamps et al., 2017). 

Robust stratigraphic models for low-accommodation basin fills are 
still developing, although some examples have been documented (Hol-
brook, 1996; Zaitlin et al., 2002; Nadon and Kelly, 2004; Rossetti, 2006; 
Allen and Fielding, 2007; Aschoff and Steel, 2011a; Foix et al., 2013; 
Ayaz et al., 2015; Feng et al., 2015; Château et al., 2019, 2021; Van 
Yperen et al., 2021). The Lower Cretaceous McMurray-Wabiskaw 
stratigraphic interval in northeastern Alberta is a stratigraphically 
complex amalgam of fluvial, marginal-marine, and marine strata 
deposited during a third-order sea-level rise in the distal part of the 
Western Canada Foreland Basin (WCFB) (Fig. 1) (Cant and Abrahamson, 
1996; Hein et al., 2013). This succession hosts the Athabasca Oil Sands 
of northeastern Alberta (Fig. 1), one of the world’s largest petroleum 
reserves with an estimated 958 billion barrels of crude bitumen (Alberta 
Energy and Utilities Board, 2003). The McMurray-Wabiskaw interval 
has sedimentological and stratigraphic features characteristic of de-
posits in low-accommodation settings (Zaitlin et al., 2002; Nadon and 
Kelly, 2004; Aschoff and Steel, 2011; Château et al., 2019, 2021): it is 
thin and laterally continuous and has closely spaced unconformities, 

Fig. 1. (A) Paleogeographic map of the Early Cretaceous Western Canada Foreland Basin (WCFB) (modified from Durkin et al., 2017) showing three paleovalleys 
separated by highlands (light grey). The study area (red box) is located in the Assiniboia paleovalley. (B) Lithostratigraphic chart for Lower Cretaceous strata of the 
Athabasca Oil Sands Region in northeastern Alberta (modified from Jackson, 1984; Cant, 1996). (C) Transverse cross section of the WCFB showing the general 
structure and stratigraphy (modified from Ranger, 1994; Horner et al., 2019a). The locations of the main paleovalleys are controlled by topography on the underlying 
sub-Cretaceous angular unconformity. See Fig. 1A for cross-section location. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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unpredictable lateral and vertical facies patterns, top truncation, and an 
abundance of marine-influenced facies (e.g., Wightman et al., 1995; 
AEUB, 2003; Hubbard et al., 2011; Hein et al., 2013; Baniak and King-
smith, 2018; Horner et al., 2019b; Weleschuk and Dashtgard, 2019). 

Local stratigraphic models for parts of the McMurray-Wabiskaw in-
terval have been developed for small areas of interest or asset-specific 
regions (e.g., Martinius et al., 2015; Gingras et al., 2016; Jablonski 
and Dalrymple, 2016; Shchepetkina et al., 2016; Barton et al., 2017; 
Baniak and Kingsmith, 2018). However, a comprehensive 
sequence-stratigraphic model encapsulating the stratigraphic relation-
ships and distribution of depositional environments within the complete 
McMurray-Wabiskaw interval across the entire Athabasca Oil Sands 
region (AOSR) has been elusive due to the area’s large size and the unit’s 
stratigraphic complexity. The aim of this study is to use a dataset of core 
descriptions, core photographs, and wireline well logs to (1) develop a 
high-resolution stratigraphic framework for the McMurray-Wabiskaw 
interval in the AOSR and (2) use this framework to describe the tem-
poral and spatial distribution of fluvial, marginal-marine, and 
open-marine strata deposited during the third-order transgression of a 
distal, low-accommodation foreland-basin setting. Unravelling the 
McMurray-Wabiskaw stratigraphy is a challenging but crucial step to 
understanding and predicting reservoir distribution and reservoir 
quality in the AOSR (e.g., Horner et al., 2019b; Château et al., 2021; 
Hagstrom et al., in press) and, more broadly, developing robust sedi-
mentological and stratigraphic models in distal foreland-basin settings. 

2. Geological setting 

The WCFB is a NW-SE-oriented foreland basin (Fig. 1) that initially 
developed in the Early to Middle Jurassic due to the growth and 

denudation of the Canadian Cordillera (Price, 1990; Leckie and Smith, 
1992; Stockmal et al., 1992). Subsidence rates and accommodation 
creation were highest in the western portion of the basin near the orogen 
and rapidly decreased eastward toward the cratonic margin (Leckie and 
Smith, 1992; Cant, 1996). The Mannville Group is a third-order trans-
gressive-regressive sequence deposited during the Barremian to Albian 
(Fig. 1) (Vail et al., 1977; Banerjee and Kidwell, 1991). It rests on the 
basin-wide sub-Cretaceous unconformity (SCU), which represents 
10–20 Myr of erosion and/or non-deposition (Cant and Abrahamson, 
1996). The SCU formed in the Late Jurassic-Early Cretaceous during 
periods of isostatic uplift and subaerial exposure (Heller et al., 1988) 
that created a surface with up to 80 m of erosional relief (Cant, 1996; 
Ranger and Pemberton, 1997; Miles et al., 2012). During this period, 
three NW-SE-trending paleovalleys (Spirit River, Edmonton, and Assi-
niboia) developed parallel to the orogen. They were cut and infilled by 
N-NW-flowing rivers that debouched into the southward-transgressing 
Boreal Sea (Fig. 1A) (Jackson, 1984; Cant and Stockmal, 1989; Hein 
et al., 2013; Rinke-Hardekopf et al., 2019). Each paleovalley’s sedi-
mentary fill was deposited under a unique combination of subsidence 
rate and accommodation (cf. Jackson, 1984; Bhattacharya and Pos-
amentier, 1994; Catuneanu et al., 1997). Therefore, each paleovalley 
hosted a fluvial to marginal-marine depositional system that responded 
independently to eustatic sea-level rise and fall. 

