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Abstract: Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from 
one-dimensional measurement is of great importance for model building and sensor design. Firstly, we 
conducted oil-water two-phase flow experiments in an inclined pipe to measure the conductance signals 
of three typical water-dominated oil-water flow patterns in inclined flow, i.e., dispersion oil-in-water 
pseudo-slug flow (PS), dispersion oil-in-water countercurrent flow (CT), and transitional flow (TF). In 
pseudo-slug flow, countercurrent flow and transitional flow, oil is completely dispersed in water. Then we 
used magnitude and sign decomposition analysis and multifractal analysis to reveal levels of complexity 
in different flow patterns. We found that the PS and CT flow patterns both exhibited high complexity 
and obvious multifractal dynamic behavior, but the magnitude scaling exponent and singularity of 
the CT flow pattern were less than those of the PS flow pattern; and the TF flow pattern exhibited low 
complexity and almost monofractal behavior, and its magnitude scaling was close to random behavior. 
Meanwhile, at short time scales, all sign series of two-phase flow patterns exhibited very similar strong 
positive correlation; at high time scales, the scaling analysis of sign series showed different anti-correlated 
behavior. Furthermore, with an increase in oil flow rate, the flow structure became regular, which could be 
reflected by the decrease in the width of spectrum and the difference in dimensions. The results suggested 
that different oil-water flow patterns exhibited different nonlinear features, and the varying levels of 
complexity could well characterize the fluid dynamics underlying different oil-water flow patterns.
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of well deviation on production logging tool responses was 
the non-uniform phase distribution across the pipe. They 
observed a type of segregated flow pattern where the water 
phase occupied most of the pipe and a steady reverse flow of 
water occurred along the bottom of the pipe; however, a small 
change in the deviation angle can cause a large change in the 
velocity profile distribution. Flores et al (1999) conducted a 
comprehensive experimental study of inclined oil-water flow 
with 50.8-mm ID pipes, and summarized seven flow patterns 
with four water-dominated flow patterns, two oil-dominated 
flow patterns and a transitional flow pattern. Gong et al (2007) 
discussed the factors of critical conditions for phase inversion 
of heavy oil in water two-phase flow, and especially studied 
the effect of mixture velocity on the water fraction for phase 
inversion. Yang et al (2008) obtained flow pattern maps 
with invading logging tools for inclined oil-water two-phase 
flow, and analyzed the effects of inclination and production 
logging. Kumara et al (2010) investigated the oil-water flow 
structure in slightly inclined pipes with a inclination from 
5° upward to 5° downward by particle image velocimetry 
(PIV), and the results showed the velocity and turbulence 
profiles were strongly affected by the pipe inclination. Strazza 
et al (2011) focused on the pressure drops and oil hold-up 

1 Introduction
In the petroleum industry, oil is often produced and 

transported together with water, and the complex interfaces 
of two fluids can generate different flow patterns with various 
characteristic distributions. Important applications in the 
petroleum industry such as oil production engineering and 
predictions of liquid holdup and pressure drop strongly 
depend on the flow patterns. Especially in an inclined oil-
water two-phase flow, countercurrent flow occurs widely. 
Due to the existence of complex flow structures and the 
local velocity distribution, computational fluid dynamics 
approaches are usually unable to describe inclined oil-
water countercurrent flow patterns. Therefore, the dynamic 
characterization of inclined oil-water two-phase flow is an 
important problem of significant challenge.

Earlier investigations into inclined oil-water two-phase 
flow were mainly focused on semi-empirical and semi-
theoretical methods. For example, Hill and Oolman (1982) 
pointed out, in 152-mm ID pipes, the most troublesome effect 
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measurements in horizontal and slightly inclined pipes, and 
they found that the classical models agreed well with the 
experimental data. Wang et al (2012) proposed an algorithm 
to solve the difficulty in computation of transient pressure 
distribution of slanted wells with any inclination angle. 
Rodriguez and Baldani (2012) presented pressure gradient 
and hold up data for horizontal and inclined oil-water wavy 
stratified flow, and the results of phenomenological models 
and predictions were compared with experimental data.

