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a b s t r a c t

Compared with the transverse isotropic (TI) medium, the orthorhombic anisotropic medium has both
horizontal and vertical symmetry axes and it can be approximated as a set of vertical fissures developed
in a group of horizontal strata. Although the full-elastic orthorhombic anisotropic wave equation can
accurately simulate seismic wave propagation in the underground media, a huge computational cost is
required in seismic modeling, migration, and inversion. The conventional coupled pseudo-acoustic wave
equations based on acoustic approximation can be used to significantly reduce the cost of calculation.
However, these equations usually suffer from unwanted shear wave artifacts during wave propagation,
and the presence of these artifacts can significantly degrade the imaging quality. To solve these problems,
we derived a new pure P-wave equation for orthorhombic media that eliminates shear wave artifacts
while compromising computational efficiency and accuracy. In addition, the derived equation involves
pseudo-differential operators and it must be solved by 3D FFT algorithms. In order to reduce the number
of 3D FFT, we utilized the finite difference and pseudo-spectral methods to conduct 3D forward
modeling. Furthermore, we simplified the equation by using elliptic approximation and implemented 3D
reverse-time migration (RTM). Forward modeling tests on several homogeneous and heterogeneous
models confirm that the accuracy of the new equation is better than that of conventional methods. 3D
RTM imaging tests on three-layer and SEG/EAGE 3D salt models confirm that the ORT media have better
imaging quality.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Anisotropy is an important factor to be considered for accurate
seismic imaging. Ignoring anisotropy can lead to significant dis-
tortions such as the blurring of migrated events, misaligned re-
flectors, and abnormal reflection coefficients. Many efforts have
been made to study the anisotropic effects on seismic data and to
include anisotropy in seismic forward modeling and migration
(Wang et al., 2022a,b). Crampin and Evans (1984) summarized a
unified theory for extensive dilatancy anisotropy (EDA), which
analyzes and explains the causes of azimuthal anisotropy and
predicts its universality. Although azimuthal anisotropy is more
complex than polar anisotropy, introducing it into seismic inversion
provides more effective information about fractured reservoirs.
Postma (1955) introduced the periodic thin layer anisotropy (PTL)
media, where each layer in an interlayer sequence is very thin with
.

y Elsevier B.V. on behalf of KeAi Co
its thickness comparable to the main wavelength of the seismic
wave. These multiple thin layers introduce anisotropic effects for
seismic propagation. HTI (transversely isotropy with a horizontal
symmetry axis, HTI) and VTI (transversely isotropy with a vertical
symmetry axis, VTI) can approximate the fracture-induced EDA and
PTL respectively. Combining EDA media and PTL media generates
orthorhombic anisotropic (ORT) media in arbitrary directions (Bush
and Crampin, 1991). VTI and HTI media are special cases of ORT
media. In cases where vertically oriented fractures are developed
on thin interbeds, or two sets of vertically oriented fracture systems
are formed in the same stratum under different in-situ stress, EDA
or PTL alone cannot describe their properties well. The ORT media
is the most appropriate model to match such properties.

Compared to the elastic wave equation, the acoustic wave
equation is commonly used for seismic forward modeling, imaging
and inversion due to its lower computational cost. However, using
the acoustic wave equation is inaccurate to describe the propaga-
tion of seismic waves because the actual seismic subsurface is
anisotropic. To improve the accuracy of the acoustic equation,
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Alkhalifah, 1998, 2000, 2003 proposed an acoustic approximation
that sets the S-wave velocity along the symmetry axis to zero based
on the weak dependence of P-wave propagation on S-wave veloc-
ity. This method utilized the fourth-order quasi-acoustic wave
equations for VTI media and ORT media in the time-space domain.
Following Alkhalifah's works, efforts have been made to further
develop the formulation and optimize the algorithm for modeling
and RTM. Zhou et al. (2006a, 2006b) decomposed the fourth-order
equation of TI media into two coupled second-order equations
under acoustic approximation, and extended the coupled equations
to TTI (tilted transverse isotropic) media. Du et al. (2008), Fowler
et al. (2010), Duveneck et al. (2008, 2011) derived different forms
of coupled pseudo-acoustic wave equations in TI and ORT media
(Du, 2004; Fowler and King, 2011; Cheng and Kang, 2014; Zhang
and Zhang, 2011; and others), and implemented the RTM.