During the Aptian, salt tectonism and karst collapse of underlying 
evaporite and carbonate strata, combined with differential erosion, 
further modified the SCU structure at the base of the Assiniboia Paleo-
valley, which was positioned near the basin’s cratonic margin (Fig. 1). 
The resulting paleotopography controlled sediment deposition and the 
organization of the Cretaceous drainage network (Ranger and Pember-
ton, 1997; Broughton, 2013, 2015; Hauck et al., 2017; Horner et al., 

Fig. 2. Detailed stratigraphy of the McMurray-Wabiskaw interval in the southern (Townships 69–87), central (Townships 88–95), and northern (Townships 96–104) 
Athabasca Oil Sands Region. The McMurray channel systems are named based on the regional parasequence set from which they stratigraphically originate (e.g., B2 
channel system stratigraphically originates at the top of the b2 parasequence set). The name of the parasequence set is not capitalized to differentiate it from the 
channel systems in the figures and text. Each parasequence set and corresponding channel system interval is interpreted as a fourth-order transgressive-regressive 
sequence. Towards the central and northern AOSR, most a1, a2, and b1 parasequence sets and some of the uppermost part of the A2 channel system were eroded and 
reworked during Wabiskaw time. McMurray strata dominate the southern AOSR, while the Wabiskaw strata become relatively thick in the central and northern 
AOSR. Wab.-Wabiskaw. 
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2019a). Because of the low subsidence rates in this part of the basin, the 
Assiniboia Paleovalley’s fill contains laterally extensive stratigraphic 
intervals, high-frequency sequences, and more numerous incisions and 
more complex facies transitions than what is typical of the Spirit River 
and Edmonton paleovalley fills, which were deposited in 
higher-accommodation areas (Jackson, 1984; Hayes et al., 1994; Cant 
and Abrahamson, 1996) (Fig. 1). 

The oldest Mannville Group units, the McMurray Formation and 
Wabiskaw Member of the Clearwater Formation (i.e., the McMurray- 
Wabiskaw interval), were deposited in the Assiniboia Paleovalley be-
tween ca 115 Ma and 113 Ma (Hein and Dolby, 2018; Rinke-Hardekopf 
et al., 2019) (Fig. 1). Sediment of the Assiniboia Paleovalley was sourced 
from the southeast via a continental-scale river system that drained the 
Appalachian Mountains, the rising Cordillera to the west, and the 
adjacent North American craton (Benyon et al., 2014, 2016; Blum and 
Pecha, 2014; Horner et al., 2019a). The McMurray-Wabiskaw interval is 
interpreted as the lowstand and transgressive deposit of a 
Barremian-Albian third-order sequence (Vail et al., 1977; Jackson, 
1984; Cant, 1996; Blum et al., 2013; Deschamps et al., 2017) 
(Figs. 1B–2), and is overlain by highstand deposits of the Clearwater and 
Grand Rapid formations (Fig. 1B) (cf. Cant, 1996; Jackson, 1984; 
Wellner et al., 2018; Wightman et al., 1995). In the Clearwater 

Formation, deltas and marine-influenced valley fills associated with 
4th-order highstand and lowstand shorelines were reconstructed in the 
southern part of the study area (Townships 65–80) (Wellner et al., 
2018). 

3. Dataset and methodology 

Regional-scale stratigraphic mapping of the McMurray-Wabiskaw 
interval was conducted across ~60,000 km2 in the AOSR. In Alberta, 
land is identified based on the Dominion Land Survey (DSL) coordinate 
system: a grid based on 6-mile (approximately 10-km) increments di-
vides Western Canada into south-north columns of ranges and east-west 
rows of townships. Each township and range block is called a “township” 
and covers an area of 36 mi2 (approximately 93 km2). The AOSR is 
located in Townships 69–104 between Ranges 1–20, West of the 4th 
Meridian. All maps presented herein refer to the DSL coordinate system. 

A stratigraphic framework and detailed facies scheme were con-
structed by integrating data from ~20,000 wireline logs and more than 
500 drill core descriptions, which were collected by a number of re-
searchers (e.g., Timmer, 2018; Hayes, 2018; Broadbent, 2019; Château 
et al., 2019; Hagstrom, 2018; Horner et al., 2019a,b; Martin et al., 2019; 
Rinke-Hardekopf et al., 2019; Weleschuk and Dashtgard, 2019). 

Table 1 
Summary of the facies associations in the McMurray-Wabiskaw interval. 
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Stratigraphic tops were picked in GeoScout software using well-log 
suites that included gamma ray (GR), neutron-density (ND) porosity, 
photoelectric effect (PE), and resistivity logs. Stratigraphic interval 
thickness was calculated in GeoScout and exported to Petrel to make 
isopach/isochore and net sandstone thickness maps. Sedimentological 
data, including bed thickness, grain size, sedimentary structures, trace 
fossils, and Bioturbation Index (BI) (Taylor and Goldring, 1993) were 
documented from drill cores and used for facies classification. The 
stratigraphic framework builds on the widely used terminology pro-
posed by the Alberta Energy and Utilities Board (2003), which leveraged 
a number of previous regional-scale studies (e.g., Wightman et al., 1995; 
Ranger and Pemberton, 1997; Hein et al., 2013). 

4. Results and interpretation 

4.1. Facies and depositional environments 

The McMurray-Wabiskaw interval comprises nine broadly defined 
facies associations deposited in fluvial and marginal-marine to open- 
marine settings (Table 1). McMurray-Wabiskaw facies have been 
widely described (e.g., Wightman et al., 1995; AEUB, 2003; Hubbard 
et al., 2011; Hein et al., 2013; Baniak and Kingsmith, 2018; Horner et al., 

2019b; Weleschuk and Dashtgard, 2019); therefore, they are rather 
briefly discussed here. 

