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Abstract: In order to explore the influence of sandstone architecture on waterflooding mechanisms 
using the architecture method, and taking as an example the M-I layer of the Kumkol oilfield in the South 
Turgay Basin, Kazakhstan, we portrayed the architecture features of different types of sandstones and 
quantitatively characterized heterogeneities in a single sand body in meandering river facies. Based on the 
waterflooding characteristics of point bar sand and overbank sand according to waterflooded interpretation 
results in 367 wells and numerical simulation results of well groups, we finally analyzed the remaining 
oil potential of the meandering river sandstone and pointed out its development directions at the high 
water cut stage. The result shows that because lateral accretion shale beds are developed inside single 
sand bodies, the point bar sand is a semi-connected body. The overbank sand is thin sandstone with poor 
connectivity, small area and fast lateral changes. The heterogeneity of the overbank sand is stronger than 
the point bar sand. The sandstone architectures control the waterflooding characteristics. In meandering 
river sandstones, the bottom of the point bar sand is strongly waterflooded, while the top of the point bar 
sand and most of the overbank sand are only weakly waterflooded or unflooded. The thickness percentage 
of unflooded zone and weakly waterflooded zone in point bar sand is 40%, and the remaining oil in its top 
part is the main direction for future development. 

Key words: Meandering river, point bar sand, overbank sand, architecture characteristics, waterflooding 
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and evaluate reservoir heterogeneities. The research emphasis 
from overseas scholars has been mainly on fluvial deposition 
and modern sedimentary architecture (Miall and Jones, 
2003; Scott et al, 2013; Fabuel-Perez et al, 2009; Davies and 
Gibling, 2010), and in China, researchers obtained successful 
results on macro-sedimentary structures in sandstone 
reservoirs (Tan et al, 2013; Zheng et al, 2013; He et al, 2013), 
carbonate reservoirs (Lin et al, 2004; Yang et al, 2010; Hu et 
al, 2012), deep-water turbidite reservoirs (Liu et al, 2013) and 
fine characterization of fluvial reservoir heterogeneities based 
on architecture methods (Zeng, 2010).

Currently, many sandstone oilfields have been in the 
late development stage with high water cut and high degree 
of recovery, and the remaining oil is highly fragmented 
but locally aggregated (Li et al, 2005; Zhong et al, 2010). 
Therefore, finely characterizing heterogeneities in sand bodies 
and subdividing sand bodies are of great significance for 
characterization of remaining oil distribution and enhancement 
of oil recovery. We analyzed much published research and 
found that little research focused on the relationship between 
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1 Introduction
The study of sandstone architecture began on meandering 

channel architecture in the 1980s by Miall (Miall, 1985), 
who proposed that some physical surfaces develop in channel 
sands, with different formation mechanisms and different 
hierarchies. These physical surfaces are flow barriers in 
sandstone and cause the segregation of the remaining oil. 
After that, the method of sandstone architecture was widely 
applied (Miall, 2002; 2006; Jiao et al, 2005; Kjemperud et al, 
2008; Wu et al, 2008). The key point of sandstone architecture 
study is to recognize the subsurface palaeochannels. With 
the appearance of the seismic sedimentology (Zeng et al, 
1998), seismic data are gradually becoming an important 
mean to analyze the palaeochannels (Hart, 2008; Pranter 
et al, 2007; Zhang et al, 2011). The essence of sandstone 
architecture research is to characterize sedimentary structures 
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architecture characteristics and waterflooding mechanisms. 
In this study, we take meandering river sandstones of the M-I 
layer of the Kumkol oilfield in Kazakhstan as a research unit, 
using reservoir architecture methods we analyzed the internal 
heterogeneities and quantitatively evaluated the waterflooding 
characteristics of single sand bodies, and we made it clear that 
sandstone architecture controls waterflooding characteristics. 
The research results have been successfully used in the 
development of the Kumkol oilfield, which will be very 
useful guidance for the future development of old oilfields 
with high water cuts.