Recently, nonlinear time series analysis has made great 
progress. The detrended fluctuation analysis (DFA) method 
proposed by Peng et al (1995) has been widely used to detect 
long-range correlation and power-law properties in non-
stationary time series. Ashkenazy et al (2001) proposed 
a method based on magnitude and sign decomposition to 
analyze heartbeat signals with long-range correlation and 
found that a time series with identical correlation properties 
may have completely different time ordering, which can be 
characterized by different scaling exponents for the magnitude 
and sign series. Moreover, the long-range correlations of 
magnitude series indicated that the nonlinear behavior and 
the sign time series mainly related to linear properties of the 
original series. Kantelhard et al (2002) extended the DFA 
method to propose multifractal detrended fluctuation analysis 
(MF-DFA). The MF-DFA can be used not only to explore 
the long-range correlation and scaling invariance, but also to 
compute the roughness exponent and identify the multifractal 
property in non-stationary time series.

Although some progress has been made in applying 
nonlinear analysis methods to study inclined oil-water two-
phase flow (Daw et al, 1995; Gao et al, 2010; Zhu et al, 2011), 
there still exist limitations as how to characterize the dynamic 
characteristics of countercurrent flow from experimental 
signals. Inclined oil-water two-phase flow contains abundant 
nonlinear dynamic characteristics, and usually has complex 
fluid structures. Especially, countercurrent flow structures 
exist due to the effect of gravity and methods such as 
numerical modeling have limitations for uncovering the 
dynamic characteristics of countercurrent flow. The measured 
signals usually contain a large number of linear and nonlinear 
components, so it is hard to characterize dynamic behavior of 
inclined oil-water two-phase flow by only one scaling. Note 
that, the previous studies mainly focused on flow pattern 
identification and did not pay much attention to dynamic 
characteristic discrepancies for the same kind of flow pattern.

Based on the above mentioned, we conducted inclined 
oil-water two-phase flow experiments to measure the 
conductance signals of three typical water-dominated flow 
patterns, i.e., pseudo-slug (PS), countercurrent (CT), and 
transitional flow (TF). We first decompose nonlinear and 
linear components from the original time series by magnitude 
and sign decomposition analysis. Then we extract scaling 
exponents of singular spectra and their change under different 
flow conditions. Our long-range correlation and multifractal 
analysis provide important information for understanding the 
nonlinear dynamic mechanisms underlying the transitions of 
different flow patterns.

2 Methods

2.1 Magnitude and sign decomposition method
The magnitude and sign of the original signals measured 

from physical processes contain lots of important information, 
which can characterize the dynamic fluctuation and reflect the 
underlying behavior in a given system. So we introduce the 
magnitude and sign decomposition method to explore fluid 
characteristics from the time series. The magnitude and sign 
decomposition analysis consists of the following steps:
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 is the mean of {xk}.
Then, the new signal Y(i) is partitioned into Nr disjoint 

segments of the same size r, where Nr = int(N/r). Since N 
is often not multiple of the segment size r, some data at the 
end of the time series may remain and will be ignored by 
this way. In order to take these ending parts of the signal 
into consideration, the same partitioning procedure can be 
repeated starting from the ending. Then there will be 2Nr 
segments and calculating the average over them can eliminate 
the boundary influence.
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For each segment the trend of data can be determined by 
a bivariate polynomial function yy(i). Then, the detrended 
fluctuation function F(v, r) can be calculated by:
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and we use a polynomial fit of order 2 in this paper. 
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Varying the value of q, we can obtain the scaling relation between the fluctuation function Fq(r) and the size 
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3 Experimental facility and data acquisition
The inclined oil-water two-phase flow experiments were 

carried out in the Multiphase Flow Laboratory of Tianjin 
University. Details about the flow facility are described in 
our paper (Jin et al, 2008). The experimental media were tap 
water and No.15 industry white oil with a surface tension 
of 0.035 N/m and a viscosity of 12.0 mPa·s (40 °C). In the 
inclined upward 125-mm ID pipes at inclination 45°, the 

water flow rates were 0.21, 0.42, 0.83 and 1.64 m3/h and 
the oil flow rates ranged from 0.53 to 8.3 m3/h. Based on 
flow pattern definition proposed by Flores et al (1999), we 
had observed three typical different water-dominated flow 
patterns in the experiment including PS, CT and TF, whose 
schematic diagrams are shown in Fig. 1. The conductance 
signals were measured with a vertical multi-electrode 
array (VMEA) conductance sensor (Jin et al, 2008) with a 
sampling frequency of 400 Hz, and typical signals are shown 
in Fig. 2. The signals were recorded by National Instrument 
Corporation’s data acquisition cards PXI 4472 and PXI 6115 
operated by LabVIEW software.