Channel-base deposits (FA1) are composed of structureless, trough, 
and tabular cross-bedded, fine-to medium-grained sandstones that 
typically overlie an erosionally based mudstone-clast breccia (Fig. 3A). 
Point-bar deposits (FA2) commonly overlie FA1 and consist of 
sandstone-dominated inclined heterolithic strata (IHS) (Fig. 3C) that 
gradually transition upward to siltstone-dominated IHS (Fig. 3D and E). 
In the sandstone beds of IHS, trough and tabular cross-stratification and 
current ripples are observed. Abandoned-channel fills (FA3) sharply 
overlie FA1 (Fig. 3F) or FA2 and are composed of planar-laminated 
siltstones and mudstones with thin sandstone interbeds (Fig. 3F) (Hein 
et al., 2006; Hubbard et al., 2011). Overbank and floodplain deposits 
(FA4) are mudstone-dominated successions containing thin, 
current-rippled sandstone beds with organic matter (Fig. 3G and H). The 
mudstones are planar laminated to massive, and roots are locally pre-
served (Fig. 3H, J). Often, these facies associations stack to form 
upward-fining packages up to 50 m thick; these successions are inter-
preted to be deposited in a meandering river setting (e.g., Mossop and 
Flach, 1983; Durkin et al., 2017; Horner et al., 2019a). 

Bioturbation is absent to sparse (BI 0–1) in FA1 and mudstone- 
dominated strata of FA3 and FA4. FA2 commonly has a low-diversity, 

Fig. 3. Continental fluvial facies associations including channelized bases (FA1) (A–B), point-bar deposits (FA2) (C–E), abandoned-channel fills (FA3) (F), and 
overbank and floodplain deposits (FA4) (G–J). (A) Mudstone-clast breccia overlain by structureless to low-angle cross-bedded sandstones. (B) Cross-bedded sand-
stones. (C) Sandstone-dominated inclined heterolithic strata (IHS). Mudstone-dominated interbeds containing Gyrolithes (Gy). (D) and (E) Siltstone-dominated IHS 
with Gyrolithes (Gy) and Chondrites (Ch). (F) Horizontal planar-laminated siltstones and mudstones sharply overlie channelized sandstones of FA1. (G) Siltstones or 
mudstones interbedded with current-rippled sandstones. (H) Massive to parallel-laminated mudstones with abundant organic matter. (I) Climbing current ripples and 
organic-matter-rich beds. (J) Massive mudstones with roots. Dark brown rock is bitumen-stained sandstone. Core boxes are 10 cm wide. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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variably abundant (BI 0–5) trace-fossil suite that can include diminutive 
Gyrolithes, Arenicolites, Planolites, Cylindrichnus, Teichichnus, Skolithos, 
and Chondrites. The trace-fossil suite in a single point-bar deposit typi-
cally consists of one or two small (e.g., <2 mm diameter) ichnogenera 
(Fig. 3C–E). This diminutive, low-diversity trace fossil assemblage sug-
gests a highly stressed environment, likely with brackish-water condi-
tions (Pemberton et al., 1982; Gingras et al., 2016). This has led many 
authors to interpret a tidal influence within the meandering river setting 
(e.g., Hubbard et al., 2011; Fustic et al., 2012; Musial et al., 2012a). 
Brackish-water trace fossil suites are consistently observed throughout 
the entire study area, leading some researchers to suggest that stressed 
brackish conditions could be related to the salt dissolution in the un-
derlying strata, which led to salty groundwater exchange with rivers 
(Brunner et al., 2017; Broughton, 2018) (cf. Brunner et al., 2017). 

Wave-dominated-delta (FA5) and bayhead delta (FA6) deposits 
(Fig. 4) typically consist of thin, upward-coarsening units between 2 and 
15 m thick. These units grade upward from bioturbated mudstones to 
interbedded wave-rippled sandstones and siltstones to, most commonly, 
hummocky and/or swaley cross-stratified (HCS/SCS) sandstones 
(Baniak and Kingsmith, 2018; Château et al., 2019; Horner et al., 2019b; 
Weleschuk and Dashtgard, 2019) variably capped by a thin coal and/or 
rooted paleosol (Fig. 4A–G). The HCS/SCS beds are less than 0.5 m thick, 
suggesting that storm and fairweather waves were underdeveloped 

compared to open-marine settings (e.g., Wild et al., 2009; Bowman and 
Johnson, 2014; Peng et al., 2020), which could be due to shallow-water 
friction (Dumas and Arnott, 2006; Yang et al., 2006). Therefore, the 
paleodepositional setting was likely physically restricted and without 
open-marine circulation, such as a broad, semi-enclosed, shallow, 
low-relief plain bounded by highlands. FA6 displays both coarsening- 
and fining-upward trends and is dominated by mudstones with thin, 
heterolithic interbeds (Fig. 4H-L) (Caplan and Ranger, 2001; Hein et al., 
2006; Baniak and Kingsmith, 2018). Sedimentary structures are typi-
cally obscured by bioturbation, however, current ripples, low-angle 
cross bedding, and parallel laminations are sometimes visible in thin 
sandstone beds (Fig. 4J and K). 

Bioturbation in FA5 varies from absent to sparse (BI 0–1) in sand-
stone beds to moderate (BI 2–4) in the mudstones and heterolithic beds 
(Fig. 4E–F). Sandstone beds are dominated by Skolithos and Arenicolites, 
while mudstones and heterolithic beds typically contain Planolites, 
Chondrites, Asterosoma and Teichichnus. FA6 strata are typically moder-
ately to abundantly bioturbated (BI 3–5) with a trace-fossil suite con-
sisting of Asterosoma, Planolites, Chondrites, Cylindrichnus, and Skolithos 
(Fig. 4H-L). The thin, highly bioturbated, interbedded sandstones and 
mudstones of FA6 were likely deposited in a protected bay setting under 
low sedimentation rates (Caplan and Ranger, 2001; Baniak and King-
smith, 2018; Weleschuk and Dashtgard, 2019). The trace-fossil suite in 

Fig. 4. Wave-dominated delta (FA5) (A–F) and bayhead delta (FA6) (H–L) facies associations in restricted coastal settings. (A) Coarsening-upward (CU) succession of 
FA5 showing bioturbated mudstones grading upward to thin hummocky/swaley cross-stratified (HCS/SCS) and wave-rippled sandstones interbedded with siltstones. 
(B) HCS/SCS grading upward to wave ripples and mudstone beds. (C) Wave ripples. (D) Wave-eroded scour surfaces and overlying muddy beds. (E) Skolithos (Sk) in 
thin, wave-rippled sandstone. (F) Uncommon bioturbation with Teichichnus (Te) in mudstone. (G) Paleosol with roots and an overlying coal bed. (H) Abundantly 
bioturbated CU succession of FA6. (I) Close-up of intensely bioturbated heterolithic beds with no sedimentary structures preserved. (J) and (K) Current ripples in 
sandstone beds. (L) Close-up of trace fossils including Teichichnus (Te), Skolithos (Sk), Planolites (P), and Chondrites (Ch). Dark brown rock is bitumen-stained 
sandstone. Core boxes are 10 cm wide. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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both FA5 and FA6 is low diversity and diminutive, with burrow diameter 
ranging from a few millimeters to 2–3 cm. These characteristics are 
consistent with a brackish-water setting primarily colonized by oppor-
tunistic species (Gingras et al., 2016). 

