研究课题
[1] 泡沫流体开采油气理论与技术
[2] 非常规油气藏储层改造及提高采收率
[3] 微纳米流体提高采收率
[4] 胶体与界面化学
科研项目
[1] 国家自然科学基金青年科学基金项目,纳米铠甲稳定的CO2干泡沫压裂液流变特征及滤失机理研究,2020,主持.
[2] 中国石油科技创新基金项目,页岩油储层无水泡沫压裂液体系构建及其增能提采机制研究,2019,主持.
[3] 中国石油大学(北京)青年拔尖人才引进人才基金项目,PM2.5强化的泡沫压裂液体系研究,2018,主持.
[4] 中国石油大学(北京)科研基金,超干纳米铠甲空气泡沫稳定机制及渗流规律研究,2020,主持.
[5] 中国石油集团科学技术研究院,乍得潜山油藏渗流机理研究,2019,主持.
[6] 中石化胜利油田,微乳液的界面性能测试,2018,主持.
[7] 中国石油集团科学技术研究院,花岗岩岩心特殊岩性实验,2019,主持.
[8] 中石化胜利油田,致密储层伤害相渗测试,2019,主持.
[9] 中石化胜利油田,特高含水期剩余油启动富集过程及界面微动力分析测试,2019,主持.
[10] 中石化胜利油田,强非均质油藏聚驱后微观剩余油定量评价测试,2020,主持.
Publications
[1] Study of nanoparticle–surfactant-stabilized foam as a fracturing fluid[J]. Industrial & Engineering Chemistry Research, 2015, 54(38): 9468-9477.
[2] Experimental study on the dynamic filtration control performance of N2/liquid CO2 foam in porous media[J]. Fuel, 2017, 202: 435-445.
[3] Synergistic mechanism of particulate matter (PM) from coal combustion and saponin from camellia seed pomace in stabilizing CO2 foam[J]. Energy & Fuels, 2018, 32(3): 3733-3742.
[4] Silica nanoparticles as a high-performance filtrate reducer for foam fluid in porous media[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 171-181.
[5] Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks[J]. Scientific Reports, 2017, 7(1): 5063.
[6] Enhanced oil recovery using aqueous CO2 foam stabilized by particulate matter from coal combustion[J]. Energy & Fuels, 2020, 34(3): 2880-2892.
[7] Dynamic filtration behavior of dry supercritical CO2 foam with nanoparticles in porous media[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 15014-15025.
[8] Aqueous CO2 foam armored by particulate matter from flue gas for mobility control in porous media[J]. Energy & Fuels, 2020, 34 (11): 14464-14475.
[9] CO2 mobility control in porous media by using armored bubbles with silica nanoparticles[J]. Industrial & Engineering Chemistry Research, 2021 60 (1): 128-139.
[10] 双子型VES清洁泡沫压裂液稳泡性能[J]. 中南大学学报(自然科学版), 2016, 47(9): 3101-3107.