Under different flow rates and oil volume fractions, the 
different flow structures with different conductance paths and 
liquid equivalent conductivity will respectively cause voltage 
fluctuation on the measuring electrode, due to significant 
differences in electrical properties between oil and water 
phases. Based on the measured signals, we investigated the 
long-range correlation and levels of complexity of different 
inclined oil-water flow patterns by using the magnitude and 
sign decomposition analysis and multifractal analysis.

Fig. 1 Schematic diagrams of three typical inclined 
oil-water two-phase flow patterns

Dispersion oil-in-
water pseudo-slug

flow
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water countercurrent

flow
Transitional flow

Fig. 2 Fluctuating conductance signals of three typical 
inclined oil-water two-phase flow patterns
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4 Magnitude and sign scaling in inclined oil-
water two-phase countercurrent flow signals 

Ashkenazy et al (2001) demonstrated the effectiveness of 
the magnitude and sign series in the analysis of long-range 
correlations. In fact, the long-range correlations of magnitude 
series can indicate the nonlinear behavior of the original 
series and the sign time series mainly reflect their linear 
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properties.
Our results show that the magnitude series of different 

flow patterns all exhibit strong positive correlations which 
can be characterized by αmag>0.5, as shown in Fig. 3(a), 
indicating nonlinear features in flow mechanisms. For the 
same flow pattern with different flow conditions, the variation 
tendency of the magnitude series is basically similar and the 
corresponding scaling exponent is similar as well; while the 
magnitude scaling exponents of different flow patterns are 
distinctly different, this indicates the nonlinear dynamics 
characteristics for PS, CT and TF flow patterns.

Correspondingly as shown in Fig. 3(b), at short time 
scales, all sign series of inclined oil-water flow patterns 
show very strong positive correlation, and the exponents 
for different flow patterns are very similar; at long time 
scales, the DFA scaling analysis of the sign series shows 
different anti-correlated behavior (α < 0.5) for different flow 
patterns. For all water-dominated flow patterns, the variation 
tendencies of the sign series are similar; while the sign scaling 
exponents of different flow patterns are different at long time 
scales, which indicates the linear dynamic characteristics of 
PS, CT and TF flow patterns.

To further explore the correlation of flow patterns for 
different time scales, we calculate the magnitude scaling 
exponents αmag over a broad range of time scales 5<n<1000; 
for sign scaling, we calculate the short-range regime for time 
scale 5<n<34 with scaling exponent 

which can be characterized by αmag>0.5, as shown in Fig. 3(a), indicating nonlinear features in flow mechanisms. 

For the same flow pattern with different flow conditions, the variation tendency of the magnitude series is basically 

similar and the corresponding scaling exponent is similar as well; while the magnitude scaling exponents of 

different flow patterns are distinctly different, this indicates the nonlinear dynamics characteristics for PS, CT and 

TF flow patterns . 

Correspondingly as shown in Fig. 3(b), at short time scales, all sign series of inclined oil-water flow patterns 

show very strong positive correlation, and the exponents for different flow patterns are very similar; at long time 

scales, the DFA scaling analysis of the sign series shows different anti-correlated behaviors (α < 0.5) for different 

flow patterns. For all water-dominated flow patterns, the variation tendencies of the sign series are similar; while 

the sign scaling exponents of different flow patterns are different at long time scales, which indicates the linear 

dynamic characteristics of PS, CT and TF flow patterns. 
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Fig. 3 Magnitude and sign scaling properties of water-dominated flow patterns (a) DFA analysis of magnitude 

series and (b) sign series 

To further explore the correlation of flow patterns for different time scales, we calculate the magnitude scaling 

exponents αmag over a broad range of time scales 5<n<1000; for sign scaling, we calculate the short-range regime 

for time scale 5<n<34 with scaling exponent 1
sign , and the long-range regime for time scale 34<n<1000 with , and the long-range 

regime for time scale 34<n<1000 with scaling exponent scaling exponent 2
sign . For each measure scaling, the group average ±1 standard deviation is presented. 

Table 1 Results of magnitude and sign DFA analysis of inclined oil-water two-phase flow 

Flow pattern mag  1
sign  

2
sign  

PS 0.74±0.03 1.52±0.03 0.45±0.05

CT 0.67±0.01 1.52±0.02 0.43±0.01

TF 0.53±0.01 1.52±0.01 0.32±0.02

As we can see in Table 1, the range of αmag is different for all flow patterns. Previous studies have demonstrated 

that information about nonlinear properties of flow dynamics can be quantified by long-range power-law 

correlation in magnitude of the increments in fluctuation signals, so the different magnitude scaling exponents 

exhibit the different nonlinear dynamics of flow patterns. 

