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Abstract: Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. Several
approaches have been presented in the literature (Beal, 1946; Khan et al, 1987; Beggs and Robinson,
1975; Kartoatmodjo and Schmidt, 1994; Vasquez and Beggs, 1980; Chew and Connally, 1959;
Elsharkawy and Alikhan, 1999; Labedi, 1992) for predicting the viscosity of crude oil. However, the
results obtained by these methods have significant errors when compared with the experimental data.
In this study a robust artificial neural network (ANN) code was developed in the MATLAB software
environment to predict the viscosity of Iranian crude oils. The results obtained by the ANN and the
three well-established semi-empirical equations (Khan et al, 1987; Elsharkawy and Alikhan, 1999;
Labedi, 1992) were compared with the experimental data. The prediction procedure was carried out at
three different regimes: at, above and below the bubble-point pressure using the PVT data of 57 samples
collected from central, southern and offshore oil fields of Iran. It is confirmed that in comparison with
the models previously published in literature, the ANN model has a better accuracy and performance in

predicting the viscosity of Iranian crudes.

Key words: Viscosity, crude oil, artificial neural network, empirical equations

1 Introduction

Viscosity is an important parameter needed for petroleum
engineering analysis (Egbogah and Ng, 1990; Larter et al,
2008; Shi et al, 2010). The oil viscosity is a strong function
of temperature, pressure, oil specific gravity, dissolved gases
and composition of oil mixture (Riazi and Al-Sahhaf, 1996;
Martin-Alfonso et al, 2007). Although oil viscosity can be
measured isothermally at reservoir temperature and different
pressures, viscosity data at different temperatures other than
reservoir temperature are needed for design of processing
equipments, tubing-string, gas-lift, pipelines and particularly
for thermal recovery processes (Beal, 1946; Moharam et al,
1995; Das, 1998; Chang et al, 1999; Kilonzo and Margaritis,
2004; Obanijesu and Omidiora, 2009). In order to solve
this problem, empirical correlations are used to predict
the viscosity when experimentally measured data are not
available. These correlations usually vary in complexity and
accuracy depending upon the available crude oil data.

Several studies have been reported on the development
of empirical correlations for prediction of crude oil viscosity
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Received July 1, 2012

as a function of reservoir temperature, oil API gravity, and
solution-gas oil ratio (Beal, 1946; Khan et al, 1987; Beggs and
Robinson, 1975; Kartoatmodjo and Schmidt, 1994; Vazquez
and Beggs, 1980; Chew and Connally, 1959; Elsharkawy and
Alikhan, 1999; Labedi, 1992). Most of these correlations are
developed for a given area or region using limited viscosity
data. These correlations have limited accuracy in estimating
crude oil viscosity when applied to new area or regions (Sutton
and Farshad, 1990). Other empirical or semi-empirical
models use reservoir fluid composition to predict oil viscosity
(Lohrenz et al, 1964; Little and Kennedy, 1968).

The physical properties of crude oils determined by an
experimental method have high accuracy. However, it is
expensive and time-consuming. The oil industry requires a
method which is fast, workable and more cost effective than
the experimental method. Artificial neural network (ANN)
is taken as the best alternative for predicting the physical
properties of crude oils, as it takes a short time and is not
costly (Van der Walt et al, 1993; Elsharkwy and Gharbi,
2000; Obanijesu and Omidiora, 2009; Omole et al, 2009;
Dong et al, 2010). The ANN is currently used in prediction
of properties in chemical and petroleum engineering (Roosta
et al, 2012; Zendehboudi et al, 2012), prediction/estimation
of the solubility of different solvents in supercritical carbon
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dioxide (Mehdizadeh and Movagharnejad, 2011), prediction
of hydraulic fracturing (Mohaghegh and Ameri, 1994),
predicting formation lithology (Wang and Zhang, 2008), and
estimation of water saturation (Toomarian et al, 1997).

