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Abstract: A marine riser, one of the most important components of offshore oil/gas transportation, needs 
to be designed to eliminate the risks caused by complex ocean environments, platform displacement and 
internal corrosion, etc. In this study, a new analytical-numerical assessment approach is proposed in order 
to quantitatively investigate the reliability of internally corroded risers under combined loads including 
axial tension and internal pressure. First, an analytical solution of the limit state function of intact risers 
under combined loads is obtained, which is further modified by the non-dimensional corrosion depth (d/
t) for the risers with a narrow and long corrosion defect. The relationship between d/t and limited internal 
pressure is obtained by finite element analysis and nonlinear regression. Through an advanced first-order 
reliability method (HL-RF) algorithm, reliability analysis is performed to obtain the failure probability, 
the reliability index and the sensitivity. These results are further verified by Monte-Carlo importance 
sampling. The proposed approach of reliability analysis provides an accurate and effective way to estimate 
the reliability of marine risers with narrow and long corrosion defects under combined loads.
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further estimated through an advanced first-order second-
moment method. Failure probability of pipelines with active 
corrosion defects over time (Caleyo et al, 2002) was also 
estimated through the first-order second-moment method and 
Monte Carlo simulation. Moreover, a series of small-scale 
experiments and finite element analyses were employed to 
analyze the effect of corrosion defects on the burst pressure 
of pipelines (Netto et al, 2005), the result of which was 
employed by Teixeira et al (2008) to perform reliability 
analysis. Additionally, reliability-based assessment of the 
residual stress effect was employed to analyze underground 
pipelines under combined effects of active corrosion and 
residual stress (Amirat et al, 2006), concluding that residual 
stress largely increased failure probability. As multiple active 
corrosion defects and stochastic internal pressure have a 
great influence on the reliability of corroded pipelines, Zhou 
(2010) proposed a methodology to analyze system reliability 
and concluded that spatial variability of internal pressure, 
initial defect size and defect growth rate greatly influenced 
system reliability. In addition, a new probabilistic physics-
of-failure model was developed to determine the temperature 
and stress dependency of dynamic pit depth growth (Nuhi et 
al, 2011), being of great importance to analyze the reliability 
of degradation effects of pitting corrosion in carbon steel 
pipes. However, the studies of the effects of internal corrosion 
defects on marine risers have not been reported so far.

Pet.Sci.(2014)11:139-146

1 Introduction
Marine risers, connecting subsea flowlines to floating 

production facilities, are important components for deepwater 
oil and gas development and transportation. However, 
severe marine environments (including waves, currents, 
high pressures and temperatures), platform displacement 
and internal corrosion can lead to serious damage and 
degradation of the risers. The structural performance of 
internally corroded risers should be given more attention, 
since corrosion defects will not only reduce the pipe-wall 
thickness, but also introduce difficulties in analysis due to 
the uncertainty associated with the rate of corrosion and the 
location of its occurrence.

Some studies related to corrosion reliability of submarine 
pipelines are generally reviewed. Burst pressure of submarine 
pipelines was systematically studied in some common-used 
codes, such as ASME B31G (ASME, 2009), DNV-RP-F101 
(DNV, 2004), API-579-1/ASME FFS-1 (API, 2009), 
BS-7910 (BS, 1999) and SHELL92 (Kiefner and Vieth, 
1989), etc. Pressurized pipelines with localized corrosion 
(Ahammed and Melchers, 1996) were previously studied, 
obtaining a probabilistic limit state model, and reliability is 
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In order to perform a quantitative analysis of a marine 
riser with a narrow and long corrosion defect under combined 
loads, a new analytical-numerical assessment approach is 
proposed in this work. Specifically, an analytical solution 
of limit pressure of intact risers under internal pressure and 
axial force is carried out. The expression of limit pressure 
of corroded risers is obtained based on the limit pressure 
of intact risers and its finite element analysis. Finally, the 
reliability index and failure probability are calculated by 
an advanced first-order reliability method (HL-RF), and 
the results are further verified by Monte-Carlo importance 
sampling (MCIS).