FA7 is composed of 20- to 30-m-thick sandstone-dominated units 
deposited in fluvial-tidal distributary channels (FA7-1) and tide- 
dominated channels and bars (FA7-2). Blocky and fining-upward 
grain-size profiles are common; coarsening-upward trends are present, 
but rare (Wightman et al., 1995, 1997). FA7 mainly consists of 
cross-bedded sandstone, the base of which is commonly mantled by 
mudstone clasts (Fig. 5A). The sandstone typically passes upward into 
heterolithic intervals of bi-directional current-rippled sandstones inter-
bedded with fluid-mud layers (up to 1 cm thick, homogeneous, and 

unbioturbated), which suggest a depositional setting with active tidal 
processes (cf. Ichaso and Dalrymple, 2009; Mackay and Dalrymple, 
2011; Peng et al., 2018) (Fig. 5C, D, E). 

Bioturbation in FA7-1 is absent to uncommon (BI 0–2), and trace 
fossils (mainly Teichichnus and Planolites) are restricted to mudstone 
beds in heterolithic intervals (Fig. 5B and C). FA7-2 is sparsely to 
moderately bioturbated (BI 1–3) with Thalassinodes, Teichichnus, and 
Planolites, and locally contains shell fragments (Fig. 5F). FA7 sharply 
overlies units of FA1-FA6; across the contact there is an abrupt mudstone 
color change from light grey to dark blue-grey (Fig. 5A) (Wightman 
et al., 1995; AEUB, 2003) that corresponds with a change from 
continental-brackish to marine palynomorphs (Horner et al., 2019b). 

Transgressive sandstone deposits (FA8) are 0.5–5 m thick and 

Fig. 5. Open-marine facies associations including fluvial-tidal distributary channel (FA7-1) (A–E), tide-dominated channel and bar (FA7-2) (F), transgressive 
sandstone (FA8) (G–J), and open-marine strandplain/shoreface (FA9) deposits (J–L). (A) A fluvial-tidal distributary channel deposit with a sharp base and mudstone 
clasts. Note the abrupt mudstone color change from light grey (McMurray) to dark blue-grey (Wabiskaw). (B) and (C) Fluid-mud layers interbedded with cross- 
bedded and current-rippled sandstones. (D) and (E) Bidirectional current ripples. (F) A tide-dominated channel and bar deposit containing abundant shell frag-
ments. (G) Glauconitic heterolithic beds with Cylindrichnus (Cy), Thalassinoides (Th), Chondrites (Ch), and Diplocraterion (Di). (H) Hummocky/swaley cross-stratified 
sandstones. (I) Thick shell bed. (J–K) Abundantly bioturbated coarsening-upward (CU) unit with Thalassinoides (Th), Asterosoma (As), and Rhizocorallium (Rh). (L) 
Low-angle cross-bedded sandstones in the upper part of CU units. Dark brown rock is bitumen-stained sandstone. Core boxes are 10 cm wide. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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composed of glauconitic sandstones interbedded with siltstones and 
mudstones overlying a regionally extensive erosional basal surface. 
Some sandstone intervals show HCS/SCS (Fig. 5H) and wave-oscillation 
ripples. Shell beds, up to 0.6 m thick (Fig. 5I), are locally observed. 
Bioturbation is absent to abundant (BI 0–5) and dominated by the 
Glossifungites ichnofacies, including Thalassinodes, Diplocraterion, Skoli-
thos, Arenicolites, Cylindrichnus, and Teichichnus (Fig. 5G). Together, the 
wave-generated sedimentary structures, shell beds, and robust trace- 
fossil assemblage indicates an open-marine depositional environment, 
with exposure to storm waves and normal marine salinity (Cattaneo and 
Steel, 2003). 

Wave-dominated strandplain/shoreface deposits (FA9) comprise a 
relatively thick coarsening-upward succession (5–25 m thick) charac-
terized by heterolithic strata passing upward into amalgamated HCS/ 
SCS and low-angle cross-bedded sandstones (Fig. 5J-L). The lower 
mudstone-dominated intervals and uppermost strata of the sandstone 
bodies in FA9 are more intensely bioturbated (BI 2–5) and exhibit a 
diverse trace-fossil assemblage (Fig. 5J and K) that includes Thalassin-
odes, Asterosoma, Diplocraterion, Cylindrichnus and Rhizocorallium. Trace 
fossils in FA8 and FA9, compared to those in the other facies associa-
tions, are distinctively large (up to 10s of centimeters), suggesting 
normal marine salinity (Fig. 5G-L). 

4.2. Stratigraphic framework and architecture 

In the study area, the McMurray Formation and Wabiskaw Member 
are up to 150 m and 70 m thick, respectively (Fig. 6). 