The mean value of magnitude scaling exponents of PS is αmag = 0.74±0.03, which is larger than other flow 

patterns, indicating that its long-range correlation is the strongest among three types of water-dominated flow 

patterns. For the PS flow pattern, the oil phase move fast in the upward direction as the intermittent oil swarms 

structure, while countercurrent water flow exists at the bottom of the pipe due to the effects of pressure, viscosity 

and gravity components in the opposite direction of the main flow. The intermittent quasi-periodic characteristics in 

the flow structure of PS flow determine the strongest long-range correlation. 

For the CT flow pattern, the mean value of magnitude scaling exponents is αmag = 0.67±0.01, which is larger 

than the TF pattern but smaller than the PS flow pattern. The intervals between oil swarms become shorter, and 

then disappear with an increase in oil flow rate, and the CT flow pattern occurs. On the other hand, counter flow of 

some oil droplets will appear near the interface between the oil and water phase, which is caused by countercurrent 

water flow in the bottom of the pipe. So the positive correlation of the CT flow pattern is weaker than the PS flow 

pattern. 

The mean value of magnitude scaling exponents of TF is αmag = 0.53±0.01, indicating its behavior close to 

random. For the TF flow pattern, the flow structure contains three parts: the thin oil film at the top; local 

water-countercurrent flow at the bottom; and alternation of oil-dominated and water-dominated flow structures in 

the middle of the pipe. It should be pointed that, as an unsteady transitional flow pattern, the most significant 

features of TF are the alternations of oil-dominated and water-dominated flow structure, which is consistent with 

our experiments. Such flow structure indicates random flow behavior resulting in all magnitude scaling exponents 

close to 0.5. The corresponding result for its property will be discussed in the next section. Otherwise, the latter 

analysis would show the magnitude scaling exponents relate to the width of the multifractal spectrum of the 

original time series. In this regard, the width of the multifractal spectrum increases with the increase in the 

magnitude scaling exponent between 0.5 and 1 (0.5<αmag <1), but not in a monotonous form (Ashkenazy et al, 

2001)). 

The results show that the time series composed of the sign of the increments in the original signal contain 

information about the underlying dynamics, which is necessarily complementary to the original and the magnitude 

series. In the long-range region, the sign scaling behavior of PS, CT and TF flow patterns are different, reflecting 
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The results show that the time series composed of the sign of the increments in the original signal contain 

information about the underlying dynamics, which is necessarily complementary to the original and the magnitude 

series. In the long-range region, the sign scaling behavior of PS, CT and TF flow patterns are different, reflecting 

PS 0.74±0.03 1.52±0.03 0.45±0.05

CT 0.67±0.01 1.52±0.02 0.43±0.01

TF 0.53±0.01 1.52±0.01 0.32±0.02

As we can see in Table 1, the range of αmag is different for 
all flow patterns. Previous studies have demonstrated that 
information about nonlinear properties of flow dynamics 
can be quantified by long-range power-law correlation in 
magnitude of the increments in fluctuation signals, so the 
different magnitude scaling exponents exhibit the different 
nonlinear dynamics of flow patterns.

The mean value of magnitude scaling exponents of PS 
is αmag = 0.74±0.03, which is larger than other flow patterns, 
indicating that its long-range correlation is the strongest 
among three types of water-dominated flow patterns. For 
the PS flow pattern, the oil phase move fast in the upward 
direction as the intermittent oil swarms structure, while 
countercurrent water flow exists at the bottom of the pipe due 
to the effects of pressure, viscosity and gravity components 
in the opposite direction of the main flow. The intermittent 
quasi-periodic characteristics in the flow structure of PS flow 
determine the strongest long-range correlation.

For the CT flow pattern, the mean value of magnitude 
scaling exponents is αmag = 0.67±0.01, which is larger than the 
TF pattern but smaller than the PS flow pattern. The intervals 
between oil swarms become shorter, and then disappear with 
an increase in oil flow rate, and the CT flow pattern occurs. 
On the other hand, counter flow of some oil droplets will 
appear near the interface between the oil and water phases, 
which is caused by countercurrent water flow in the bottom of 
the pipe. So the positive correlation of the CT flow pattern is 
weaker than the PS flow pattern.