2 Oilfield summary 
The South Turgay Basin is located in the central part in 

Kazakhstan, and is a Mesozoic rift basin which developed 
from the Hercynian basement with the Karatau strike-slip fault 
developed within it (Yin et al, 2012). The Kumkol oilfield 
is located at the south depression of the South Turgay Basin 

(Fig. 1). The oilfield is a large anticlinal sandstone reservoir 
with moderate-strong edge and bottom water belonging to the 
lithologic-structural trap type. The target layers are the M-I 
and M-II zone sandstones of the lower Cretaceous Aryskum 
Formation and the J zone sandstones (including secondary 
layers J-I, J-II, J-III) of the upper Jurassic Kumkol Formation. 
The M-I zone consists of meandering river deposits and the 
M-II zone consists of braided river deposits, while J zone is 
from delta front sedimentation. The reservoir has medium 
properties with its porosity of 24%-30% and its permeability 
of 170-800 mD. The oilfield has been in production since 
1990, with reserves recovery of 47% and integrated water cut 
of 95% in 2012. The oilfield has entered the high water cut 
and high recovery degree stage, but the daily oil production 
of new wells is about 1-206 t, with an average value of 30 t, 
and the integrated water cut is about 0-98% with an average 
value of 59%, which indicated that waterflooding distribution 
within the oil layer is extremely heterogeneous.
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Fig. 1 The structural location map of the Kumkol oilfield

3 Sedimentary microfacies and sandstone 
architecture of single sand bodies

The M-I zone is divided into the M-I-1 and M-I-2 
secondary layers, in which five microfacies are developed: 
point bar, abandoned channel, final channel, overbank and 
alluvial flat. Point bar sand and overbank sand are the main 
reservoirs.

3.1 Recognition of different types of single sand 
bodies

Integrating well logging and core data, single sand bodies 
were recognized according to vertical deposition and planar 
distribution characteristics. Point bar sand is developed with 
positive rhythm features, with a thickness of 6-7 m in a single 

well. The lateral accretion shale beds are developed inside a 
single sand body, with a thickness of 0.2-0.6 m and gamma 
ray and micro-inverse resistivity logging curves are retured 
(Fig. 2(a)). Overbank sand is a thin sandstone layer with a 
thickness of about 2 m, and its top and bottom are alluvial flat 
mudstones, with the logging curves being finger-shaped (Fig. 
2(b)). Abandoned channels and final channels are two forms 
of one river at different periods. The final channel is the late 
active waterway which will be abandoned eventually. In 
the Kumkol oilfield, the abandoned channels are abandoned 
gradually, and their bottoms are earlier depositional point 
bar sands and are about 2-4 m in thickness, while the mid-
sections are filled with mud and silt with a thickness of about 
2-3 m. In logging curves, the part below abandoned channel 
shows a box shape, while abandoned channel itself shows 
serrated shape or near shale line serrated shape (Fig. 2(c)).

Pet.Sci.(2014)11:81-88
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In plane view, a point bar looks like a lens on the sand 
thickness map, and the sand is thick and becomes thin at 
abandoned (final) channel with a thickness of 1.5-2.5 m. 
Overbank sand develops far away from the main channel with 
a thickness of less than 2 m. The relative distance from the 
top of single sand body to the top of layer is low in point bar 
sand, while high in abandoned (final) channel. 

3.2 Sedimentary microfacies distribution of single 
sand bodies in plane

From depositional outcrop and modern deposition, well 
logging and core data as well as seismic data, the planar 
distribution characteristics of single sand bodies in different 
sedimentary microfacies can be analyzed. In the M-I-1 layer, 
47 abandoned channels and 2 final channels were identified 
in the plane view (Fig. 3), while in the M-I-2 layer those 
numbers are 51 and 2 respectively. Because of the low 
accommodation/sediment supply (A/S) ratio, the meandering 
river frequently migrates, forming complex channel sand body 
belts. Point bar sand is bounded by abandoned channels and is 
the main body of the meandering river, with flake distribution 
and average thickness of about 6.5 m. The appearance of 
abandoned (final) channels represents the end of the point 
bars. Muddy deposits in abandoned (final) channels divide 
point bars of different periods into independent units. When 
the river energy becomes weak, overbank sands are deposited 
as thin sandstones at the side of the point bar approaching 
the alluvial flats. The overbank sands are poor reservoirs 
developed outside the point bar sands, with small distribution 
areas and poor connectivity.