4.2.1. The McMurray Formation 
The lower McMurray Formation, the basal unit of the McMurray- 

Wabiskaw interval, directly overlies the SCU and is typically less than 
15 m thick. Although it was not a focus of sedimentological analysis, it is 
dominated by thin, fining-upward successions of low-angle cross- 
bedded sandstones that grade upward into mudstone-dominated 

intervals commonly capped by coals and rare paleosols (Broughton, 
2015; Rinke-Hardekopf et al., 2019). These successions are interpreted 
as deposits of fluvial channels that were up to 150 m wide and 10 m deep 
and sourced from local catchments (Figs. 7 and 8) (e.g., Benyon et al., 
2016). Rare successions are 10–30 m thick and contain coals/paleosols 
greater than 10 m thick (Rinke-Hardekopf et al., 2019); these units 
mainly occur in areas with syn-depositional salt-dissolution collapse 
that experienced rapid accommodation creation (Broughton, 2015; 
Hauck et al., 2017) (Fig. 6). In the northeastern portion of the AOSR 
(Firebag tributary) (Fig. 6), the thick, uppermost coal layers have been 
interpreted to record the initial transgression of the Boreal Sea into the 
region during a fourth-order sea-level rise (Rinke-Hardekopf et al., 
2019). 

The channel-belt deposits are primarily located in the NW-SE- 
trending main paleovalley and its tributary paleovalleys (Fig. 1). 
Within the main paleovalley, multiple channel-belt deposits, each up to 
50 km wide and 50 m thick, are vertically stacked to create a composite 
deposit upwards of 70-m thick (Hagstrom, 2018; Horner et al., 2019a; 
Martin et al., 2019). West of the main paleovalley, the composite trib-
utary valley fills are 1–5 km wide and 30 m thick (Baniak and Kingsmith, 
2018; Hagstrom, 2018; Horner et al., 2019a), composed of channel-belt 
deposits that are more widely distributed (Fig. 7). The channel-belt 
deposits mainly comprise upward-fining successions of mudstone-clast 
breccias (FA1), point-bar (FA2), abandoned-channel (FA3), and 
overbank-floodplain (FA4) strata (Fig. 3). Paleo-channels identified 
within the paleovalleys are typically sinuous (Fig. 6), associated with 
point-bar and counter-point-bar depositional elements, and filled with 
muddy abandoned-channel deposits (Figs. 6 and 9) (e.g., Smith et al., 
2009; Hubbard et al., 2011; Musial et al., 2012a; Durkin et al., 2017; 
Martinius et al., 2017; Hagstrom et al., 2019). These features resemble 
the deposits of laterally amalgamated meander-belts, such as those of 
the modern Lower Mississippi and the Sittang rivers (Hubbard et al., 
2011; Musial et al., 2012a; Durkin et al., 2017, 2018; Hagstrom, 2018; 
Martin et al., 2019). 

Fig. 6. (A) Isopach map of the McMurray Formation and Wabiskaw Member in the McMurray sub-basin illustrating key paleo-topographic features on the sub- 
Creatceous Unconformity, including the main paleovalley and several secondary paleovalleys (Grouse, Sparrow, Pelican, Ells, and Firebag). The salt dissolution- 
collapse zone is to the east of the salt dissolution edge (from Hauck et al., 2017). (B) Isopach map of the McMurray Formation. (C) Isopach map of the Wabis-
kaw Member. Thick areas (>20 m) typically contain the Wabiskaw D, C, B, and A sands, while areas with thin strata include Wabiskaw C and B-A shales only. The 
black dashed arrows indicate major sediment transport direction. White lines are cross-section locations. T-Township, R-Range. 
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The deposits of a northward-flowing trunk river are best preserved in 
the McMurray A2 channel system, where a composite channel-belt unit 
10–30 km wide and 20–50 m thick has been interpreted in seismic and 
well-log data (Fig. 7) (Durkin et al., 2017; Hagstrom et al., 2019). Martin 
et al. (2019) interpreted avulsion nodes in this channel belt, linking one 
node to an upper tidal-backwater position in the trunk channel. This 
interpreted position of the paleo-backwater limit, combined with 
regional slope calculations, places the contemporary shoreline of the A2 
channel belt approximately 300 km downstream (i.e., north) of the 
study area’s northern limit (Durkin et al., 2017). Unfortunately, Pleis-
tocene glaciation removed these northern coeval units (Fig. 6) 
(Andriashek and Atkinson, 2007). 

Single-storey deltaic distributary channels have been identified in 
the McMurray Formation, with thickness similar to their associated 
parasequences (e.g., Figs. 1, 7 and 83C). The channel-belt characteris-
tics, however, are inconsistent with a distributary-channel interpreta-
tion. For example, the paleo-rivers clearly show evidence of extensive 
meandering that yielded highly composite strata and developed over 
extended time periods (e.g., Hubbard et al., 2011; Durkin et al., 2017, 
2018; Martinius et al., 2017; Hagstrom, 2018). This strongly contrasts 
with distributary channels, which are typically straight and persist with 
limited lateral mobility (e.g., Olariu and Bhattacharya, 2006). Addi-
tionally, the channel-belt deposits are dramatically thicker than their 
corresponding parasequences, suggesting an incisional origin (cf. Olariu 
and Bhattacharya, 2006). 

4.2.2. The Wabiskaw Member 
The McMurray Formation is typically overlain by the Wabiskaw D 

Sand, a sandstone-dominated unit composed of fluvial-tidal distributary 
channel (FA7-1) and tide-dominated channel and bar deposits (FA7-2) 
that originated in tide-dominated estuaries (Strobl et al., 1993; Wight-
man et al., 1997; Horner et al., 2019b). These sandstone-dominated 
deposits are up to 40 m thick (Fig. 10A) and are differentiated from 
the underlying McMurray Formation by the dark blue grey colour of the 
associated mudstone beds and by the robust trace fossils. 

The Wabiskaw D Sand is usually overlain by the glauconitic, trans-
gressive sandstone deposits (FA8) of the Wabiskaw C (Fig. 5G–I), which 
is less than 5 m thick. Its basal contact is erosive and demarcated by 
large trace fossils of the Glossifungites ichnofacies, indicating the sub-
strate was semi-cohesive and in an open-marine setting at the time of 
colonization (MacEachern et al., 1992). In some cases, the Wabiskaw D 
is absent and the Wabiskaw C directly overlies the McMurray Formation. 