Unfortunately, these equations suffer from an inherent problem
that the S-wave energy cannot be eliminated cleanly, resulting in
the presence of S-wave artifacts in the wavefield. This leads to
numerical dispersion and instability in areas with rapid variations
of anisotropy parameters. Fletcher et al. (2009) suggested retaining
a finite S-wave velocity in the coupling equations as a partial so-
lution to the instability problem. However, this approach can in-
crease the intensity of shear wave noise, and worsen the numerical
dispersion with increasing recurrence time. Yoon et al. (2010)
proposed to reduce the instability by setting ε ¼ d where the dip
angle varies sharply, but this approach changes the kinematic
characteristics of the wavefield and the local characteristics of the
model. Other scholars have proposed various methods to solve this
problem, such as putting sources into the isotropic or elliptic
anisotropic layers (Alkhalifah, 2000), smoothing the anisotropy
parameters model before seismic forward modeling or RTM (Zhang
and Zhang, 2008), and applying noise suppressing filters (Zhang
et al., 2009; Guan et al., 2011), and more. Unfortunately, none of
these methods can fully eliminate shear wave artifacts and insta-
bility issues well.

The pure P-wave equations have been derived by removing the
coupling relationship between the P- and S-wave, resulting in a
pure P-wave wavefield that eliminates shear wave artifacts in
modeling or RTM results. Liu et al. (2009) further simplified the P-
wave dispersion relation in acoustic VTI media by using the optimal
decomposition approximation method to derive the decoupled
acoustic wave equation. Zhan et al. (2012) obtained the pure P-
wave equation in the wavenumber domain using the square root
approximation, and implemented the TTI RTM using the pseudo-
spectral method (PSM) in space and rapid expansion method
(REM) in time, yielding high-quality imaging results. Xu and Zhou
(2014) decomposed the pseudo-differential operator into a differ-
r
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(2)
ential operator and a scalar operator and implemented the forward
simulation of TTI media in the time-space domain using the finite
difference method (FDM), thereby improving the computational
efficiency. This equationwas further extended to ORTmedia. Huang
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et al. (2017) implemented an indirect pure P-wave wavefield
extrapolation using low-rank decomposition. Mu et al. (2019,
2020a, 2020b) proposed a least-squares reverse-time migration
method (LSRTM) based on the pure P-wave equation in TTI media
that can correct the waveform distortion. Xu et al. (2020) proposed
a new acoustic symmetry (AS) approximation for VTI media that
aims to eliminate the coupled shear wave artifacts. Subsequently,
Abedi and Stovas (2020) analyzed the rationality of the AS
approximation method in detail and extended it to ORT media. In
addition, Stovas et al. (2016, 2020, 2021a, 2021b, 2021c) have also
done a lot of research in TI and ORT media.

In this paper, we derive a new pure P-wave equation that avoids
shear wave artifacts for simulation and reverse-time migration in
orthorhombic media. First, we derive a dispersion relation for P-
wave in orthorhombic media by following the elastic Christoffel
equation and introducing an acoustic approximation. Then, a series
of mathematical transformations are performed on the dispersion
relation to obtain the pure P-wave equation. Finally, we use a
hybrid scheme (Du et al., 2015; Wang et al., 2020) that combines
the finite difference method for solving a partial derivative in time
and three partial derivatives in space, with the pseudo-spectral
method for computing three mixed wave-number terms to obtain
a pure P-wavewavefield. Moreover, we simplify the equation based
on elliptic approximation and implement the 3D RTM with graphic
processing unit (GPU) acceleration in order to reduce the large
computational costs.
2. Theory

