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Abstract: The submersible pumping unit is a new type of pumping system for lifting formation fluids
from onshore oil wells, and the identification of its working condition has an important influence on oil
production. In this paper we proposed a diagnostic method for identifying the working condition of the
submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump
structure, different characteristics in loading and unloading processes of the submersible linear motor were
obtained at different working conditions. The characteristic quantities were extracted from operation data
of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method
was proposed for identifying the working condition of the submersible pumping unit, where the inputs of
the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this
method were analyzed and validated by the data acquired from an experimental simulation platform. The
model proposed had an excellent performance in failure diagnosis of the submersible pumping system.
The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.

Key words: Submersible reciprocating pump, working condition, failure diagnosis, linear motor,
characteristic quantity, support vector machine, misjudgment rate

1 Introduction

The submersible reciprocating pumping system is a new
type of pumping unit used in oil fields. The submersible
reciprocating pump is driven by a linear motor to lift
formation liquids to the surface directly through oil tubing.
A control device at the surface regulates the linear motor,
which is powered by a submersible cable, to control the
working conditions of the pumping unit through changing the
operating time, stroke and the rate of the linear motor stator.

Different from conventional pumping systems, in this
pumping system a submersible plunger pump is directly
connected to a linear permanent magnet synchronous
motor at the well bottom to lift crude oil (Yu et al, 2011a;
2011b). Since the output power of the linear motor acts
directly on the pump for lifting crude oil, the submersible
pump has high energy conversion efficiency (Rossini et al,
2008). Furthermore, no sucker rod and other equipment are
introduced into the submersible pumping system compared
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with conventional pumping units, thus completely avoiding
eccentric wear between a sucker rod and oil tubing. However,
the linear submersible motor and the plunger pump are
exposed to severe well bottom conditions, failures such as
linear motor damage may occur, which seriously shortens the
work period of the pump (Fu et al, 2006; Yu et al, 2011D).
Therefore, it is important to find an effective way to detect
early abnormal working conditions before serious breakdown
of the submersible pumping system. With more and more
oilfields becoming maturing fields, the submersible pumping
units have been widely used for this type of pumping system.
This has major significance for energy saving and efficient
production (Yu et al, 2011a; 2011Db).

The abnormal working conditions of a pumping system,
such as paraffin deposits in oil tubing, sand production,
leakage, liquid shortage in the pump and gas obstruction, may
increase the work load of the linear motor. If the linear motor
works under abnormal conditions for a long period of time,
its in-service life, as well as the continuous running time,
will be shortened. Therefore, it is necessary to seek a way to
dynamically process the abnormal conditions of the pumping
system and to perform online diagnosis, thus providing early
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failure warning.

For conventional beam pumping units, an intelligent
fault diagnosis is used to recognize the dynamometer card
patterns (Gibbs and Neely, 1966; Foley and Svinos, 1989;
Nazi et al, 1994; Wu et al, 2004). However, the submersible
reciprocating pump is a new type of rodless pumping unit,
so it is impossible to measure polished rod load and stroke
(or displacement) to obtain a surface dynamometer card.
Meanwhile, as a new type of pumping unit, there have been
few papers on the analysis of its typical failure information.
The pumping system would not be running under abnormal
conditions for a long time in practice, so it is difficult to
obtain the samples of failure signals. The acquired failure
information and running state have an observably nonlinear
relation (Zhou and Bennett, 1998; Polycarpou and Trunov,
2000; Polycarpou, 2001; Zhang et al, 2005), especially in
the transitory stage of starting or stopping. For these reasons,
the diagnosis of the working conditions of the submersible
reciprocating pumping unit is characterized by small sample
size, nonlinear relation and dynamic change, thus the
conventional diagnostic methods are not well suited (Pazzani,
1987; Youn and Hammen, 1998; Vemuri et al, 1999; Carrasco,
1999).