3.3 Inside architecture and heterogeneity of single 
sand bodies 

In  the research on meandering r iver  sandstone 
architecture, many scholars mainly characterized point bar 
sand according to modern depositional models of meandering 
rivers (Constantine et al, 2010; Pranter et al, 2007; Yue et al, 
2008), and established a geological concept model as well as 
summarizing empirical formulas for calculating architecture 
parameters, which have already reached a semiquantitative-
quantitative degree, whereas studies on abandoned (final) 
channels and overbank sands are rare. We comprehensively 
analyzed the architecture and heterogeneity of all kinds of 
meandering river sandstones.

The channels in this oilfield belongs to the frequent 

abandoned type, in which point bars developed in different 
times are mutually superimposed and form complex channel 
sand bodies. It is of great importance to determine the 
boundary of point bars as well as to calculate the parameters 
of point bars in architecture research. We selected a local 
complex channel sand body belt to semiquantitatively-
quantitatively characterize the point bar sand (Fig. 4). The 
parameters of the lateral accretion shale beds and the lateral 
accretion sand bodies were calculated.

Firstly, the bankfull channel depth (h) of 6-7 m can be 
derived according to point bar sand thickness in a single well. 
Then, the single channel width (W) and single meandering 
belt width (Wm) can be estimated using empirical formulas 
of high-bending meandering rivers (Eqs. (1) and (2)) from 
Leeder (1973). The result shows that W is about 100-140 m, 
while Wm is about 800-1,100 m.
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4
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The analysis of point bar sand architecture shows that 

when point bar sand deposits, lateral accretion shale beds 
are deposited inclined to abandoned channels in single sand 
bodies with the lateral migration of the river, and these shale 
beds divide the point bar sand into several inclined lateral 

Fig. 2 Vertical characteristics of meandering river single sand bodies
MPZ: micro electric resistivity; LLD: deep lateral resistivity; LLS: shallow lateral resistivity
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accretion sand bodies. The dip of the lateral accretion shale 
beds is 5º-6º and their vertical occurrence frequency is 1-2. 
Lateral accretion shale beds make the point bar sand only 
a semi-connected body in the vertical direction. Single 
sand bodies have independent, superimposed and cutting-
superimposed contacts with each other (Fig. 5(a)). Because 
the characteristics of subsurface palaeogeological bodies are 
very complicated, quantitative characterization of point bar 
sand is only approximate.

The part below abandoned channels which act as the 
boundary of the point bar is earlier formed point bar sand, 
while abandoned channels are filled with fine deposits taken 
by overbank flood due to relatively low water energy. The 
abandoned channels divide point bars of different periods 
into disconnected or weakly connected units (Fig. 5(a)). 
Overbank sands deposit when water overflows the river bank, 
and are mainly thin interbeds of fine sandstones, siltstones 

and mudstones, distributed parallel to the river bed, with poor 
connectivity (Fig. 5(b)).

The architecture characteristics of meandering river 
single sand bodies reveal both the internal heterogeneities 
and the spatial contact characteristics between different sand 
bodies, which are reflected by reservoir physical properties. 
In the point bar sand, the average porosity value is 26%, 
and the average permeability value is 746 mD as well as the 
average variation coefficient is 1.29, with high degree of 
heterogeneity. While in overbank sand, the average porosity 
value is 24% and the average permeability value is 319 mD 
as well as the average variation coefficient is 1.64, with poor 
reservoir physical properties. Therefore, the heterogeneity 
of overbank sand is stronger than point bar sand. Analyzing 
from architecture elements, point bar is a semi-connected 
body consisting of lateral accretion sand bodies and lateral 
accretion shale beds, and abandoned channel is a barrier 

Fig. 3 Sedimentary microfacies distribution map of a single sand body of the M-I-1 layer
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body consisting of fine deposits, while overbank sand is 
composed of fine-silt sands with poor physical properties. The 
architecture study shows that sandstone architecture controls 
its physical properties and heterogeneities. In meandering 
river sandstones, the heterogeneity degree of overbank sand 
is higher than that of point bar (Table 1).