In constitutive coordinates, the stiffness tensor cijkl that is rep-
resented nine independent elastic parameters for orthorhombic
media (The orthorhombic media model can be seen in Fig. 1) can be
written as

CORT ¼

0BBBBBB@
c11 c12 c13
c12 c22 c23
c13 c23 c33

c44
c55

c66

1CCCCCCA (1)

If the properties of the orthorhombic are identical in all vertical
or horizontal planes, the orthorhombic media is reduced to TI
media and the nine parameters are reduced to five.

Under generalized Hooke's law and Newton's second law, the 3D
elastic second-order wave equation without the source term for
orthorhombic media in the time-space domain is given by
where u, v, and w are the wavefield of the three components; x, y,
and z are three directions in Cartesian coordinates. Therefore, after
the Fourier transform, Eq. (2) in the frequency-wavenumber
domain can be shown as follows:
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where bu, bv, and bw are thewavefield in Fourier domain; kx, ky, and kz
are the wavenumber in the x, y, and z directions, respectively; u is
the angular frequency, and r is the density. Assuming that the so-
lution of the plane wave for the elastic wave equation is

U ¼P exp
�
i
�
xkx þ yky þ zkz � ut

��
(4)

where U ¼ ðu; v;wÞT, P ¼ ðpx;py; pzÞT is the polarization vector of
the plane wave. We can obtain the elastic Christoffel equation in
orthorhombic media by plugging it into Eq. (3), namely
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The Christoffel equation is used to determine the eigenvalues

(the phase velocity of P-, SV-, and SH-wave) and eigenvectors (the
Fig. 1. Model of ORT anisotropic media
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directions of particle polarization). By solving this equation, the
phase velocities and corresponding mass polarization vectors can
be obtained. However, solving the analytical expression for the
phase velocity in any direction of propagation in three dimensions
is complex, especially in low-symmetric media where the phase
velocity varies along different directions of propagation. Typically,
the analytical expression for phase velocity can only be given for a
specific plane (symmetry plane) or a specific direction of propa-
gation (axis of symmetry). For Eq. (5) to have a non-zero solution,
the Christoffel matrix determinant must be zero, which can be
expressed as

det ½C� ¼0 (6)

which results in a cubic dispersion equation of the form in ortho-
rhombic media, and a representation of phase velocity is obtained
after solving (The relevant solution process can be referred to in
Appendix A).
: (a) fissure; (b) axis of symmetry.
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The equation has a maximum root when k ¼ 0, which corre-
sponds to the phase velocity of the P-wave. Additionally, with k ¼ 1
or 2, the two roots of the equation correspond to the phase velocity
of the split shear waves. In isotropic media, the eigenvalues cor-
responding to the two S-wave components are identical, meaning
the two S-wave components propagate with the same phase ve-
locity and polarization direction. However, in anisotropicmedia, Eq.
(5) does not have identical roots in the usual cases, which means
that the two S-waves propagate with different phase velocities and
polarization directions, resulting in a splitting phenomenon of the
shear wave. In particular directions, the split S-wave propagates
with the same phase velocity and polarization direction, leading to
shear-wave singularities.

By applying the weak-anisotropic approximation to Eq. (7)
(setting cos(b) ¼ 1 when k ¼ 0), we can obtain the weak-
anisotropic approximation expression for the phase velocity of
the P-wave (Further details of the derivation can be found in
Appendix B).
V2 ¼ V2
P0½1þ 2ε2 sin4 q cos4 fþ 2ε1 sin4 q sin4

fþ 2d2 sin2 q cos2 fcos2q

þ2d1 sin2 q sin2
f cos2 qþ 2ð2ε2 þ d3Þsin4 q cos2 f sin2

f
i (8)
where q is angle between the propagation direction and the vertical
axis, and f is angle between the propagation direction and the
horizontal axis.