In order to solve the above problems, we propose a
new method for the diagnosis of working conditions of
submersible pumping systems based on a support vector
machine (SVM) method. On the basis of the failure diagnosis
of monodrome SVM (Muller et al, 2001; Zhang, 2000; Du
and Hou, 2007), a diagnostic model is established to analyze
multiple working conditions. Meanwhile the characteristics
of the loading/unloading process of a submersible linear
motor are investigated and several characteristic quantities
are extracted. Then the sample data of the characteristic
quantities are used to train and test the diagnostic machine
based on SVM. The online diagnosis of the submersible
pumping systems is determined by observing and identifying
those abnormal working conditions. Diagnostic methods
based on SVM and learning vector quantization (LVQ) are
compared.

2 Failures and their characteristics of the
submersible pumping system

We have tracked and investigated working conditions
of several submersible pumping systems in several oil
production units in the Daqing Oilfield, China. The results
showed that abnormal working conditions like paraffin
deposits in oil tubing, sand production, leakage, liquid
shortage in the pump and gas obstruction may occur after
the submersible pumping system has been working for a
period of time. If these problems are not checked, they would
probably cause damage to submersible linear motors and
pumps, affecting the oil production.

The submersible reciprocating pumping system is different
from the conventional beam pumping units. A linear motor
is under the pump body, while its standing valve is above the
pump body. Furthermore, the submersible pumping system is
a type of rodless pumping unit and so its dynamometer card
cannot be measured. In this paper, the load changes under

abnormal conditions in the cycle of pumping are summarized
by analyzing the structural characteristics of the submersible
pumping system.

Influence of gas If the gas content in downhole fluids is
relatively high, some gas may be separated from the fluids
and remain in the pump at the start of the upstroke. As the
gas may be compressed and the exhaust valve cannot open
quickly, the loading rate slows down. On the other hand, some
solution gas and compressed gas are left in the clearance
space at the end of the upstroke, and the pressure in the pump
cannot decrease quickly due to gas expansion at the start of
the downstroke, so the suction valve cannot open quickly.
This results in unloading hysteresis. Although there are
differences in the working time of the suction and discharge
valves between the beam pumping unit and the submersible
pumping unit, the gas obstruction for the motor load is the
same. The more the gas there is, the longer the loading and
unloading time is, and the less the work is done in a cycle. Air
lock may occur in extreme cases. Therefore, the characteristic
quantities (loading time during the upstroke 7}, loading
time during the downstroke 77, ;, unloading time during the
upstroke Ty, unloading time during the downstroke Tjp,
average power during the upstroke P, average power
during the downstroke Pp;) are extracted from loading time,
unloading time and power of the linear motor, which serve as
the base to analyze the influence of gas.

Influence of liquid shortage in the pump If the
submergence depth in a well is too small or the fluid supply
from the reservoir is insufficient, the liquid cannot completely
fill the pump. When the upstroke of the submersible pump
is started, the suction valve cannot immediately open, so
unloading hysteresis occurs and the load begins to fluctuate
when the traveling valve bumps to the liquid in the pump.
Therefore, the characteristic quantities (average motor
current during the upstroke /7, average motor current during
the downstroke /., variance of the motor current during
the upstroke [y, variance of the motor current during the
downstroke I;,,, unloading time during the upstroke 7};,, and
unloading time during the downstroke 7p,,) are extracted
from the load fluctuation of the linear motor to analyze the
influence of liquid shortage in the pump.