This paper develops an ANN model for predicting the
viscosity of 57 crude oil samples collected from central,
southern and offshore oil fields of Iran. This model is
designed for estimation of saturated and under-saturated oil
viscosities. Input parameters for this network are temperature,
pressure, bubble point pressure, solution gas-oil ratio, and oil
specific gravity. The results generated from the ANN model
and selected empirical model (Khan et al, 1987; Elsharkawy
and Alikhan, 1999; Labedi, 1992), were then plotted against

the existing data from the corresponding field on a cross plot
to evaluate the model’s degree of accuracy.

2 Theory

2.1 Empirical viscosity correlations

Over the years, several empirical correlations have been
developed for determining viscosity properties of crude oils
using data from different geographical locations. The most
popular empirical models applied for prediction of Middle
East crude oil viscosity are those developed by Elsharkawy
and Alikhan (1999), Khan et al (1987), and Labedi (1992).
The correlations used for this study are given in Table 1.

Table 1 Correlations for dead, saturated and under-saturated oil viscosity
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2.2 Artificial neural network

Neurons are the main building blocks of artificial neural
networks. Each neuron is connected to some of its neighbors
with a varying coefficient of connectivity. The connections
receive a sum of inputs which generate the output by applying
the transfer function. The type of neurons’ transfer function
used in this study is a sigmoid function in the hidden layer
which is defined by the following equation:

g -

Yo lte”

(11)

In Eq. (11), ¥ is the sum of weighted inputs to each
neuron and @ is the output of each neuron, and ¥ can be
calculated from Eq. (12):

V= (ZWUQJJFbi
i=1

where w; denotes the connection between node j of interlayer
[ to node i of interlayer /-1, b; is a bias term and » is the
number of neurons in each layer. In any interlayer / and
neuron j input values are integrated to generate ¥,. The bias
term is considered as an extra unit to the model that is similar
to the intercept term in regression modeling.

In order to minimize the difference between the
experimental data and calculated values from the neural
network, the above mentioned process was repeated for all
the training data. After training and validation, the neural
network can be tested with real data. The overall structure of
the proposed network in our work is presented in Fig. 1.

There are numerous types of artificial neural networks
such as multi-layer perceptron (MLP) network, radial basis
function (RBF) network and recurrent neural network (RNN).
This work uses a multi-layer perceptron network. The multi-
layer perceptron network is one of the most popular and
successful neural network architectures, which is suitable to
a wide range of applications such as prediction and process
modeling (Kim and Adali, 2002; Zhang, 2009).

(12)

Input layer

Hidden layer Output layer

Fig. 1 Overall structure of the proposed network in our work

2.2.1 Preparation of training dataset

In this work, an ANN model was developed for predicting
the viscosity of Iranian crude oils using PVT data from
samples collected from central, southern and offshore oil
fields of Iran. Viscosity data were measured by rolling
ball viscometry at different pressures by the Research
Institute of Petroleum Industry of Iran (RIPI). Data included
measurements of crude oil viscosity at reservoir temperature
with 376 samples below the bubble-point pressure, 57
samples at the bubble-point pressure and 287 samples above
the bubble-point pressure.

It is reported in the literature that the viscosity of crude
oils strictly depends on temperature, pressure, dissolved gas-
oil ratio, and oil specific gravity (Chew and Connally, 1959;
Beggs and Robinson, 1975; Vazquez and Beggs, 1980; Khan
et al, 1987; Labedi, 1992; Kartoatmodjo and Schmidt, 1994;
Elsharkawy and Alikhan, 1999). Thus, these parameters were
used in ANN in this work. The data range and source of the
crude oils for some published models for saturated and under-
saturated crude oil viscosity, as well as the proposed model in
this work for the Iranian oil reservoirs, are shown in Tables 2
and 3.