The mean value of magnitude scaling exponents of TF is 
αmag = 0.53±0.01, indicating its behavior close to random. For 
the TF flow pattern, the flow structure contains three parts: 
the thin oil film at the top; local water-countercurrent flow 
at the bottom; and alternation of oil-dominated and water-
dominated flow structures in the middle of the pipe. It should 
be pointed that, as an unsteady transitional flow pattern, the 
most significant features of TF are the alternations of oil-
dominated and water-dominated flow structure, which is 
consistent with our experiments. Such flow structure indicates 

Fig. 3 Magnitude and sign scaling properties of water-dominated flow 
patterns (a) DFA analysis of magnitude series and (b) sign series
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random flow behavior resulting in all magnitude scaling 
exponents close to 0.5. The corresponding result for its 
property will be discussed in the next section. Otherwise, the 
latter analysis would show the magnitude scaling exponents 
relate to the width of the multifractal spectrum of the original 
time series. In this regard, the width of the multifractal 
spectrum increases with the increase in the magnitude 
scaling exponent between 0.5 and 1 (0.5<αmag<1), but not in a 
monotonous form (Ashkenazy et al, 2001)).

The results show that the time series composed of the sign 
of the increments in the original signal contain information 
about the underlying dynamics, which is necessarily 
complementary to the original and the magnitude series. In 
the long-range region, the sign scaling behavior of PS, CT 
and TF flow patterns are different, reflecting that the intrinsic 
dynamics of the three flow patterns are different (Peng et al, 
1995). The sign scaling exponent of the PS flow pattern varies 
in a larger range (α2

sign=0.45±0.05) because this flow pattern 
occurs across a wide region from low to moderate oil and 
water superficial velocities. With an increase in the oil flow 
rate, the interval between oil swarms will become shorter and 
shorter, so part of the sign scaling exponents of the PS flow 
pattern cover those of the CT flow pattern (α2

sign=0.43±0.01). 

The sign scaling property of the TF flow pattern shows 
stronger anti-correlation (α2

sign=0.32±0.02), indicating the 
oscillatory characteristics of the fluctuating signals for this 
flow pattern.

5 Multifractal properties in inclined oil-
water two-phase flow signals
5.1 Multifractal spectrum of inclined oil-water two-
phase flow

The fractal dimension f(α), which is the function of 
singularity strength α, can be defined as the multifractal 
spectrum or singularity spectrum. So, α and f(α) are two 
most important characteristics used to characterize the 
multifractal. We have obtained the values of α(q) and f(α)
through the Legendre transform from h(q) and τ(q) for all 
the experimental flow conditions. Kantelhardt et al (2002) 
proposed the multifractal analysis method and took the 
monofractal series, binomial multifractal series and random 
cascade model as examples to demonstrate that this method 
can represent the complexity of different dynamic systems. 
Figs. 4-7 illustrate the distributions of f(α) with respect to α 
for the PS, CT and TF flow patterns with different Qo when 

Fig. 4 Multifractal spectra versus Qo at inclination 45° and Qw=0.21 m3/h
(a) Qo =0.53 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.25 m3/h, PS; (d) Qo =1.62 m3/h, PS; 
(e) Qo =2.50 m3/h, PS; (f) Qo =3.30 m3/h, CT; (g) Qo =4.30 m3/h, CT; (h) Qo =5.50 m3/h, TF
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Qw is fixed at 0.21, 0.42, 0.83 and 1.64 m3/h, respectively.
As can be seen, the multifractal spectra of different flow 

patterns are smooth curves with a peak value. The maximum 
of f(α) is 2, which is equal to the geometric support of the 
fractal measure for the research object, and the peak appears 
near α=1.85. An intriguing feature in Figs. 4(a)-(7a) is that the 
f(α) function for the PS flow pattern becomes negative when 
α is smaller than about 1.0. The negative dimension (f(α)<0) 
was investigated in several experiments such as the diffusion-
limited aggregation (Amitrano et al, 1986) and the energy 
dissipation field of turbulent flows (Chhabra and Sreenivasan, 
1991). The negative dimension describes rarely occurring 
events (Mandelbrot, 1990) and one needs an exponentially 
increasing number of samples to observe the subsets with the 
same a value (Chhabra and Sreenivasan, 1991).