Influence of leakage 1) If the traveling valve is leaky,
the pressure between the suction and exhaust valves gradually
goes up, and the pressure underneath the suction valve
gradually goes down during the upstroke of the pump. At the
same time, the liquid may leak underneath through the suction
valve, supporting the plunger of the reciprocating pump and
then slowing the load rate. However, with the opening of
the exhaust valve and the upward movement of the plunger,
the pressure between the suction and exhaust valves will
gradually reduce, so the support effect will be weakened and
the load will gradually become stabilized. The movement of
the plunger decelerates during the latter half of the upstroke.
When the liquid velocity is greater than the plunger rising
velocity, it will reproduce the support effect and lead to
premature unload. 2) When standing valve leakage occurs, the
liquid will flow into the space (or gap) between the suction
and exhaust valves where the exhaust valve is not tight during
the pump downstroke, which results in a delay of the opening
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of the suction valve. Therefore, the unload rate becomes slow
and the movement of the plunger decelerates during the latter
half of the downstroke. The fluids continue to leak through
the standing valve and the support effect of the liquid in the
pump leads to premature loading. 3) When the travelling and
standing valves are both leaky, the load change is equal to
the superimposed effect of these cases in isolation. 4) When
the leakage occurs at the oil tubing, although the loading
and unloading processes are not hysterestic, the maximum
load cannot reach the theoretical maximum. Therefore, the
characteristic quantities (7yy, Tpus Tups Toos Lues Ioes Pues
P,;) are extracted from loading time, unloading time and
maximum load of the linear motor to analyze the influence of
leakage.

Influence of sand production When the submersible
pump is installed at a location of the tubing string which is
surrounded with unconsolidated formation or the production
pressure is too high, sand will move into the wellbore from
the reservoir. If some fine sand gets into the pump, it will
generate additional resistance to the plunger in a certain
region or the whole region. As a result, the load of the
pumping unit increases during the upstroke and downstroke.
In general, the fine sand is randomly distributed in the pump,
thus the resistance is different in each cycle stroke and may
induce a drastic change in the pump load in a short time.
Therefore, the characteristic quantities (Z,y, Ip,y) are extracted
from load fluctuation in a cycle of the linear motor to analyze
the influence of sand production.

Influence of paraffin deposits Paraffin deposited in
the oil tubing creates an additional resistance to the plunger
during operation. This will increase the load during the
upstroke and downstroke. In this case, as the linear motor is
located at the lower part of the pump, the load change of the
submersible pumping unit is quite different from that of a
beam pumping unit. Therefore, the characteristic quantities
(Iyg, Ipg, Pup, Ppe) are extracted from load fluctuation in a
cycle of the linear motor to analyze the influence of paraffin
deposits.

The analyses of the pump structure and the operation
principle of the linear motor, characteristics of eight working
conditions are obtained. Although the characteristics of
different working conditions may be the same, the value
range and the variation of the characteristic quantities are
different. Therefore, by using of SVM classifier, characteristic
quantities are extracted to identify the working conditions of
the submersible reciprocating pumping system.

3 Extraction of characteristic quantities

The submersible reciprocating pump is operated in
an intermittent mode. Each running cycle includes four
states “upstroke-upstroke interval-downstroke-downstroke
interval”. Changes of the motor voltage and current in a cycle
are shown in Fig. 1, the upstroke/downstroke statuses are the
research focus.

As shown in Fig. 1, in the initial course of the upstroke/
downstroke of the submersible pumping unit, sharp peaks
are observed in the motor current curve, which are the
starting current of the linear motor. The starting current may

influence diagnosis of working conditions based on SVM
when extracting characteristic parameters. Therefore, it is
necessary to eliminate the peak value of the starting current
before processing data. The method is shown in Fig. 2, which
uses the first minimum value (at time ¢,) after the peak value
on the curve as a reference to find a point (at time #,) before
the peak value (the motor current at this point is equal to the
first minimum current). All current values between ¢, and ¢,
are substituted with the first minimum value.
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Fig. 2 Starting current of the linear motor

Above-mentioned analysis (Section 2) indicates that there
is a close relationship between the working condition of the
pumping system and the load of the submersible motor, and
the data such as operating voltage, current and power may
mirror the change of the load of the linear motor. Therefore,
it is necessary to extract the characteristic parameters of the
submersible linear motor for dynamic diagnosis of working
conditions.