2 Limit state analysis
In order to analyze reliability of marine risers with narrow 

and long corrosion defects under combined loads, it is of 
great importance to build up the limit state functions. In terms 
of a corroded riser, as shown in Fig. 1, D denotes the outer 
diameter of the riser, t denotes the wall-thickness, L denotes 
the corrosion length, d denotes the corrosion depth, a denotes 
the half of the corrosion angle. The following assumptions are 
related to the establishment of limit state function.

● The wall of the riser is thin (t<<L).
● The material of risers is incompressible under large 

plastic deformation.
● The stress-strain relationship of the material is power-

law hardening, given as:

(1)

of pipelines with active corrosion defects over time (Caleyo et al, 2002) was also estimated through the 
first-order second-moment method and Monte Carlo simulation. Moreover, a series of small-scale 
experiments and finite element analyses were employed to analyze the effect of corrosion defects on the 
burst pressure of pipelines (Netto et al, 2005), the result of which was employed by Teixeira et al (2008) to 
perform reliability analysis. Additionally, reliability-based assessment of the residual stress effect was 
employed to analyze underground pipelines under combined effects of active corrosion and residual stress 
(Amirat et al, 2006), concluding that residual stress largely increased failure probability. As multiple active 
corrosion defects and stochastic internal pressure have a great influence on the reliability of corroded 
pipelines, Zhou (2010) proposed a methodology to analyze system reliability and concluded that spatial 
variability of internal pressure, initial defect size and defect growth rate greatly influenced system 
reliability. In addition, a new probabilistic physics-of-failure model was developed to determine the 
temperature and stress dependency of dynamic pit depth growth (Nuhi et al, 2011), being of great 
importance to analyze the reliability of degradation effects of pitting corrosion in carbon steel pipes. 
However, the studies of the effects of internal corrosion defects on marine risers have not been reported so 
far. 

In order to perform a quantitative analysis of a marine riser with a narrow and long corrosion defect 
under combined loads, a new analytical-numerical assessment approach is proposed in this work. 
Specifically, an analytical solution of limit pressure of intact risers under internal pressure and axial force is 
carried out. The expression of limit pressure of corroded risers is obtained based on the limit pressure of 
intact risers and its finite element analysis. Finally, the reliability index and failure probability are 
calculated by an advanced first-order reliability method (HL-RF), and the results are further verified by 
Monte-Carlo importance sampling (MCIS). 

 

2 Limit state analysis 
In order to analyze reliability of marine risers with narrow and long corrosion defects under combined 

loads, it is of great importance to build up the limit state functions. In terms of a corroded riser, as shown in 
Fig. 1, D denotes the outer diameter of the riser, t denotes the wall-thickness, L denotes the corrosion length, 
d  denotes the corrosion depth,  denotes the half of the corrosion angle. The following assumptions are 
related to the establishment of limit state function. 

● The wall of riser is thin ( t L ). 
● The material of risers is incompressible under large plastic deformation. 
● The stress-strain relationship of the material is power-law hardening, given as: 

nK                                                      (1) 
where  is stress,  is strain, K is strengthening coefficient, n is strengthening index. 

● Moment can be neglected since only the straight section of the riser is considered in this work. To 
demonstrate this point, finite element analysis (FEA) is performed as shown in Appendix A. The results of 
FEA suggests that the maximum von Mises stress of the corroded riser under internal pressure and axial 
force is 465 MPa, and the maximum von Mises stress of the corroded riser under internal pressure, axial 
force and bending moment is 466 MPa. That is to say, the influencing factor of bending moment over von 
Mises stress is 0.13%, which can be ignored. 

● The defect is narrow and long enough, in other words,  is small and 20L Dt . 
 

where σ is stress; ε is strain; K is strengthening coefficient; n 
is strengthening index.

● Moment can be neglected since only the straight section 
of the riser is considered in this work. To demonstrate this 
point, finite element analysis (FEA) is performed as shown in 
Appendix A. The results of FEA suggests that the maximum 
von Mises stress of the corroded riser under internal pressure 
and axial force is 465 MPa, and the maximum von Mises 
stress of the corroded riser under internal pressure, axial 
force and bending moment is 466 MPa. That is to say, the 
influencing factor of bending moment over von Mises stress 
is 0.13%, which can be ignored.