The Wabiskaw C is overlain by the Wabiskaw B, which is typically 
5–8 m thick and dominated by mudstone (i.e., Wabiskaw B Shale). The 
Wabiskaw B Sand, a 10 to 30 m-thick sandstone body with tide- 
generated sedimentary structures (Figs. 9A–11C) that accumulated in 
the southeastern AOSR, is interpreted as tide-dominated channel and 
bar deposits (FA7) (Fig. 7A–F) (Wightman et al., 1995). The Wabiskaw B 
and D sands were both deposited (Figs. 6–11C) within the salt dissolu-
tion zone (Fig. 1), suggesting their deposition and preservation was 
influenced by the presence of paleotopographic lows in the 
sub-Cretaceous Unconformity surface (Wightman et al., 1995). 

Fig. 7. Cross section a-a’ with gamma ray (GR) well logs (GR values increase from left to right) showing continental-fluvial and deltaic deposits in the McMurray 
Formation overlain by open-marine tide- and wave-dominated deposits with tidal- and wave-ravinement surfaces in the Wabiskaw Member. Channel-belt systems 
stack to form very thick successions in the main paleovalley to the east. See Fig. 6B for cross-section location. Overlying the lower McMurray Formation is a 
stratigraphic interval (middle-upper McMurray Formation) composed of up to seven stacked parasequence sets (McMurray c3, c2, c1, b2, b1, a2, a1) and six widely 
mapped channel-belt deposits (McMurray C3, C2, C1, B2, B1, A2), which primarily hang stratigraphically from the top of the parasequence sets (Château et al., 2019; 
Hagstrom, 2018) (Figs. 2, 7–9). The parasequence sets are relatively thin (5–15 m thick) and are well preserved where not removed by later channelization, 
particularly in the secondary paleovalleys in the western part of the AOSR (e.g., Château et al., 2019) (Figs. 8 and 9). The parasequence sets are interpreted as 
wave-dominated-delta and bayhead-delta deposits (FA5, FA6) (Fig. 4) (Château et al., 2019; Horner et al., 2019b; Weleschuk and Dashtgard, 2019) that prograded 
across the region during sea-level highstand (100–300 kyr; fourth-order) (Cant, 1996). 
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The Wabiskaw B is overlain by the Wabiskaw A, which has 
mudstone- and sandstone-dominated units known as the Wabiskaw A 
Shale and Wabiskaw A Sand, respectively (Wightman et al., 1995; 
AEUB, 2003). The Wabiskaw A Shale is a regionally correlative 
mudstone that marks the top of the McMurray-Wabiskaw interval. The 
Wabiskaw A Sand is a coeval unit that consists of three NW-SE-trending 
linear sandstone bodies located further west (i.e., landwards) than the 
underlying Wabiskaw D Sand in the northwestern AOSR (Fig. 10). The 
two older sandstone bodies are 5–10 m thick and located in a more 
basinward position than the youngest body, which is 5–25 m thick 
(Figs. 10B and 12). Each body is a sandstone-dominated coarse-
ning-upward succession of thin marine mudstones abruptly overlain by 
sandstones with HCS/SCS and low-angle cross-bedding (FA9) 
(Fig. 5J-L). The three sandstone bodies are interpreted as backstepping 
strandplains/shorefaces (Figs. 10B and 12). The relatively thin deposits 
in the two older and basinward strandplains/shorefaces suggest they 
could have been reworked as sea level rose. Alternatively, the great 
thickness of the youngest strandplain/shoreface could be a result of 
increased sediment supply from the Canadian Cordillera or better 
preservation due to higher rate of relative sea-level rise. 

4.3. McMurray-wabiskaw sequence stratigraphic evolution 

From the Aptian, the McMurray sub-basin was subaerially exposed, 
and the deepest parts of the basin were occupied by an extensive flood 
plain. Approximately 126 Mya, in the Firebag tributary (Fig. 1C), thick 
coal layers near the top of the lower McMurray Formation record the 
initial transgression of the Boreal Sea into the basin during the Early 
Cretaceous third-order sea-level rise (Rinke-Hardekopf et al., 2019). The 
McMurray Formation parasequence sets (c3-c1, b2, b1) prograded in a 
northerly direction across the McMurray sub-basin during fourth-order 

sea-level highstands that each lasted between 100 and 300 kyr 
(Fig. 13A, C) (Cant, 1996). The McMurray Formation valley fills (C3–C1, 
B2, B1, A2) developed during fourth-order sea-level falls (Fig. 13B, D) 
(cf. Horner et al., 2019a) or in response to autogenic incision (cf. Martin 
et al., 2019). The stratigraphic, sedimentological, and ichnological evi-
dence indicate that from ~126 Mya into the Early Albian, the McMurray 
sub-basin was a low-accommodation setting with a shallow depositional 
gradient and restricted marine circulation. 

The boundary between the McMurray Formation and the overlying 
Wabiskaw Member is interpreted as a composite tidal-ravinement and 
wave-ravinement surface (Figs. 1 and 6–91-12) that is the result of a 
significant transgression related to the Early Cretaceous third-order sea- 
level rise (cf. Jackson, 1984; Cant, 1996; Wellner et al., 2018). Upon 
transgression, the basin became less physically restricted (Figs. 6C and 
13 E-F) and NE-SW-oriented tide-influenced and tide-dominated estu-
aries developed in the northwestern and southeastern parts of the study 
area (Figs. 6C, 10A and 11). The greater thickness of the Wabiskaw D 
Sand compared to the McMurray parasequence sets provides evidence 
that the transgression was accompanied by an increase in accommoda-
tion. The base of the Wabiskaw D Sand variably eroded the underlying 
McMurray strata and is interpreted as a composite tidal ravinement 
surface (Figs. 7–9, 11-12) that formed as the estuaries progressively 
migrated landwards (i.e., to the SW) during transgression. After depo-
sition of the Wabiskaw D Sand, a regionally extensive erosional surface 
developed at the base of the Wabiskaw C (Fig. 6C). This surface is 
interpreted as a composite wave-ravinement surface (Fig. 12) that 
formed over transgressions (cf. Zecchin et al., 2019). The Wabiskaw B 
Sand was deposited by another tide-dominated estuary that developed 
in the southeastern part of study area. Due to continued sea-level rise, 
backstepping strandplains/shorefaces developed in the northwestern 
AOSR. The strandplain/shoreface sediments were sourced from a 

Fig. 8. Cross section b-b’ with gamma ray (GR) well logs (GR values increase from left to right) showing the lateral extent of McMurray Formation parasequence sets. 
See Fig. 6B for cross-section location. 
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distributary channel-delta system in the west (Fig. 10B) and reworked 
and transported by storm-wave-generated longshore currents (cf. Mer-
letti et al., 2018). 