In an operational cycle of the linear motor, the motor
current during the upstroke is defined as follows:
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where i is the motor current during the upstroke; #; is the
number of samples during the upstroke; /;;; is the average
motor current during the upstroke.

Loy =kyy Ly (O<ky, <) 2)
I =kyp 1 0<ky, <1 (3)

where ky; and kyp, are the loading and unloading coefficients
of the motor current during the upstroke, respectively; /7y
and I, are the threshold values of the loading current and the
unloading current during the upstroke.

T, =minS (4)
st L2, Se{l2- 1) 5)
T, =maxQ+1 (6)
st Ig=ly  Qell 2t} (7)

where Ty, Typ in Egs. (4) and (6) are the loading time and
the unloading time during the upstroke, respectively.

Similarly, during the downstroke of the submersible linear
motor, we define:

p

Iy :iziD(t) (8)
tD t=1
where i, is the motor current during the downstroke; #, is the
number of samples during the downstroke; /;; is the average
motor current during the downstroke.

Iy, Inp and kyy, kpp can be obtained from Egs. (2) and
(3) (0< kpy <1, 0< kpp <1). kpy and kpp are the loading
and unloading coefficients of the motor current during the
downstroke. I, and I, are the threshold of loading current
and threshold of unloading current during the downstroke.
In a similar way, Ty, and Ty, are the loading time and the
unloading time during the downstroke, they can be obtained
from Eqgs. (4)-(7). Besides, other characteristic quantities
should be defined as:

By=1 R0 ©)
=

Py :tiipn(t) (10)
1 &

IUV :t_Z(iu(t)_]UE)z (11)
U =1
1 & N

Iny :_Z(in(t)_]mz) (12)

tD t=1

where Py and Py, are the average motor power values during
the upstroke and downstroke, respectively; /i,y and Iy, are
the variances of the motor current during the upstroke and

downstroke, respectively.

4 Diagnosis of working conditions based on
SVM

4.1 Bayes decision rule based on SVM

In actual oil production, downhole conditions of
production wells are different, each submersible reciprocating
pumping system works under different and changing
conditions, so it is necessary to propose a method for
identifying nonlinear dynamic working conditions on small
size samples. The support vector machine (SVM) technique
is a widely used method with great adaptability (Scholkopf
et al, 1999; Vapnik, 1999; Luts et al, 2010). It is well suited
to the diagnosis of the working condition of the submersible
reciprocating pumping system. The nature of the SVM is
based on the principle of structural risk minimization. It is
a statistical learning machine which maps low-dimensional,
linearly non-separable data to a high dimensional space and
constructs an optimal hyperplane to classify the data (Chen
and Huang, 2006; Luo et al, 2010).

For a set of non-linearly separable samples,

Q= {(X,-,y,-)}f\il, vy, =+1 or y;=—1, N samples in all, if
there is a nonlinear mapping.

$(x), R" ->R™, (m, 2n,) (13)
After mapping the samples to a space with some
characteristic quantities from the original input space, the
hyperplane can be expressed as follows:
Jx)=o-¢(x)+b (14)
where @ and ¢(x) are m, dimensional vector; b is offset.
On the optimal hyperplane, 2/ ||a)|| should be the largest.
So quadratic programming problems may be solved with the
Lagrange method.
I 4 Y
inJ=—o -0o+C) ¢& 15
minJ =o' -0+ C) ¢ (15)

i=1

s.t. yi(o-x,+b)=21-¢ (16)

where & is the slack variable and, &, 20 (i=1,2,---, N);
C is the penalty coefficient. When C increases, the degree
of penalty increases accordingly. A dual problem can be
obtained:

N 1
max.J = Zai _EZZ]aiajyiyj¢(xi )¢(x,) a7
i= i=l j=
Lagrange’s multiplier, {&;}.,, meets the constraints:
N
s.0<e,<C, Day =0 (i=12--,N) (8)

i=1

As Eq. (17) only relates to a transvection operation, if a
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kernel function, k(x;-x,)=@(x,)" #(x,), satisfies the Mercer

condition, it does not need to know the specific form of the

nonlinear function. And the following discriminant function

can be obtained from the original input space:
N

S =2 ayk(x, x)+b (19)

i=1

Working condition identification of the submersible
reciprocating pumping system is mostly multi-valued. Multi-
valued classification usually can be obtained by using a
double-valued classifier structure, such as 1-a-r method, 1-a-
1 method or DAG-SVM method (Casdagh, 1989; Bottou et
al, 1994; Krebel, 1999). A multi-valued diagnostic method
for working conditions is proposed, which is based on Bayes
decision rules and single-valued SVM diagnosis method
(Wu et al, 2005; Lu et al, 2009). The single-valued SVM
diagnostic method is to construct a super-sphere in high
dimensional space, the super-sphere contain the required
samples, and refuses other samples.

For an / classification problem, each category is seen as a
positive class, that is y,=+1, and a single-valued SVM model
is trained. Assuming that the training set of each category is S,
and the corresponding category is 7;, then

[0)=Dak (x,x), x€S, i=L2-h (20)

Then we obtain / classifiers. fi(x) is the SVM output of the
sample category i (b is neglected for it is a constant and does
not affect the following discussion), which can be normalized
as follows:

K(x, x,

- 21
[Yake, x)dx [ f(x)dx @b

Because f,(x)20 and Iﬁ'(x)dle, f(x) can be
sed as a density function of some probability distribution
to construct the Bayes classifier. Conditional probability is
estimated as follows:

Ji ()
Pxly)=v——"— 22
[ (x)dx 22
Prior probability estimation can be expressed as:
fi(x)dx
P(y)= ’[ (23)

_Iﬁ(x)dx+Iﬁ(x)dx+---+fﬁ1(x)dx

And the total probability density can be expressed as:

P)=P(x[7)P(y) + P(x|7,)P(r,) +-+ P(x[7,)P(7,)
(24)
According to the Bayes theorem, the posteriori probability
estimation can be expressed as:

PG | = 2T

_ £ 1
[A@dx+[f,0dx+-+ [ f,(0dx P)

(25)

Because the total probability density does not affect
classification results, then P(x)=1, Eq. (25) can be expressed
as follows:

()
Jfl(x)dx+J‘fz(x)dx+---+J‘fh(x)dx (26)
(i=1,2,---,h)

P(yi|x):

Based on the minimum error rate criteria, the unknown
sample categories can been judged.

If fi(x)= max {f,(x)}, then x €7, 27)

The classifier structure is shown in Fig. 3, / single-valued
SVMs are built in this way, without repetition training in

various types of samples (Chua, 2003; Cherkassky and Ma,
2004; Du and Hou, 2007).

Fig. 3 Classifier structure

4.2 Constructing an input space vector

In a cycle of operation of the pumping unit, several
characteristic quantities defined in the previous section
are extracted. Because the orders of magnitude of these
characteristic quantities are quite different, it is necessary to
normalize them:

X —X

)"".i =2 i min —1 (28)

X

max — Fmin
where £, is the normalized data (X, €[=1, 1]), and x; is the
original sample data of the characteristic quantity; x,,,, and x,,;,
are the maximum and minimum values of the characteristic
quantity, respectively.

The input vector for identifying working conditions of the
submersible pumping system is obtained from Eq. (28):

A A

G=I[T

uu» TUD’

A A

1

A A A A A A T
TDU’ DD’I IDV’I DE’PUE’PDE]

uv» UE» (29)
4.3 Diagnosis of working conditions of the

submersible pumping system

One of the important problems in the diagnosis of the
working condition of the submersible pumping system is
how to choose an SVM kernel. In the SVM literature, most
of attention has been paid to the polynomial kernel function,
RBF kernel function and the sigmoid kernel function.
Therefore, these kernel functions are tested one by one and the
RBF function is selected as the kernel function. The process
of tests is not described here. The RBF kernel function is
expressed as follows:
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k(x,,%,) = exp(=|x, x| /&%) (30)
where o is a parameter that controls the kernel width.