Table 1 Reservoir heterogeneities of meandering river single sand bodies

Point bar Overbank sand

Porosity, % 26.0 24.0

Permeability, mD 746 319

Variation
 coefficient 1.29 1.64

Architecture 
elements

Lateral accretion sand bodies,
Lateral accretion shale beds

Fine-silty sand with poor 
physical properties

4 Waterf looding characteris t ics  and 
controlling factors of single sand bodies

Waterflooding characteristics reflect the heterogeneity 
inside sandstone, and single sand bodies from different 
origins have various waterflooding characteristics.

The interpretation results of waterflooded zones of 
meandering river single sand bodies in 367 wells show that 
the bottom of point bar sand is strongly waterflooded, while 
its top is moderately waterflooded, weakly waterflooded, 
or unflooded (Fig. 6(a)) with a low development degree. 
Overbank sand is mostly weakly waterflooded or unflooded 
(Fig. 5(b)), and the waterflood development degree is low. 
Water cut analysis in different levels of waterflooded zones 
of single sand bodies shows that because the heterogeneity of 
overbank sand is relatively greater than that of the point bar 
sand, the average ΔSw (the difference between initial water 

Fig. 4 Distribution map of local complex meandering sand bodies belt (Location seen in Fig. 3)
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saturation Siw and current water saturation Sw) in overbank 
sand is lower than that in point bar sand (Table 2).

Table 2 Water cut analysis in different levels of waterflooded zones of 
single sand bodies

Point bar sand Overbank sand

Oil Weak Moderate Strong Oil Weak Moderate Strong

Sw 0.44 0.53 0.56 0.62 0.47 0.55 0.62 0.64

Siw 0.43 0.36 0.27 0.25 0.45 0.35 0.35 0.32

ΔSw

(Sw−Siw) 0.01 0.17 0.29 0.37 0.02 0.20 0.27 0.32

The heterogeneity inside single sand bodies shows 
that several inclined lateral accretion shale beds divide the 
point bar sand into lateral accretion sand bodies, which 
are connected at the bottom and disconnected or weakly 
connected at the top. The point bar sand has good physical 

properties, and its bottom would be strongly waterflooded 
when injected water comes in, forming obvious advantageous 
passages. While the top of point bar sand is obstructed 
by lateral accretion shale beds, it is difficult for injected 
water to sweep. Therefore, the top of the point bar sand 
is an advantageous area for producing remaining oil (Fig. 
7(a)). Overbank sand is thin sandstone with poor physical 
properties, consisting of fine-silt sands and interbedded 
with alluvial flats. Therefore, overbank sand has narrow 
extension in plane view, fast lateral changes and poor 
connectivity, and the sweeping of injected water is greatly 
affected by the connectivity between different sand bodies, 
with low waterflooding degree (Fig. 7(b)). All these show 
that sandstone architecture controls its waterflooding 
characteristics.

The interpretation results of waterflooded zones in 
sidetracking wells confirmed that sandstone architecture 
controls waterflooding characteristics. The sand of the 
M-I-1 and M-I-2 layers in well 2117 was point bar sand 
and overbank sand respectively, which were interpreted as 

Fig. 6 Waterflooding characteristics of meandering river single sand bodies
LLS: shallow lateral resistivity; ILD: deep induction resistivity; Res.: logging interpretation result
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original oil layers in 2000. In 2009, well 2117ST was drilled 
about 18 m away from well 2117 as its sidetracking well. In 
well 2117ST, the middle-lower part of the point bar sand in 
the M-I-1 layer is a strongly waterflooded zone and the top 
part is a moderately waterflooded zone with a thickness of 2 
m. In logging curves, this point bar sand has anti-rhythmic 
characteristics and the physical properties of the top part 

are better than those of the lower part. The reason why the 
lower part is waterflooded strongly while the upper part is 
waterflooded moderately is that lateral accretion shale beds 
form barriers to the injected water flowing at the bottom 
of the moderately waterflooded zone. The M-I-2 layer is 
a weakly waterflooded zone that reflects poor physical 
properties in architecture characteristics (Fig. 8).