● The defect is narrow and long enough, in other words, α 
is small and 

of pipelines with active corrosion defects over time (Caleyo et al, 2002) was also estimated through the 
first-order second-moment method and Monte Carlo simulation. Moreover, a series of small-scale 
experiments and finite element analyses were employed to analyze the effect of corrosion defects on the 
burst pressure of pipelines (Netto et al, 2005), the result of which was employed by Teixeira et al (2008) to 
perform reliability analysis. Additionally, reliability-based assessment of the residual stress effect was 
employed to analyze underground pipelines under combined effects of active corrosion and residual stress 
(Amirat et al, 2006), concluding that residual stress largely increased failure probability. As multiple active 
corrosion defects and stochastic internal pressure have a great influence on the reliability of corroded 
pipelines, Zhou (2010) proposed a methodology to analyze system reliability and concluded that spatial 
variability of internal pressure, initial defect size and defect growth rate greatly influenced system 
reliability. In addition, a new probabilistic physics-of-failure model was developed to determine the 
temperature and stress dependency of dynamic pit depth growth (Nuhi et al, 2011), being of great 
importance to analyze the reliability of degradation effects of pitting corrosion in carbon steel pipes. 
However, the studies of the effects of internal corrosion defects on marine risers have not been reported so 
far. 

In order to perform a quantitative analysis of a marine riser with a narrow and long corrosion defect 
under combined loads, a new analytical-numerical assessment approach is proposed in this work. 
Specifically, an analytical solution of limit pressure of intact risers under internal pressure and axial force is 
carried out. The expression of limit pressure of corroded risers is obtained based on the limit pressure of 
intact risers and its finite element analysis. Finally, the reliability index and failure probability are 
calculated by an advanced first-order reliability method (HL-RF), and the results are further verified by 
Monte-Carlo importance sampling (MCIS). 

 

2 Limit state analysis 
In order to analyze reliability of marine risers with narrow and long corrosion defects under combined 

loads, it is of great importance to build up the limit state functions. In terms of a corroded riser, as shown in 
Fig. 1, D denotes the outer diameter of the riser, t denotes the wall-thickness, L denotes the corrosion length, 
d  denotes the corrosion depth,  denotes the half of the corrosion angle. The following assumptions are 
related to the establishment of limit state function. 

● The wall of riser is thin ( t L ). 
● The material of risers is incompressible under large plastic deformation. 
● The stress-strain relationship of the material is power-law hardening, given as: 

nK                                                      (1) 
where  is stress,  is strain, K is strengthening coefficient, n is strengthening index. 

● Moment can be neglected since only the straight section of the riser is considered in this work. To 
demonstrate this point, finite element analysis (FEA) is performed as shown in Appendix A. The results of 
FEA suggests that the maximum von Mises stress of the corroded riser under internal pressure and axial 
force is 465 MPa, and the maximum von Mises stress of the corroded riser under internal pressure, axial 
force and bending moment is 466 MPa. That is to say, the influencing factor of bending moment over von 
Mises stress is 0.13%, which can be ignored. 

● The defect is narrow and long enough, in other words,  is small and 20L Dt . 
 

.

2.1 Intact riser under axial force and internal 
pressure 

In terms of the intact riser under axial force and internal 
pressure, the stress can be obtained from the equilibrium 
equation.

(2a)
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where σh is the hoop stress; σl is the axial stress; σr is the 
radial stress; D* is the outer diameter of the deformed 
riser; t* is the wall-thickness of the deformed riser; p is the 
internal pressure; and Fa is the axial force (positive when in 
compression, and negative when in tension).

Based on the von Mises criterion, the equivalent stress (σe) 
and strain (εe) can be calculated.