In these characteristic quantities, Iy, Ipg, Py and Py are
inherent in the running of the submersible pumping system,
and they only vary with the sample data. But Ty, Tpy, Tpps
I,y and I, are not only related with sample data but also
related with kyy, kyp, kpy and kpp, so the selection of the
loading/unloading threshold will affect the accuracy of the
working condition diagnosis.

Under 9 kinds of working conditions, which are gas
obstruction, liquid shortage in the pump, valve leakage, sand
production, paraffin deposits and normal running, original
operational parameters are measured. After pretreatment
(normalization), training samples corresponding to each
working condition are obtained. The parameters C and ¢ of
the model are defined through those training samples. After
being trained, single-valued SVM classifiers under each
working condition are obtained and constitute the diagnostic
machine for multiple conditions of the submersible pumping
system, as shown in Fig. 3.

Another part of the running data measured under each
working condition is normalized and then used as test
samples for working condition diagnosis. The misjudgment
rate under each SVM parameter and threshold is used to judge
the working condition classifier of the submersible pumping
system.

S Simulation experiments

5.1 Simulation of working condition diagnosis based
on SVM

An experimental platform was developed to simulate
fluid circulation in an oil well. The platform consisted
of a simulated circulation system, a flow control device,
a submersible reciprocating pumping system and its
control device. A simplified schematic and a photo of
the experimental platform are shown in Figs. 4 and 5,
respectively. Electrical parameters of the cylinder-shaped
linear motor used were as follows: outer diameter 110 mm,
length 6 m, rated voltage 660 V, the maximum input current
50 A, the maximum output power 30 kW, rated thrust 24,000
N, maximum thrust 35,000 N, maximum travel of the slider
123 cm. Fig. 6 shows the cylinder-shaped linear motor and
the reciprocating pump, the red one is the linear motor, and
the blue one is the reciprocating pump. Fig. 7 shows the
control cabinet of the submersible reciprocating pumping
system.

In experiments, working conditions were simulated by
controlling the circulation pressure and introducing artificial
failures. Meanwhile real-time recording of the running state
of the linear motor and its current and power and other
parameters were acquired. The linear submersible motor
was rated at 8 strokes per minute. When the system was
stabilized, data of 300 full-cycles were recorded under each
working condition. Every full-cycle data created an input
vector, the first 230 input vectors were used to construct
training samples for the classifier, and the remaining 70

Manual valve 1

Pressure meter 1
Electric valve
Flow meter 1
Manual valve 2
[eag]
)

Control cabinet

(

Pressure meter 2

Circulating pump|
iquid storage tan

(N

Submersible reciprocating pump

Fig. 4 Schematic of the simulation platform

Fig. 5 Photo of the simulation platform

were used to construct test samples. The diagnosis classifier
for the submersible pumping system was trained by the 230
samples and tested by the 70 samples. kyy, kup, kpy and kpp
were manually-set parameters, if they changed, the training
samples would change, and C and ¢ would also change. The
misjudgment rate of each failure with different parameters
is shown in Table 1, F,: gas obstruction, F,: liquid shortage
in the pump, F;: travelling valve leakage, F,: standing valve
leakage, F;: leakage in both valves, F,: tubing leakage, F.:
sand production, Fy: paraffin deposits, Fy: normal running
(when the output of F, to F; classifiers was less than a setting
value, the running state may be determined as F,).