Table 2 Data range of some existing models for saturated oil viscosity

Models
Crude
Labedi (1992) Elsharkawy and Alikhan (1999) Khan et al (1987) This work
Source Africa Middle East Saudi Arabia Iran
Gas-oil ratio, scf/stb 13-3533 10-3600 - 315-1558
Bubble-point pressure, psi 60—6358 100-3700 - 800-5156
Saturated oil viscosity, cP 0.11-3.72 0.05-20.89 - 0.204.14
Table 3 Data range of some existing models for under-saturated oil viscosity
Models
Crude
Labedi (1992) Elsharkawy and Alikhan (1999) Khan etal (1987)  This work
Source Africa Middle East Saudi Arabia Iran
Pressure above bubble-point, psi - 1287-10 000 Up to 5015 8005156
Under-saturated oil viscosity, cP - 0.2-5.7 0.13-71 0.3-6.47
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2.2.2 ANN modeling

Programming, validation, training and testing of the
ANN model was carried out with MATLAB 7.7.0, and all the
programs were run on a Pentium IV (CPU 2.7 GHz and 2 GB
RAM) personal computer with the Windows XP operating
system.

For determination of optimal values of weights and biases
of ANN, some steps need to be completed. They include:

1) Data need to be divided into three parts (training subset
(60% of all data), validation subset (10% of all data) (see
Appendix B) and testing subset (30% of all data)).

2) Data need to be normalized. Normalization can be done
by several equations. In this work, data is scaled between
[0.1-0.9] by means of Eq. (13):

(Actual) , —mi

S l d _ valu
( caie )value Max

(actual )

=% (0.8+0.1

value

. (13)
(actua ) —min (actual)

value

The normalization step made the ANN models overcome
the different magnitudes of the input and output variables.

3) Number of neurons in hidden layer should be
optimized.

Some other parameters for neural network training need
to be selected by user.

3 Results and discussion

In this work, we used a sigmoid function for the transfer
function in the hidden layer and the lineal function (purelin)
for transfer function in the output layer. The Levenberg-
Marquardt back propagation learning algorithm was used for
training. In most cases, one hidden layer is enough but the
number of neurons in the hidden layer should be optimized
for each problem. As mentioned above, optimization of the
number of neurons in the hidden layer is one of the most
important steps in ANN modeling. Fig. 2 shows the average
relative deviations of ANN for testing the subset versus the
number of neurons in the hidden layer for the samples at
bubble-point pressure, and above and below the bubble-point
pressure. Results strongly indicated that 6 neurons in hidden
layer can predict with the best accuracy. So an ANN with 6
neurons in input layer, 6 neurons in the hidden layer and one
neuron in the output layer was constructed in this study.

25

% Bubble-point pressure
- Below bubble-point pressure
---a-- Above bubble-point pressure

20 e,

Average relative deviation

Number of neurons in the hidden layer

Fig. 2 Average relative deviations of ANN for testing subset versus
number of neurons in the hidden layer

In order to compare the performance of the models,
statistical error analysis was performed. The accuracy of ANN
model presented in this study as well as the ones reported in
literature for estimating the viscosity of Iranian crude oils are
given in Tables 4-6. These tables show the average percent
relative error (E,), average absolute percent relative error (E,),
standard deviation (S), and the correlation coefficient (») for
the models (see Appendix A).

The performance plot (cross plot) is a graph of the
predicted versus measured properties with a reference 45° line
to ascertain fitness and accuracy of the correlations. A perfect
correlation would show a straight line with a slope of 45° (see
Figs. 3-8).

After training and evaluation of ANN, its ability to
predict the viscosity of Iranian crude oils can be checked.
The performance of the proposed architecture (for viscosity
of crude oil at, above and below the bubble-point pressure)
was studied by comparison with the experimental data and
calculated values with the training and testing data sets and
the results are shown in Figs. 3-5. The diagonal lines in these
figures are the locations of exact predictions and the points in
the figures show training and testing data. The error of each
prediction is relative to the distance between each point and
the diagonal line, so scattered points near the diagonal line
can show the overall accuracy of the presented model.