M-II-1

M-II-2

Point bar sand Overbank sand Dry layerOverbank sandOverbank sand

Weak waterflooded

 Lateral accretion shale beds

 Moderate waterflooded  Strong waterfloodedOil layer

GR ILDRes.
50 150 1 4.5

1100

2117 2117ST
SP

GR LLS
75 150

5 15 0 10
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M

H

L

L M H

LLS: shallow lateral resistivity; ILD: deep induction resistivity; Res.: logging interpretation result
Fig. 8 Waterflooded situation of old wells and sidetracking wells 

In order to further verify the influence of lateral accretion 
shale beds on remaining oil accumulation in point bar sand, 
the 302 well group is selected to build a 3D geological 
mechanism model, in which the relative position between 
injection well and oil well is perpendicular to the trend 
of lateral accretion shale beds. Based on this, numerical 
simulation was carried out to explore the influence of 
sandstone architecture on the sweep of injected water at 
the high water cut stage. The study shows that due to the 
existence of lateral accretion beds in the point bar sand, the 
injected water is obstructed and the bottom of the sand body 
forms obvious advantageous passages. The bottom of point 
bar sand is seriously waterflooded, while its top is weakly 
waterflooded or unflooded, therefore the remaining oil is 
mainly distributed at the top of the reservoir (Fig. 9). 

The thickness statistics of waterflooded zones at different 
levels of meandering river single sand bodies in 367 
wells show that the thickness of the unflooded zones and 
weakly waterflooded zones is 40% and that of the strongly 
waterflooded zones is 41% in point bar sand. Because of 

Fig. 9 Numerical simulation of the oil saturation of the point bar sand 
in the well group 302 (Fw=90%)
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its wide distribution area, point bar sand has great potential 
for late development. While in overbank sand, the thickness 
percentage of unflooded zone and weakly waterflooded zone 
is 58%, and the strongly waterflooded zone is only 20.8%, 
with a low waterflooding degree. However, overbank sand 
develops only at the places where the point bar approaches 
alluvial flats, with small area and low geological reserves, 
so it has little development potential (Fig. 10). Therefore, 
from the distribution and waterflooded situation of all kinds 
of sands in meandering river, the top of point bar sand is the 
main direction for late stage development potential.

Fig. 10 Statistics of waterflooding for meandering river single sand bodies
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5 Conclusions 
1) The channels of the M-I zone in the Kumkol oilfield 

belong to the frequently abandoned type, forming wide 
complex channel belts in plane view. Lateral accretion shale 
beds are developed inside the single point bar sand body, 
inclined to the abandoned channels. The dip, horizontal 
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spacing and thickness of lateral accretion shale beds are 5°-
6°, 50-60 m and 0.2-0.6 m respectively. The abandoned (final) 
channel is the boundary of the point bar and its bottom is 
earlier deposited point bar sands, while it is filled with fine 
shale deposits. Overbank sand is thin sandstone with poor 
reservoir physical properties.

2) The waterflooded interpretation of sidetracking 
wells and numerical simulation results show that sandstone 
architecture controls waterflooding characteristics. When 
the water injection direction is perpendicular to the trend of 
lateral accretion shale beds, the bottom of the point bar sand 
is first to form advantageous passages for the injected water 
and is seriously waterflooded, while its top part is weakly 
waterflooded or unflooded because injected water cannot 
sweep the top section effectively. Overbank sand is weakly 
waterflooded or unflooded with poor reservoir physical 
properties.

3) The thickness statistics of waterflooded zones at 
different levels of meandering river single sand bodies 
in 367 wells in the Kumkol oilfield show that 40% of the 
reservoir is weakly waterflooded or unflooded in point bar 
sand. The remaining oil is mainly distributed at the top of the 
point bar sand, which will be the main target for the future 
development. In overbank sand, although 58% of reservoir is 
unflooded or weakly waterflooded, the development potential 
is low due to its small distribution area.
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