The values of relevant parameters shown in Table 1 are
only part of the experimental data. It was clear that when
kyy=0.85, kyp=0.80, kp,=0.80, kpp=0.75, the misjudgment
rate of each failure could be controlled in an expected
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Fig. 6 Linear motor and reciprocating pump

range. It should be noted that the normal running state F,
was not an individual classifier, its output came from other
classifiers. In our study, only 8 failures were simulated, and
the corresponding classifiers were trained and tested. So
the misjudgment rate of F, was higher than those of others.
However, in practice production, this may lead to an increase
in the misjudgment rate because of some unknown failure.
The misjudgment rate of the SVM-based method for
identifying the working condition of the submersible pumping
system is not only related to the model parameters, but
also related to the number of training samples. This paper
also described the effect of sample size (60-350 samples
on the misjudgment rate at the same model parameters.
Different training sample sizes, ranging from 60 to 350 by
an increment of 10, were used to estimate the dependence of

Fig. 7 Control cabinet of the submersible reciprocating pumping system

the misjudgment rate on the sample size (Fig. 8). But the test
sample size was kept at 70.

As shown in Fig. 8, the misjudgment rate of the working
condition diagnosis decreases with an increase in the
training sample size. It can be seen from the curve that the
misjudgment rate decreases from about 40% to 5% with an
increase in the training sample size when the free gas has an
influence on the working condition. Under the condition of
liquid shortage in the pump, the misjudgment rate decreases
sharply with an increase in the training sample size. When
the size of training samples is about 200, the misjudgment
rate drops to 6%, and then the rate fluctuation is small with
an increase in the training sample size. Under the condition of
sand production, the misjudgment rate decreases at an almost
constant rate. The misjudgment rate may slip below 5% as

Table 1 Misjudgment rate based on the SVM method

Misjudgment rate (kyy, kups kpus kop)s %o

(0.70, 0.80, 0.75, 0.70)  (0.75, 0.80, 0.75, 0.75)

(0.80, 0.85, 0.75, 0.80) (0.8, 0.80, 0.80, 0.75) (0.90, 0.85, 0.90, 0.80)

F, 11.7 8.4 6.9 4.9 5.7
F, 10.4 7.3 6.6 4.9 5.4
F, 8.5 95 72 58 59
F, 9.6 9.8 7.7 6.0 6.4
Fs 9.1 9.7 7.1 5.6 6.1
F, 7.3 7.7 6.4 3.1 4.0
F, 10.1 8.1 6.2 4.4 6.8
Fy 9.9 8.8 6.7 43 6.1
F, 6.5 6.6 5.4 4.1 4.9
Average 9.2 8.4 6.7 4.8 5.7
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Fig. 8 Misjudgment rate versus the number of training samples

the number of training samples reaches 200 or so, and then
the misjudgment rate changes slightly. Under the condition
of paraffin deposits, the misjudgment rate decreases sharply
when the number of training samples is less than 150. The
rate decreases below 5% when the sample size is about 200,
and then increases slightly with an increase in the sample size.
Under the leakage condition of the travelling valve, standing
valve and the both valves, the change of the misjudgment rate
are similar. The misjudgment rates are 7%-8% when there
are 250 training samples or so, and then fluctuate a little.
Under the condition of the tubing leakage, the misjudgment
rate decreases slowly when the number of training samples
is below 120. The rate decreases to below 5% when 120-
180 samples are used to train the classifier. After that, the
training sample size has little effect on the misjudgment rate.
Therefore, the misjudgment rate can reach a desired value
when the training sample size is about 200 and after that the
misjudgment rate is hardly affected by the sample size.