Describing the physical significance of the phase velocity of
wave propagation in terms of the elastic stiffness tensor can be
unintuitive. To address this issue, Thomsen has proposed a set of
anisotropic parameters (Thomsen parameters) to characterize VTI
media (Thomsen, 1986). These parameters provide a visual repre-
sentation of some of the anisotropic characteristics of the media.
Tsvankin extended this approach to orthorhombic media, intro-
ducing two vertical velocities and seven dimensionless parameters
to characterize the elastic properties of orthorhombic media
(Tsvankin, 1997),
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where VP0 is the velocity of the vertical P-wave; VS0 is the velocity
Table 1
The time-consuming comparison between CPU and GPU.

Model grid size 100 � 100 � 100

Time-consuming on CPU, s 118.34
Time-consuming on GPU, s 0.56
Speedup 215.16
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of the vertical S-wave; ε are parameters that determine the
strength of the P-wave anisotropy, which indicate the difference
between the horizontal and vertical phase velocities of the P-wave;
g are parameters that determine the strength of the S-wave
anisotropy, which indicate the difference between the horizontal
and vertical phase velocities of the S-wave; d are transitional pa-
rameters linking the vertical and horizontal phase velocities of the
P-wave, which indicate the magnitude of the anisotropy of the
phase velocity near the vertical direction of the P-wave.

Eq. (7) is considered to be complicated for forward simulation
and RTM, therefore, setting VS0 ¼ 0 for the purpose of saving
calculation costs, and the stiffness tensors are then reduced to
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Applying the Tsvankin notation to Eq. (9), the acoustic approx-
imation of the P-wave dispersion relation can be expressed as
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Eq. (10) as well as being written as
200 � 200 � 200 300 � 300 � 300

1002.10 3418.95
2.28 5.74
439.52 595.64



Fig. 2. Phase velocity analysis between the proposed Eq. (12) (blue dashed curve) and the exact P-wave phase velocity (red solid curve) when the amplitude angle f is 90�: (a) phase
velocity; (b) relative error.

Fig. 3. Phase velocity analysis between the proposed Eq. (12) (blue dashed curve) and the exact P-wave phase velocity (red solid curve) when the amplitude angle f is 90�: (a) phase
velocity; (b) relative error.

Table 2
Anisotropic parameters for homogeneous media.

Model ε1 ε2 d1 d2 d3

I 0.15 0.10 0.01 0.01 �0.01
II 0.20 �0.05 �0.1 �0.1 �0.1
III 0.30 0.20 �0.15 �0.15 �0.15
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Here, we set V2
P0=u

2 ¼ 1=ðk2x þk2y þk2z Þ and neglect higher-order
terms, and then we get a new pure P-wave equation in the
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frequency-wavenumber domain:
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Fig. 4. Wavefield snapshots at 0.4 s in the 3D homogeneous media. (a), (c) and (e) are the wavefields simulated by the proposed pure P-wave equation in the I, II and III models,
respectively; (b), (d) and (f) are the wavefields simulated by the elliptic approximation equation in I, II and III models, respectively.
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Fig. 5. Anisotropic parameters and velocity in a three-layer model.

Fig. 6. Wavefields of the shot (located at (0.01 km, 1 km, 1 km)) in different media at
0.35 s in the 3D two-layer model. (a) ISO; (b) VTI; (c) ORT. The comparison at the blue
line is shown in Fig. 7.
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In the time-space domain, according to the following relations
and retaining the mixed wavenumber terms,
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Eq. (12) can be transformed as
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where p (x, y, z, t) is the pure P-wave wavefield in the time-space
domain. In practice, the numerical solution of Eq. (13) is relatively
simple and easy to implement. In this paper, a hybrid approach is
used to implement numerical simulations of the derived new Eq.
(13). The approach involves using the finite difference method to
calculate for the spatial partial derivatives and the spectral method
to calculate for the mixed partial derivatives to finally obtain the
whole wavefield.