The multifractal spectra for different flow patterns can 
directly exhibit different shapes, among which PS flow 
exhibits nearly symmetric spectrum shape and CT flow 
exhibits a left-hooked shape. The range of multifractal spectra 
for TF is very narrow, which to some extent means that this 
flow pattern is close to monofractal, which is consistent to the 

magnitude scaling exponent in the former chapter. According 
to Figs. 4-7, the multifractal spectrum shapes of different flow 
conditions even for the same flow pattern are not completely 
the same. In addition, the multifractal spectra for different 
flow conditions are very sensitive to the change of flow rate, 
which means the multifractal spectrum could be a potentially 
useful tool for analyzing nonlinear mechanisms underlying 
the transitions of different flow patterns.

The minimum singularity αmin and the maximum 
singularity αmax, which respectively indicate the least and 
most singular, can be calculated:

(9) 
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max
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d

d ( )lim
d
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q
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                        (9)  

The corresponding parameters f(αmin) and f(αmax) reflect the fractal dimensions characterized by min   and 

max  . The shape of f(α) can be captured to some extent by the width of the multifractal spectrum 

max min      and the difference of fractal dimensions max min( ) ( )f f f    . We will discuss the 

dependence of Δα and Δf with respect to the oil flow rate. 

 

5.2 The dependence of Δα with respect to Qo 

In the multifractal analysis, αmin is related to the maximum probability measure through min
max ~ aP  , where ε

represents the measure approaching zero, whereas αmax is related to the minimum probability measure by 

max
min ~ aP  . The range of the probability measures can be described by the width of the spectrum Δα: 

max min/ ~ aP P                                         (10) 

The greater the Δα value becomes, the wider the probability distribution is and the more complicated the 

countercurrent mode of the inclined oil-water two-phase flow is. 

Fig. 8 illustrates the relationship between Δα and Qo at the same Qw. We find that the value of Δα gradually 

decreases with an increase in Qo in the PS flow pattern, which indicates that the internal flow characteristics 

become more regular with the increase in Qo. In the PS flow pattern, the oil phase exists in the form of intermittent 

oil swarms at the top of the pipe, while the water phase exists as a continuous phase at the bottom of the pipe and 

local countercurrent water flow also exists. In low Qo, the oil swarms structure should be small, exhibiting 

quasi-periodic properties in the upper side, while the interval distance between two oil swarms is large so that the 

interval time should be more irregular. With an increase in Qo, both the interval distance and time between oil 

swarms will become shorter and shorter, that is, the oil phase in the upper side of the pipe gradually tends to 

become continuous. The countercurrent water flow also exhibits a similar interval property at the bottom of the 

pipe with changing Qo. So with an increase in Qo, the width of the multifractal spectrum gradually decreases, and 

the probability distribution tends to be smaller, indicating the intermittent oil swarms tend to become continuous. 

The corresponding parameters f(αmin) and f(αmax) reflect 
the fractal dimensions characterized by α=αmin and α=αmax. 
The shape of f(α) can be captured to some extent by the width 
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Fig. 5 Multifractal spectra versus Qo at inclination 45° and Qw=0.42 m3/h
(a) Qo =0.42 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.17 m3/h, CT; (g) Qo =5.80 m3/h, CT; (h) Qo =7.50 m3/h, TF
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of the multifractal spectrum Δα=αmax−αmin and the difference 
of fractal dimensions Δf=f(αmax)−f(αmin). We will discuss the 
dependence of Δα and Δf with respect to the oil flow rate.

5.2 The dependence of Δα with respect to Qo

In the multifractal analysis, αmin is related to the maximum 
probability measure through 

min
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The greater the Δα value becomes, the wider the probability distribution is and the more complicated the 

countercurrent mode of the inclined oil-water two-phase flow is. 