5. Discussion 

McMurray-Wabiskaw strata have sedimentological and stratigraphic 
features characteristic of low-accommodation deposits (e.g., Arnott 
et al., 2002; Zaitlin et al., 2002; Nadon and Kelly, 2004; Aschoff and 
Steel, 2011; Château et al., 2019, 2021) (Fig. 14A). For example, the 
McMurray Formation parasequence sets are thin and laterally contin-
uous with closely spaced unconformities (e.g., the 4th-order sequence 
boundaries) (Fig. 8). The main McMurray paleovalley trend was filled 
with multistory, stacked channel belts, and because accommodation was 
created slowly, channel aggradation was limited and the basal 
channel-belt deposits commonly amalgamated into a single, thick 
sandstone unit (Fig. 7) (cf. Shanley and McCabe, 1993; Wright and 
Marriott, 1993; Olsen et al., 1995; Currie, 1997; Martinsen et al., 1999). 
The abundant, closely spaced, nested valley fills interspersed with 
deltaic strata make facies patterns complex and difficult to predict. 

Another feature of the McMurray parasequence sets related to low 
accommodation and a low-depositional gradient is the lack of an 
obvious stacking pattern. Regionally, the c2, c1, b2, and b1 appear to 
stack retrogradationally (Château et al., 2021; Hagstrom et al., in press), 
but individual downlap surfaces are difficult to identify using well-log 

and/or seismic data, and parasequence thickness changes minimally 
over long distances. In low-gradient settings, a relative sea-level rise can 
cause a great, rapid landward shift of the shoreline (Cattaneo and Steel, 
2003; Zecchin et al., 2019), and in the case of the McMurray Formation, 
the shoreline travelled at least 700 km landward with each fourth-order 
transgression (Christopher, 1997). In the following regressive periods, 
the shallow gradient, combined with limited accommodation and 
shallow water depth, enabled the deltaic deposits to prograde hundreds 
of kilometers with limited stratigraphic rise or fall (cf. Colombera and 
Mountney, 2020). 

In contrast, the western WCFB had higher accommodation due to its 
proximity to the mountain belt. The Spirit River and Edmonton paleo-
valleys, northwest-trending drainage systems equivalent to the Assini-
boia Paleovalley, developed in this region during the Early Cretaceous 
(Jackson, 1984). Elevated accommodation in the western WCFB is re-
flected by relatively thicker clastic units fed by northwest-flowing 
drainage systems and eastward-flowing drainage systems with head-
waters in the rising Cordillera to the west (Jackson, 1984; Cant, 1996). 
The steeper-gradient topography slowed the southward transgression of 
the Boreal Sea, resulting in a longer period for wave and/or tidal energy 
to rework and redeposit sediment, yielding relatively thick transgressive 
(TST) deposits (Fig. 14B) (Cattaneo and Steel, 2003; Zecchin et al., 
2019). 

In the western WCFB, the Gething Formation (approximate 
McMurray Formation equivalent) was deposited in fluvial/non-marine 

Fig. 9. Cross section c-c’ with gamma ray (GR) well logs (GR values increase from left to right) showing meandering channel belts (McMurray C channels) visible in 
the McMurray isopach map in Fig. 6B. The channel belt strata consist primarily of point-bar and abandoned-channel-fill deposits. The sinuous morphology of channel 
belts can be interpreted in Fig. 6B. The thickest deposits correspond to stacked McMurray C2 and C3 channel-belt deposits. 
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Fig. 10. Maps highlighting transgressive depositional settings in the Wabiskaw Member. (A) Isopach map of the Wabiskaw D Sand showing SW-NE-oriented (yellow 
dashed lines), tide-dominated channel and bar deposits. (B) Net sand thickness map of Wabiskaw A Sand showing sandstone trends attributed to strandplains/ 
shorefaces that are backstepping towards the southwest. The black dots are data points used to generate the maps. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 11. Stratigraphic cross sections (A) d-d’, (B) e-e’ and (C) f-f’ with gamma ray (GR) well logs (GR values increase from left to right) emphasizing the interpreted 
tide-dominated deposits of the Wabiskaw D Sand (A and B) and Wabiskaw D and B sands (C). Tide-dominated channel and tidal-bar deposits have distinct sedi-
mentary features compared to McMurray fluvial channel-belt systems. See Figs. 6C–10A for cross-section location. 
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to brackish-water embayment settings directly on the sub-Cretaceous 
unconformity in the Edmonton and Spirit River paleovalleys (McLean 
and Wall, 1981; Finger, 1983; Hubbard et al., 1999; Deschamps et al., 
2017; Campbell et al., 2018). The Gething Formation is characterized by 
isolated channel fills interspersed in relatively fine-grained deposits 
with frequent coal beds (Hayes et al., 1994; Cant, 1996; Cant and 
Abrahamson, 1996). In this higher-accommodation setting, the fluvial 
channel-belt deposits have an overall aggradational stacking pattern, 
and the channel and point-bar deposits are separated by floodplain 
strata with very limited evidence of prolonged subaerial exposure 
(Fig. 14B) (Wright and Marriott, 1993; Olsen et al., 1995; Currie, 1997; 
Martinsen et al., 1999). Coal layers are well developed and preserved 
(Fig. 14B). The Gething Formation is overlain by marine sediments of 
the Bluesky Formation (approximate Wabiskaw Member equivalent), 
which consists of coarsening-upward cycles deposited in shoreface, 
barrier-bar, and deltaic environments (Jackson, 1984; O’Connell, 1988; 
Cant and Abrahamson, 1996; Campbell et al., 2018) and estuarine de-
posits attributed to bayhead deltas and wave-dominated estuaries 
(Terzuoli and Walker, 1997; Hubbard et al., 1999, 2002). 