For elliptical anisotropy, that is, ε1 ¼ d1, ε2 ¼ d2, ε1 � ε2 ¼ ð1 þ
2ε2Þd3, in the wave-number domain, Eq. (13) can be reduced to
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and in the time-space domain
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3. Numerical examples

3.1. Efficiency and accuracy tests

In the numerical examples below, we have implemented the 3D
3943



Fig. 7. The comparison of different media for single shot. The blue dashed line rep-
resents ISO media, the green solid line represents VTI media, and the red solid line
represents ORT media.
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forward modeling and RTM on the pure P-wave equation (Eq. (13)
and (15)), using finite difference and pseudo-spectral methods.
However, the conventional algorithm based on CPU for 3D
computing requires enormous amounts of time. In dealing with
massive data computing, GPU devices have higher performance
than CPU devices because it has a large number of computing cores.
Therefore, we apply GPU parallelization techniques in the algo-
rithm steps to improve efficiency. First, to test the performance of
GPU acceleration, we take three models of different sizes for
acoustic modeling as examples. The device models of GPU are
NVIDIA Quadro P5000, which has 16 GB GDDR5X memory and
2560 processors. The CPU model name is Inter Xeon Silver 4214,
which running at 2.20 GHz with 256 GB RAM memory. The time-
consuming comparison between CPU and GPU can be seen in
Table 1. As observed, as the model size increases, the CPU time
consumption increases faster than the GPU. Therefore, with GPU
acceleration in 3D computation can reduce a large amount of time
and significantly improve computational efficiency.

Second, in order to verify the accuracy of the proposed equation,
we test two models in Figs. 2 and 3. In Fig. 2, the model is taken
from Schoenberg (1997), and the model parameters are VP ¼
2:437 km=s, ε1 ¼ 0:329, ε2 ¼ 0:258, d1 ¼ 0:083, d2 ¼ � 0:078,
d3 ¼ � 0:106, g1 ¼ 0:182, g2 ¼ 0:0455, Vs ¼ 1:265 km=s. The
variation of g1, g2 and Vs have no influence on P-wave velocity.
Fig. 2 shows the error between Eq. (12) and the exact phase velocity
for orthorhombic media. The relative error in Fig. 2(b) becomes
zero when the polar angle q in 0e30� and 90�, and relatively minor
error begins to appear from 30�. Fig. 3 shows the relative error
under the strong anisotropic model, and the model parameters are
VP ¼ 3 km=s, ε1 ¼ 0:2, ε2 ¼ 0:6, d1 ¼ 0:15, d2 ¼ � 0:15, d3 ¼ �
0:2. The characteristics of the relative error in Fig. 3 are the same as
in Fig. 2, but the order of magnitude is 10 times smaller than that in
Fig. 2, and the phase velocity curve matches perfectly with the
exact P-wave phase velocity.

Next, we performed the numerical simulation of the pure P-
wave equation under several different sets of Thomsen's
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anisotropic parameter models in Table 2. Fig. 4 is the wavefield
snapshots at 0.4 s in several 3D homogeneous ORT models. The
main frequency of 20Hz ricker-wavelet is set as the source in the
center of the model with the size of 2 km � 2 km � 2 km. The
vertical P-wave velocity is set to VP ¼ 2:2 km/s, and the time and
space sampling intervals are set to 1ms and 0.01 km respectively to
satisfy the stability and dispersion conditions. Fig. 4(a), (c), and (e)
show the wavefields simulated by Eq. (13) in I, II, III models,
respectively; Fig. 4(b), (d), and (f) show thewavefields simulated by
Eq. (15) in I, II, III models, respectively. Both figures show that the
wavefields have only P wave components, without any presence of
shear wave artifacts.