(3)
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As the strain is finite, the following equations (Maes et al, 
2007) are available.
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The expression of internal pressure (p) can be obtained 
through Eqs. (1)-(5).
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When the internal pressure reaches its limit, the partial 
derivative of internal pressure with respect to equivalent 
strain (εe) equals zero. Accordingly, the equivalent strain is 
obtained.
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When the engineering stress reaches the tensile strength (σu), necking occurs in the pipeline, satisfying
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 . Using the relationship between the engineering stress/strain and the real ones (Zhu and Leis, 

2004), the strengthening coefficient ( K ) can be obtained. 
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Combination of Eqs. (6-8) gives the burst pressure of the intact pipeline, Plimit: 
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2.2 Corroded riser under axial force and internal pressure  

For a narrow and long defect induced by internal corrosion, the corrosion length is too long to exert any 
influence on the limit pressure. Based on research reported by Chen et al (2008), the corrosion depth and 
length are two sensitive geometrical factors of the limit pressure of the corroded riser, while the 
corrosion width is less sensitive. Moreover, the corrosion width is determined by the half corrosion angle
 , which is small in this study. Accordingly, the influencing factor of corrosion width can be appropriately 
set as 1 π , and the influencing factor of corrosion depth is represented by f(d/t), which is to be obtained 
by regression in the following part. Here, the expression of limit pressure of the corroded riser, Pb, is given 
in Eq. (10). 
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In order to calculate the influencing factor of corrosion depth, f(d/t), a finite element analysis is 
performed using commercial software, ABAQUS. First, a finite element model with given parameters 
(Table 1) is created with geometrical and material parameters. The riser model has only one layer, which is 
made of X60 steel. σy represents the yield strength and σu represents the tensile strength. The material 
characteristic is described by an elastoplastic model. Beyond the elastic range, the non-linear relationship 
between stress and strain satisfies the power-law principle (Eq. (1)), where the strengthening factor is set as 
0.1 (Zhu and Leis, 2004). The riser is meshed by C3D8R full continuum eight node elements with reduced 
integration (see Fig. 2), which exhibit no shear locking and can decrease computing time. 

 
Table 1 Parameters of the finite element model 

Material D, mm α, rad L, mm σu, MPa σy, MPa t, mm Fa, kN d, mm n 
X60 steel 508 0.0375 899 565 414 6.4 600 3.4 0.1 

 
 

.  

Fig. 1 Internal corrosion defect of a riser 

Axial force Fa

Internal pressure p

α

d L

Pet.Sci.(2014)11:139-146
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Using the relationship between the engineering stress/strain 
and the real ones (Zhu and Leis, 2004), the strengthening 
coefficient (K) can be obtained.

(8)
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Combination of Eqs. (6-8) gives the burst pressure of the 
intact pipeline, plimit.
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Table 6 Sensitivity result through HL-RF calculation

 

ηD ηt ηd ηα u
  

aF  
op  

5.011 -781 782 0.874 -9.499E-9 2.094E-7 5.885E-7 

 

 

2.2 Corroded riser under axial force and internal 
pressure 

For a narrow and long defect induced by internal 
corrosion, the corrosion length is too long to exert any 
influence on the limit pressure. Based on research reported 
by Chen et al (2008), the corrosion depth and length are 
two sensitive geometrical factors of the limit pressure of the 
corroded riser, while the corrosion width is less sensitive. 
Moreover, the corrosion width is determined by the half 
corrosion angle α, which is small in this study. Accordingly, 
the influencing factor of corrosion width can be appropriately 
set as 

When the engineering stress reaches the tensile strength (σu), necking occurs in the pipeline, satisfying
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 . Using the relationship between the engineering stress/strain and the real ones (Zhu and Leis, 

2004), the strengthening coefficient ( K ) can be obtained. 
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2.2 Corroded riser under axial force and internal pressure  

For a narrow and long defect induced by internal corrosion, the corrosion length is too long to exert any 
influence on the limit pressure. Based on research reported by Chen et al (2008), the corrosion depth and 
length are two sensitive geometrical factors of the limit pressure of the corroded riser, while the 
corrosion width is less sensitive. Moreover, the corrosion width is determined by the half corrosion angle
 , which is small in this study. Accordingly, the influencing factor of corrosion width can be appropriately 
set as 1 π , and the influencing factor of corrosion depth is represented by f(d/t), which is to be obtained 
by regression in the following part. Here, the expression of limit pressure of the corroded riser, Pb, is given 
in Eq. (10). 
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In order to calculate the influencing factor of corrosion depth, f(d/t), a finite element analysis is 
performed using commercial software, ABAQUS. First, a finite element model with given parameters 
(Table 1) is created with geometrical and material parameters. The riser model has only one layer, which is 
made of X60 steel. σy represents the yield strength and σu represents the tensile strength. The material 
characteristic is described by an elastoplastic model. Beyond the elastic range, the non-linear relationship 
between stress and strain satisfies the power-law principle (Eq. (1)), where the strengthening factor is set as 
0.1 (Zhu and Leis, 2004). The riser is meshed by C3D8R full continuum eight node elements with reduced 
integration (see Fig. 2), which exhibit no shear locking and can decrease computing time. 