[0 Training subset

® Testing subset

Calculated

0 T T T T
0 1 2 3 4 5

Experimental

Fig. 3 Comparison of experimental data and calculated values with training
and testing data for viscosity of oil at the bubble-point pressure

3.1 For saturated oil viscosity

3.1.1 For oil at the bubble-point pressure

Statistical analysis parameters for all the models for
estimating viscosity of Iranian crude oils at the bubble-point
pressure show that the ANN model has the smallest average
relative error, average absolute relative error, and standard
deviation, followed by the model of Elsharkawy and Alikhan
(1999), as shown in Table 4. The ANN model has £, of 19.3,
while Elsharkawy and Alikhan (1999), Khan et al (1987) and
Labedi (1992) correlations have E, of 20.4, 75.9 and 262.5
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Table 4 Statistical accuracy of models for estimating viscosity of Iranian crude oils at bubble-point pressure

Average percent

Average absolute percent

Standard deviation Correlation coefficient

Model relative error E, relative error £, S r
ANN (this work) -9.3 19.3 17 0.95
Elsharkawy and Alikhan (1999) -16.9 20.4 19.9 0.92
Khan et al (1987) -75.1 75.9 49.1 0.69
Labedi (1992) -262.5 262.5 164.7 0.40
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Fig. 4 Comparison of experimental data and calculated values with
training and testing data for viscosity of oil below the bubble-point pressure
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Fig. 5 Comparison of experimental data and calculated values with training
and testing data for viscosity of oil above the bubble-point pressure

respectively, indicating that the results from the proposed
ANN model are in better agreement with experimental
data (see Fig. 6). Fig. 6 also shows that, the ANN model is
better than the other models for saturated (bubble-point) oil
viscosity below 1.5 cP.

Observed viscosity, cP

Fig. 6 Performance of models for oil viscosity at
the bubble-point oil pressure

3.1.2 For oil below the bubble-point pressure

Table 5 gives the results of the proposed ANN model
and other ones for prediction of oil viscosity below the
bubble-point pressure. This table shows that ANN model
prediction of below the bubble-point viscosity of Iranian
oil reservoirs has the largest value of correlation coefficient
and the lowest average relative error, standard deviations,
and average absolute relative error. As shown in Table 5,
the new proposed model, with E, of —5.8, has the smallest
relative error, whereas Labedi’s correlation (1992), which
was developed based on African crude oils, with E, of —220.1,
has the biggest relative error, among these correlations. Fig.
7, also shows that the new proposed model has the smallest
error range. That is, the ANN model could be relied upon
more for oil viscosity below the bubble-point pressure with
viscosity below 3 cP.

3.2 For under-saturated oil viscosity

Statistical analysis parameters for all the models
for estimating viscosity of Iranian crude oils above the
bubble-point pressure show that the ANN model has the
smallest average relative error, average absolute relative error,
and standard deviation, followed by the model of Elsharkawy
and Alikhan (1999), as shown in Table 6. The ANN model
has E, of 19.4, while Elsharkawy and Alikhan (1999), Khan
et al (1987) and Labedi (1992) correlations have E, of
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22.9, 77.9 and 265.7 respectively. Fig. 8 shows that Khan
et al (1987) and Labedi (1992) correlations underestimate
experimental data. This figure shows that the results of the
ANN model developed in this work are in better agreement
with experimental data compared with the other predictions.