Fig. 8 illustrates the relationship between Δα and Qo at the same Qw. We find that the value of Δα gradually 

decreases with an increase in Qo in the PS flow pattern, which indicates that the internal flow characteristics 

become more regular with the increase in Qo. In the PS flow pattern, the oil phase exists in the form of intermittent 

oil swarms at the top of the pipe, while the water phase exists as a continuous phase at the bottom of the pipe and 

local countercurrent water flow also exists. In low Qo, the oil swarms structure should be small, exhibiting 

quasi-periodic properties in the upper side, while the interval distance between two oil swarms is large so that the 

interval time should be more irregular. With an increase in Qo, both the interval distance and time between oil 

swarms will become shorter and shorter, that is, the oil phase in the upper side of the pipe gradually tends to 

become continuous. The countercurrent water flow also exhibits a similar interval property at the bottom of the 

pipe with changing Qo. So with an increase in Qo, the width of the multifractal spectrum gradually decreases, and 

the probability distribution tends to be smaller, indicating the intermittent oil swarms tend to become continuous. 
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decreases with an increase in Qo in the PS flow pattern, which indicates that the internal flow characteristics 

become more regular with the increase in Qo. In the PS flow pattern, the oil phase exists in the form of intermittent 

oil swarms at the top of the pipe, while the water phase exists as a continuous phase at the bottom of the pipe and 

local countercurrent water flow also exists. In low Qo, the oil swarms structure should be small, exhibiting 
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The greater the Δα  value becomes, the wider the 
probability distribution is and the more complicated the 
countercurrent mode of the inclined oil-water two-phase flow 
is.

Fig. 8 illustrates the relationship between Δα and Qo at 
the same Qw. We find that the value of Δα gradually decreases 
with an increase in Qo in the PS flow pattern, which indicates 
that the internal flow characteristics become more regular 
with the increase in Qo. In the PS flow pattern, the oil phase 

exists in the form of intermittent oil swarms at the top of the 
pipe, while the water phase exists as a continuous phase at the 
bottom of the pipe and local countercurrent water flow also 
exists. In low Qo, the oil swarms structure should be small, 
exhibiting quasi-periodic properties in the upper side, while 
the interval distance between two oil swarms is large so that 
the interval time should be more irregular. With an increase 
in Qo, both the interval distance and time between oil swarms 
will become shorter and shorter, that is, the oil phase in the 
upper side of the pipe gradually tends to become continuous. 
The countercurrent water flow also exhibits a similar interval 
property at the bottom of the pipe with changing Qo. So with 
an increase in Qo, the width of the multifractal spectrum 
gradually decreases, and the probability distribution tends 
to be smaller, indicating the intermittent oil swarms tend to 
become continuous.

As can be seen in Fig. 8, we find, for the CT flow pattern 
the value of Δα also decreases with an increase in Qo. On the 
basis of the PS flow pattern, with a further increase in Qo, the 
interval characteristics between oil swarms will disappear 
and the oil phase will form a continuous flow at the top of the 
pipe, at this time the flow pattern will evolve into a CT flow 
pattern. With an increase in Qo, the interval between water-

Fig. 6 Multifractal spectra versus Qo at inclination 45° and Qw=0.83 m3/h
(a) Qo =0.45 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.00 m3/h, CT; (g) Qo =5.83 m3/h, CT; (h) Qo =7.50 m3/h, TF
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countercurrent flows will decrease and the countercurrent 
flow of the oil droplets will also tend to become continuous, 
so all of these will lead to a decrease in the width of the 
multifractal spectrum. However, compared with the PS flow 
pattern, the motion mode of the CT flow pattern is simpler; 
consequently, the value of Δα for CT flow pattern is smaller 
than that for PS flow pattern.

Otherwise, the value of Δα for the TF flow pattern is the 
smallest among three inclined oil-water flow patterns. As we 
have mentioned above, the alternation of oil-dominated and 
water-dominated flow structure is the main characteristics. 
So compared with other flow patterns, the TF flow pattern 
performs a relatively single motion mode, so the width of 
multifractal spectrum is very narrow, which to some extent 
means that this flow pattern is close to monofractal instead of 
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of the fluid in the whole pipe tends to be regular; consequently, the Δf value of the PS flow pattern decreases with 
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Especially in Fig. 9(d), the Δf values are negative when Qo ranges from 3.3 to 4.3 m3/h, indicating that there are 

more concentrated regions than low-density sites. This phenomenon only takes place at the boundary of PS and CT 

at higher Qw, and the |Δf| values are still low, indicating that at high Qo and Qw the local countercurrent structure in 

the pipe is almost unchanged and the flow mechanism is almost the same. 
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Fig. 9 depicts the dependence of Δf with respect to Qo 
at the same Qw. We find that the difference of the fractal 
dimensions gradually decreases with an increase in Qo in 