 
Table 1 Parameters of the finite element model 

Material D, mm α, rad L, mm σu, MPa σy, MPa t, mm Fa, kN d, mm n 
X60 steel 508 0.0375 899 565 414 6.4 600 3.4 0.1 

 
 

, and the influencing factor of corrosion depth is 
represented by f(d/t), which is to be obtained by regression in 
the following part. Here, the expression of limit pressure of 
the corroded riser, pb, is given in Eq. (10).
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In order to calculate the influencing factor of corrosion 
depth, f(d/t), a finite element analysis is performed using 
commercial software, ABAQUS. First, a finite element model 
with given parameters (Table 1) is created with geometrical 
and material parameters. The riser model has only one 
layer, which is made of X60 steel. σy represents the yield 
strength and σu represents the tensile strength. The material 
characteristic is described by an elastoplastic model. Beyond 
the elastic range, the non-linear relationship between stress 
and strain satisfies the power-law principle (Eq. (1)), where 
the strengthening factor is set as 0.1 (Zhu and Leis, 2004). 
The riser is meshed by C3D8R full continuum eight node 
elements with reduced integration (see Fig. 2), which exhibit 
no shear locking and can decrease computing time.

Table 1 Parameters of the finite element model

Material D 
mm

α
 rad

L
 mm

σu

 MPa
σy

 MPa
t 

mm
Fa

 kN
d

mm n

X60 steel 508 0.0375 899 565 414 6.4 600 3.4 0.1

The yielding status of the riser is different at different 
internal pressures. For material obeying the von Mises yield 
criterion, yielding failure occurs when the von Mises stress 
across the whole surface surpasses the reference strength. In 

this paper, the reference strength is set to be 0.9σu (508 MPa), 
as suggested by Chen et al (2008). In order to demonstrate 
the specific yielding status, the riser is partitioned by the 
X-Y plane. Three types of yielding status, relating to three 
different internal pressures, are given.

 Figs. 3-5 indicate that yielding occurs across the whole 
defect when the internal pressure is 7.0 MPa. In other words, 
7.0 MPa is the limit pressure of the marine riser with this 
corrosion depth. Similarly, other limit pressures can be 
obtained in terms of different corrosion depths, listed in Table 
2.

Table 2 Corrosion depth and the corresponding limit pressure

d, mm pb, MPa d, mm pb, MPa

3.4 7.0 1.9 11.0

3.2 7.6 1.6 11.6

2.9 8.6 1.3 12.3

2.5 9.3 1.0 13.2

2.2 10.2 0.6 13.2

Fig. 2 Grid partition

X

Z

Y

The influencing factor of the corrosion depth (f(d/t)) can 
be fitted with a parabolic curve, illustrated in Fig. 6. The limit 
pressure of the marine riser with a narrow long corrosion defect 
under axial force and internal pressure is given in Eq. (11).
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Fig. 3 Yielding status of corrosion defect 
when the internal pressure is 6.5 MPa
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Table 6 Sensitivity result through HL-RF calculation
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In order to verify the accuracy of the proposed function 
of limit pressure, the result obtained from the proposed 
function is compared with those obtained from ASME B31G, 
ASME M-B31G, DNV-RP-F101, Netto et al (2005), Leis and 
Stephens (1997) and finite element analysis (FEA). 15 cases 
are considered and the limit pressures obtained by FEA are 
listed in Table 3. The result of FEA is regarded as the standard 
limit pressure due to a lack of experimental data. The relative 
errors (Er) are calculated as follows: 
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where pi is the results calculated with Eq. (11) and pFEA is 
FEA results.

If Er<0, the limit pressure is conservative. On the other 
hand, if Er>0, the limit pressure is risky. According to the 
results illustrated in Fig. 7, the proposed function of limit 
pressure is the most accurate, which means Eq. (11) is most 
appropriate to calculate the limit pressure of marine risers 
with narrow and long corrosion defects under combined 
loads.