Table 5 Statistical accuracy of models for estimating viscosity of Iranian
crude oils below the bubble-point pressure

Model E

T

E, S r

ANN (this work) 5.8 13.7 15.2 0.63

Elsharkawy and Alikhan (1999) 19.8 25.6 24.1 0.43

Khan et al (1987) -102.2 103.2 64.3 0.57
Labedi (1992) -220.1 220.5 127.8 041
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Fig. 7 Performance of models for oil viscosity below
the bubble-point pressure
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Fig. 8 Performance of models for oil viscosity above the
bubble-point pressure

Table 6 Statistical accuracy of models for estimating viscosity of Iranian
crude oils above the bubble-point pressure

Model E, E, S r
ANN (this work) -15.2 19.4 41.6 0.93
Elsharkawy and Alikhan
(1999) —20.5 229 47 0.92
Khan et al (1987) -71.2 77.9 163.9 0.68
Labedi (1992) —265.7 265.7 558.8 0.41

4 Conclusions

It seems that the most common method for calculating
viscosity of crude oils is viscosity correlations. However,
these correlations fail to predict oil viscosities in a wide range
of operating conditions such as pressure and temperature. In
this work, an artificial neural network (ANN) and three well
known empirical equations were used to predict the viscosity
of Iranian crude oils from three different regions. These
models incorporate oil API gravity, reservoir temperature and
pressure, and other parameters that can be obtained easily
from PVT analysis. Our model was developed using 57 points
for saturated oil viscosity, 376 points for viscosity below the
bubble-point pressure, and 287 points for viscosity above
the bubble-point pressure. It was shown how a multi-layer
perceptron network can be trained to represent the viscosity
of crude oils. Finally, it was found that in comparison with
correlations previously published in the literature, the ability
and accuracy of the ANN model for predicting oil viscosities
of Iran are better. Our results indicated average relative error
(E,) of ANN as 0.1%, —5.8% and —15.2% for the bubble-point
pressure, below the bubble-point pressure, and above the
bubble-point pressure, respectively.
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Nomenclatures

7.  Gas specific gravity (air =1.0)
v,  Oil specific gravity (water = 1)
API Oil API gravity

P Pressure, psi

P, Bubble point pressure, psi

R, Solution gas-oil ratio, scf/stb

1, Oil viscosity below the bubble-point, cP
U,  Under-saturated oil viscosity, cP

o, Saturated oil viscosity, cP

Uq Dead oil viscosity, cP

T; Reservoir temperature, °F

E, Percent relative error

E, Average absolute percent relative error
E.  Average percent relative error

S Standard deviation

n  Number of data points

r Correlation coefficient

X., Experimental value for any fluid property
X, Estimated value for any fluid property
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0. (I; +459.67)/ 459.67= Relative temperature

i Observation index
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Appendix A. Statistical analysis
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Appendix B. Experimental data used in validation subset

Pressure Viscosity above the bubble-point Pressure Viscosity below the Pressure Viscosity at the bubble-point
psi pressure, cP psi bubble-point, cP psi pressure, cP
940 2.6 255 32 800 2.6
1250 2.7 500 2.9 1558 0.9
1615 2.8 745 2.6 2514.8 0.9

2045 2.9 313 1.3 2975 0.5
2485 3.0 613 1.1 4400 0.4
2815 3.2 913 1.0 3066 0.9
2018 0.9 1218 0.9
2518 0.9 1508 0.9
3023 0.9 185 1.3
3523 1.0 695 1.1
4023 1.0 1215 1.1
5023 1.1 1665 1.0
2615 0.9 2215 0.9
3000 0.9 225 1.2
3440 1.0 450 1.1
3965 1.0 750 1.0
4440 1.1 1220 0.7
4940 1.1 1725 0.7
3115 0.6 2215 0.6
3540 0.6 2725 0.6
4005 0.6 210 0.7
4490 0.6 520 0.7
4985 0.6 815 0.6
4815 0.4 1305 0.5
5140 0.4 1815 0.5
5440 0.4 2315 0.5
5715 0.4 2815 0.5
5975 0.4 3290 0.4
3210 0.9 3815 0.4
4330 0.4
225 23
575 1.8
860 1.6
1342 1.4
1840 1.2
2222 1.0
2807 0.9

(Edited by Zhu Xiuqin)