3.2. 3D RTM tests

Finally, we tested the RTM results of the two models. Fig. 5
shows a simple three-layer model for 3D homogeneous medium.
The model size is 2 km � 2 km � 2 km, and Ricker-wavelet (the
main frequency is set to 25Hz) is set as the source at a depth of
0.01 km near the surface. A total of 100 shots are set, with 10 shots
in each row and column. The time and space steps are 1 ms and
0.01 km, respectively. The thickness of the first layer is 0.6 km and
the model parameters are VP ¼ 3 km=s, ε1 ¼ 0:2, ε2 ¼ 0:12. The
middle layer is 0.8 km, and VP ¼ 3:4 km=s, ε1 ¼ 0:22, ε2 ¼ 0:14.
And the bottom layer is 0.6 km, VP ¼ 3:8 km=s, ε1 ¼ 0:24, ε2 ¼
0:16. Fig. 6 displays the wavefield snapshots of three media at
0.35 s, and we extract the waveform slices at the position (0.01 km,
1 km, 1 km) of the blue line which is shown in Fig. 7. In order to
better compare the imaging results of different media methods, we
extracted the red frame part in Fig. 8(a), (c), (e), and enlarged it to
show in Fig. 8(b), (d), (f), respectively. As observed in Fig. 8(c) and
(e), the imaging results of VTI and ORT media in the figure are ac-
curate for a simple three-layer model, all of which can accurately
represent the structure of the model, with a slight difference in
low-frequency noise and amplitude. However, the imaging result of
ISO media is poor, and there are obvious imaging artifacts at both
reflection interfaces. In particular, the first layer of reflection
interface cannot be accurately positioned.

The last example is the modified SEG/EAGE 3D salt model. Fig. 9
depicts the vertical P-wave velocity (Fig. 9(a)), and the anisotropic
parameters ε1 and ε2 (Fig. 9(b) and (c)). The model size is
3.38 km � 3.38 km � 2 km, and the space difference intervals used
are 0.01 km � 0.01 km � 0.01 km. The time sampling step is 1 ms.
Ricker-wavelet (the main frequency is set to 15 Hz) is set as the
source at a depth of 0.01 km near the surface. A total of 256 shots
are set, with 16 shots in each row and column. For comparison, we
tested in isotropic (ISO), VTI, and ORT media. And Fig. 10(a)e(c)
show the RTM results of the acoustic equation, VTI and ORT
decoupled P-wave equation, respectively.

As observed, in ORT media, the imaging of salt structure is
clearer and better than in other media, and some deep structure
imaging is also clearer by using the equation derived in this paper
for RTM. This is further demonstrated in Fig. 11, where Fig. 11(a), (c)
and (e) show the zoomed views of the red boxes in Fig. 10(a)e(c),
respectively; Fig. 11(b), (d) and (f) show the zoomed view of the
yellow boxes in Fig. 10(a)e(c), respectively.

4. Discussions

When compared to 2D computation, 3D forward modeling and



Fig. 8. The comparison of migration results using different media from 100 shots. (a) ISO RTM; (b) red frame part in Fig. 8(a); (c) VTI RTM; (d) red frame part in Fig. 8c; (e) ORT RTM;
(f) red frame part in Fig. 8(e).
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Fig. 9. SEG/EAGE 3D salt models. (a) vertical P-wave velocity; (b) ε1; (c) ε2.

Fig. 10. The comparison of migration results using different media from 256 shots. (a)
ISO RTM; (b) VTI RTM; (c) ORT RTM.

Y.-H. Liu, J.-P. Huang, L. Chen et al. Petroleum Science 21 (2024) 3937e3950

3946



Fig. 11. Zoom view of RTM results in Fig. 10. (a) ISO RTM imaging result of the red frame in Fig. 10(a); (b) ISO RTM imaging result of the yellow frame in Fig. 10(a); (c) VTI RTM
imaging result of the red frame in Fig. 10(b); (d) VTI RTM imaging result of the yellow frame in Fig. 10(b); (e) ORT RTM imaging result of the red frame in Fig. 10(c); (f) ORT RTM
imaging result of the yellow frame in Fig. 10(c).