5.2 Comparative analysis of SVM- and LVQ-based
methods

Using the same experimental data, the misjudgment
rates of the diagnostic method based on the learning vector
quantization (LVQ) were calculated. The training samples
for classifier included the first 230 input vectors, and the
test samples included the last 70 ones. The neural network
structure of LVQ was 10-50-8: the number of the neurons
in the input layer was the vector dimension of characteristic
quantity; the number of the neurons in the output layer was
the number of working conditions; and the number of the
neurons in the competitive layer was 50 (the design and
optimization of network structure is another issue which
is not discussed here). The classifier based on LVQ for
identifying the working condition of the submersible pumping
system was trained and tested, respectively. The misjudgment
rate (listed in Table 2) was also related to the training sample
size. Taking the influence of paraffin deposits as an example
(because of results are almost the same, other working

Table 2 Misjudgment rate of the LVQ-based method

Misjudgment rate at different training sample size, %

Fault

50 100 150 200 230

F, 43.7 35.1 23.1 19.2 15.7
F, 40.1 332 223 16.8 14.1
F; 38.9 31.6 22.6 17.2 14.5
F, 42.1 37.2 23.7 16.3 133
Fs 39.1 32.8 229 16.1 12.7
F, 374 30.3 21.8 17.1 14.3
F, 425 36.3 23.2 20.2 18.1
Fy 41.3 34.9 22.1 19.3 17.2
Average 40.6 33.9 22.7 17.8 14.9

conditions are not discussed here), the effect of the sample
size (60-350 samples) on the misjudgment rate was discussed
when the model parameters are the same. The training sample
size was varied from 60 to 350, with an increment of 10, and
the test sample size was 70. The curves of the misjudgment
rate of the SVM- and LVQ-based methods are shown in Fig. 9.

As can be seen in Fig. 9, the misjudgment rate of working
condition diagnosis based on LVQ decreases significantly at
a constant rate when the sample number is below 170, and
then decreases slowly with an increase in the training sample
size. The misjudgment rate decreases to about 13% when
the training samples size reaches 350. The misjudgment
rate curve of working condition diagnosis based on SVM
slips smoothly when the sample size is below 120; and
the misjudgment rate decreases quickly from 25% to 7%
when the sample size is 120-180, then it decreases slowly.
The misjudgment rate reaches a minimum, 5%, when the
training sample set includes 280 samples. A comparison of
the misjudgment rate calculated from the LVQ- and SVM-
methods indicates that the misjudgment rate based on SVM
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Fig. 9 Misjudgment rates of the SVM- and LVQ-based methods

decreases at a faster rate and finally reaches a minimum
value, which indicates that the diagnosis based on SVM is
more suited for solving problems encountered in working
conditions of the submersible reciprocating pumping system.

6 Conclusions

We have analyzed the principle and working conditions
of the submersible reciprocation pumping. Based on the
structural characteristics of the pumping unit, a new way
to diagnosis the working condition of the submersible
reciprocating pumping unit was proposed and then tested by
the data obtained from the simulation platform.

1) Based on the structural and running characteristics
of the submersible reciprocating pumping unit, the
characteristics of the loading/unloading of the submersible
linear motor under different working conditions were
extracted. The characteristics of the working conditions listed
in this paper could be accurately described by the loading/
unloading characteristics.

2) The loading/unloading characteristics of the
submersible motor under various working conditions were
analyzed, and the loading/unloading thresholds of upstroke/
downstroke, such as kyy, kup, kpy, kpp and other characteristic
quantities, were defined. Extracting the characteristic
quantities from the collected original data of the submersible
linear motor, characteristic quantities Tyy, Tup> Tous Tops
Iy, Iy, Lug, Ings Pup, Ppr Were obtained, which were used
as the input of the SVM working condition diagnosis of the
submersible reciprocating pumping unit.

3) Training and test samples were acquired through
simulating various working conditions of the submersible
reciprocating pumping unit on the simulation platform. These
samples were used for training and testing the SVM classifier
for identifying the working condition of the submersible
reciprocating pumping unit. The test results were compared
with those from the LVQ classifier. The test results indicated
that the misjudgment rate of the SVM classifier varied with

the training sample size and the working conditions. The
SVM classifier had an excellent performance on pattern
recognition, with a misjudgment rate of about 5%.
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