There are several physiographic differences between foreland-basin 
and passive-continental-margin depositional settings: Foreland basins 
have shallow-gradient ramp margins without the obvious shelf-slope 
break seen on passive margins (Schwans, 1995), and subsidence rates 
in the foreland basin decrease away from the orogen (DeCelles and Giles, 
1996; Decelles, 2012), whereas on passive margins, subsidence rates 

increase in a seaward/basinward direction (Li et al., 2010) (Fig. 15). 
Additionally, sediments in the McMurray-Wabiskaw interval were 
transported parallel to the basin axis (i.e., parallel to the orogen), while 
in passive margins and transversely supplied foreland basins, sediment 
typically moves basinward, perpendicular to the basin axis (e.g., Long 
et al., 2020; Peng et al., 2020). Thus, because of its position on the 
cratonic margin of the foreland basin and its longitudinal drainage 
system, the McMurray-Wabiskaw depositional system should produce 
sedimentary sequences and architectures distinct to those of passive 
margins (e.g., Posamentier et al., 1988) or forelands (e.g., Posamentier 
and Allen, 1993). 

Estuaries form when a valley is drowned during a period of sea-level 
rise (Dalrymple et al., 1992). A tide-dominated estuarine succession 
typically consists of basal fluvial strata overlain by estuarine strata 
(Fig. 15A–C). In turn, the estuarine strata may be overlain by open 
marine or alluvial/deltaic strata, depending on sediment supply and the 
magnitude of the transgression (Boyd et al., 2006; Dalrymple and Choi, 
2007; Tessier, 2012). The estuarine strata are deposited in tidal-fluvial 
meanders, saltmarshes, tidal flats, and tidal bars (Dalrymple et al., 
1992). 

Valley fills in the McMurray Formation are not readily classified into 
established estuarine facies models. Throughout the AOSR, they are 
mainly composed of point-bar deposits and other elements of fluvial 
meander belts, such as counter point bars (Smith et al., 2009), 
oxbow-lake fills (Hubbard et al., 2011), and side bars (Durkin et al., 

Fig. 12. Cross section g-g’ with gamma ray well logs showing retreating strandplain/shoreface deposits in the Wabiskaw A Sand with associated wave ravinement 
surfaces (red lines). Note that although a proper datum is not used in the cross section (i.e., there is not an appropriate one available), the correlation and inter-
pretation are supported by the net-sand maps in Fig. 10B. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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Fig. 13. Interpreted paleogeographic evolutionary model of the McMurray-Wabiskaw interval illustrating McMurray fluvial deposits and low-accommodation deltas 
(A–D) transitioning to Wabiskaw tide-dominated deposits and wave-dominated strandplains/shorefaces (E–F). Red dashed rectangle indicates the study area. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Y. Peng et al.                                                                                                                                                                                                                                    



Marine and Petroleum Geology 139 (2022) 105583

16

2017). Both bar-scaling relationships (e.g., Musial et al., 2012a; Horner 
et al., 2019a) and provenance studies (e.g., Benyon et al., 2014, 2016; 
Blum and Pecha, 2014) suggest the meander belts were associated with 
continental-scale rivers. Conversely, a prevalance of mudstone beds and 
‘brackish-water’ trace-fossil assemblages have led others to ascribe an 
estuarine (e.g., Gingras et al., 2016) or fluvial-marine transition (Musial 
et al., 2012b; Martinius et al., 2015; Jablonski and Dalrymple, 2016; La 
Croix et al., 2019) origin for the deposits. Correlations of meander belts 
for tens (e.g., Durkin et al., 2018; Horner et al., 2019a) to hundreds (e.g., 
Martin et al., 2019; Hagstrom et al., in press) of kilometers along dip are 
difficult to reconcile with estuarine or fluvial-marine transition-zone 
interpretations, leading others to seek alternative paleo-environmental 
influences to explain the disparate regional stratigraphic and bed-scale 
observations in the basin (e.g., Broughton, 2020). Needless to say, the 
McMurray Formation remains difficult to interpret, although the 
regional stratigraphic framework presented in this study provides a 
foundation for pointed future efforts to unravel the geological history of 
this important stratigraphic succession. 

6. Conclusions 

The Lower Cretaceous McMurray-Wabiskaw interval of the Western 
Canada Foreland Basin represents the lowstand and transgressive 

systems tracts of a third-order sequence that evolved under the influence 
of a northward-flowing continental river and the southward- 
transgressing Boreal Sea. Because of its low accommodation and low 
topographic relief, the distal part of the WCFB was more influenced by 
eustatic changes than proximal parts of the basin: Superimposed fourth- 
order sea-level fluctuations induced rapid, far-reaching (>400 km) 
transgressions. During the subsequent regressions, wave-dominated 
shorelines prograded hundreds of kilometers and were deeply incised 
by rivers (McMurray Formation). Continued sea-level rise created tide- 
dominated estuaries, also with deeply incising channels, and progres-
sively backstepping shoreface/strandplain units (Wabiskaw Member). 
The stratigraphic architecture of these deposits has been difficult to 
interpret due, in large part, to the setting’s low accommodation, coupled 
with significant eustatic sea-level fluctuations and alluvial input. These 
strata illustrate the challenges of applying idealized facies models to 
low-accommodation settings. 
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Fig. 14. Dip-oriented schematic cross sections showing the differences between the stratigraphic architecture of fluvial and marginal-marine strata in A) low- 
accomodation settings with a shallow depositional gradient (from this study) (note the LST shoreline is located 100s of km basinward from TST shoreline), and 
B) higher-accommodation settings with a steeper depositional gradient (compiled from Hayes et al. (1994), Cant (1996), Cant and Abrahamson (1996), Hubbard 
et al. (1999), and Deschamps et al. (2017)). Components of a third-order sequence are marked on the figure. LST-lowstand systems tract; TST-transgressive systems 
tract; MFS-maximum flooding surface. 
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