Y.-H. Liu, J.-P. Huang, L. Chen et al. Petroleum Science 21 (2024) 3937e3950

3947



Y.-H. Liu, J.-P. Huang, L. Chen et al. Petroleum Science 21 (2024) 3937e3950
reverse time migration can provide more subsurface geological
information, and the result in seismic imaging is clearer with
higher resolution. However, 3D data volume and its computational
cost can be substantial. In this paper, we design and implement a
3D RTM algorithm based on GPU, which greatly reduces the
computational cost. However, the model sizes used in the numer-
ical examples of this paper are relatively small, so the storage and
calculation burden are not prohibitive. This remains a challenge for
future applications to the 3D field data.

The exact dispersion relation of the orthorhombic medium is
extremely complex, which can be computationally intensive for
modeling or migration. The approximate methods and mathe-
matical transformations used in the derivation of the new pure P-
wave equation inevitably reduce the accuracy, but significantly
improve the efficiency of the solution. The new pure P-wave
equation requires the use of the pseudo-spectral method, specif-
ically, 3D FFT, which undoubtedly increases the calculation time
compared to the equation that only needs to be solved by the finite
difference method. Generally, this method is more straightforward
than the previous exact phase velocity formula.
5. Conclusions

We have derived a novel pure P-wave equation for ortho-
rhombic media with elliptic and anelliptic terms starting from the
Christoffel equation. To reduce computational costs, we used a
hybrid method of finite-difference and pseudo-spectral methods to
optimize the algorithm by reducing the number of 3D Fourier
transforms to implement modeling. In addition, we implemented
3D RTM by using the simplified equations of the elliptic approxi-
mation. Numerical examples show that the use of pure P-wave
equation in forward modeling and RTM can avoid shear wave ar-
tifacts and remain stable even when anisotropic parameters vary
significantly, it can also obtain accurate image results while
improving efficiency.
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Appendix A

Solving for the eigenvalues in Eq. (6) yields the following cubic
equation for the phase velocity valid for ORT media

x3 þAx2 þ Bxþ C ¼ 0 (A-1)

where x ¼ ru2 and
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Introduction of a variable y ¼ xþ A=3, Eq. (Ae1) eliminates the
squared term and becomes (Tsvankin, 1997)

y3 þDyþ E ¼ 0 (A-3)

and the coefficients

D¼ � A2

3
þ B (A-4)

E¼2
	
A
3


3

� AB
3

þ C (A-5)

Due to the fact that the Christoffel matrix is real and symmetric,
the coefficients D are negative and in order for the roots of Eq.
(Ae3) to be real, a condition needs to be satisfied for the co-
efficients D and E:
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There have three solutions to Eq. (Ae3) and can be expressed as

y1;2;3 ¼2
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where cos b ¼ � E

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�D=3Þ3

p , 0 � b � p.

Combined with x ¼ ru2 ¼ y� A=3, a representation of phase
velocity in orthorhombic media can be obtained
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Appendix B

In the P-wave exact phase velocity (Eq. (Ae8) when k ¼ 0) of
orthorhombic media, the cosine function can be expressed as Eq.
(Be1) after Taylor expansion,
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For isotropic, b ¼ 0, so that in the case of weak anisotropic
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According to Eq. (Ae2), �D can be expressed as

and Eq. (Be3) can be further reduced to
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where
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where, gs ¼ g1�g2
1þ2g2

.

Then, taking the mathematic transformation of Eq. (Be4), we
can obtain
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Furthermore, according to Eq. (A-2), �A can be expressed as
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Combining Eq. (Be7) and (Be8) into Eq. (Be2), we can finally get
the expression for the weak-anisotropy approximation of the phase
velocity of the P-wave.
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According to the following relationship,

kx ¼ sin q cos f; ky ¼ sin q sin f; kz ¼ cos q

Eq. (Be9) can also be written as
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