Fig. 7 Multifractal spectra versus Qo at inclination 45° and Qw=1.64 m3/h
(a) Qo =0.45 m3/h, PS; (b) Qo =0.83 m3/h, PS; (c) Qo =1.67 m3/h, PS; (d) Qo =2.50 m3/h, PS;
(e) Qo =3.30 m3/h, PS; (f) Qo =4.00 m3/h, CT; (g) Qo =5.83 m3/h, CT; (h) Qo =8.30 m3/h, TF
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the PS flow pattern, which indicates that the concentrated 
regions of the probability distribution become more common 
and the internal flow characteristics become more regular. 
With an increase in Qo, both interval distance and time 
between oil swarms will become shorter and shorter, that is, 
the oil phase in the upper side of the pipe gradually tends to 
become continuous. On the other hand, with increasing Qo 
the resistance to the motion of oil swarms gradually increases 
due to the increase in the equivalent viscosity of the oil-water 
mixture, because the oil viscosity is much higher than the 
water viscosity. So the motion of the fluid in the whole pipe 
tends to be regular; consequently, the Δf value of the PS flow 
pattern decreases with increasing Qo.

Especially in Fig. 9(d), the Δf values are negative when Qo 
ranges from 3.30 to 4.30 m3/h, indicating that there are more 
concentrated regions than low-density sites. This phenomenon 
only takes place at the boundary of PS and CT flaw patterns 
at higher Qw, and the |Δf| values are still low, indicating that at 
high Qo and Qw the local countercurrent structure in the pipe 
is almost unchanged and the flow mechanism is almost the 
same.

Likewise for the CT flow pattern, the Δf value also 
decreases with increasing Qo, indicating that the concentrated 
regions of the probability distribution become more 
numerous. We infer that with increasing Qo, the equivalent 
viscosity of the oil-water mixture increases, correspondingly, 
the resistance to the motion increases in the pipe; 
consequently, the internal flow characteristics become more 

regular for the CT flow pattern, which can be reflected by the 
decrease in Δf.

For the TF flow pattern with a further increase in Qo in 
the pipe, the equivalent viscosity of the oil-water mixture 
continues increasing compared with other flow patterns, 
and both oil and water phases are continuous instead of 
intermittent; consequently, the probability distribution is 
concentrated and the Δf value is large. However, due to the 
narrow form of the singularity spectrum, the Δf values of the 
TF flow pattern are not the largest.

5.4 The dependence of Δα/Δf with respect to flow 
pattern identification

The Δα and Δf values in the multifractal analysis can 
effectively reflect the evolutionary process of the flow 
patterns. Note that a single characteristic quantity can not 
be used to analyze all flow conditions; therefore we define a 
variable ratio as Δα/Δf to describe the different multifractal 
spectrum mode and further to characterize the two-phase 
flow.

The distributions of Δα/Δf for different flow conditions are 
shown in Fig. 10. We can see that the Δα/Δf values are 2.11-
105.2 for PS flow, 0.75-1.12 for CT flow, and 0.26-0.51 for 
TF flow, respectively. The distribution intervals of the three 
flow patterns reflect their particular modes: the multifractal 
spectrum of the PS flow exhibits a near symmetric spectrum 
shape, correspondingly, its Δα/Δf value is relatively large 
i.e., greater than 2; the multifractal spectrum of the CT flow 

Fig. 8 The width of spectrum Δα versus Qo

(a) Qw=0.21 m3/h; (b) Qw=0.42 m3/h; (c) Qw=0.83 m3/h; (d) Qw=1.64 m3/h
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exhibits a left-hooked shape, correspondingly, the Δα/Δf value 
at the second place; but the Δα/Δf value of the TF flow is the 
lowest, less than 0.5, and a single edge shape is observed 
for this multifractal spectrum. Therefore, we can effectively 
identify three inclined oil-water flow patterns by using the 
values of Δα/Δf.

multifractal spectra to probe the nonlinear mechanisms 
underlying the flow transitions.

Magnitude and sign decomposition analysis can uncover 
the long-range correlation properties of the original time 
series. The magnitude increment series of different flow 
patterns reflect different positive correlation properties. In 
particular, for different flow patterns, the sign increment 
series at short time scales shows the strong and similar 
positive correlation, but at long time scales it presents anti-
correlation properties with certain differences.

Inclined oil-water two-phase flows present typical 
multifractal properties, and the singularity spectra show 
different scaling properties at different scales, which can 
reveal dynamic complexity and fluid mechanisms for different 
flow patterns. Our results can provide clues for understanding 
the fluid dynamics in the transitions of flow patterns from 
different time scales.
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