Fig. 5 Yielding status of corrosion defect 
when the internal pressure is 7.0 MPa
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 Fig. 6 Fitting of the influencing factor of the corrosion depth
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Table 3 Limit pressure obtained from finite element analysis

No. Steel parameters D
mm

t
mm

L
mm

d
mm

α
rad

Fa

kN
pFEA

MPa

1

X60
σy=414 MPa
σu=565 MPa

508 6.4 1500 3.5 0.0386 700 6.5

2 508 6.4 1000 3.5 0.0386 700 6.5

3 508 6.4 1000 2.4 0.0386 700 9.5

4 508 6.4 1000 2.4 0.0827 700 9.4

5 508 6.4 1000 2.4 0.0827 600 9.4

6

X70
σy=483 MPa
σu=621 MPa

508 6.4 1500 3.5 0.0386 700 7.3

7 508 6.4 1000 3.5 0.0386 700 7.3

8 508 6.4 1000 2.4 0.0386 700 10.7

9 508 6.4 1000 2.4 0.0827 700 10.5

10 508 6.4 1000 2.4 0.0827 600 10.5

11

X80
σy=552 MPa
σu=690 MPa

508 6.4 1500 3.5 0.0386 700 8.1

12 508 6.4 1000 3.5 0.0386 700 8.1

13 508 6.4 1000 2.4 0.0386 700 12.0

14 508 6.4 1000 2.4 0.0827 700 12.0

15 508 6.4 1000 2.4 0.0827 600 12.0

Pet.Sci.(2014)11:139-146
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middle layer and bottom layer current speed are 1.77, 1.56 
and 1.33 m/s, respectively. The horizontal and vertical soil 
rigidity are 18,060 and 9,150 N/m. The riser model has only 
one layer, which is simulated by beam elements. Besides, 
the soil model is simulated by pipe-soil-interactions (PSI) 
element.

The corroded region lies in the splash zone, being 2 m 
high above sea surface. The total length of the corroded 
region is 2 m, which is partitioned into two parts, named 
E116 and E117. The results of the above FEA suggest that 
axial forces acting on E116 and E117 are very similar. 
Accordingly, a sample of 1,620 axial forces acting on E116 
are selected, whose scatter diagram and frequency histogram 
are illustrated in Figs. 9 and 10. Through statistics analysis 
by commercial software, SAS (Rice, 2007; Gao, 2001), the 
value of Kolmogorov-Smirnov is 0.0169 and significant 
probability P>0.15, proving the normality of axial force 
distribution (Eq. (14)).
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Fig. 9 Scatter plot of the axial force
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3 Reliability analysis 
The stress-strength model (see Eq. (13)) is employed 

to perform reliability analysis. Here, stress refers to the 
operating internal pressure (po) and strength refers to the limit 
pressure (pb). 
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Fig. 4 Yielding status of corrosion defect when the internal pressure is 6.6 MPa 

Table 2 Corrosion depth and the corresponding limit pressure 

d, mm pb, MPa d, mm pb, MPa

3.4 7.0 1.9 11.0 

3.2 7.6 1.6 11.6 

2.9 8.6 1.3 12.3 

2.5 9.3 1.0 13.2 

2.2 10.2 0.6 13.2 

 

图 7 中 图例 
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Table 6 Sensitivity result through HL-RF calculation

 

ηD ηt ηd ηα u
  

aF  
op  

5.011 -781 782 0.874 -9.499×10-9 2.094×10-7 5.885×10-7

 

If Z>0, the system is in the safe domain. If Z=0, the 
system is in the limit state. If Z<0, the system is the failure 
domain. In order to solve Eq. (13), the distribution of these 
random variables should be first obtained. Moreover, the 
failure probability, reliability index and sensitivity are 
calculated by the HL-RF algorithm. Finally, these results are 
verified by MCIS and the simulation times are optimized at 
the same time.

3.1 Distribution of random variables 
Referring to the design and inspection data of a marine 

riser in an engineering project, random variables referred to 
structure resistance and load can be obtained, including D, 
t, d, α, σu, Fa, po. However, due to the complex and dynamic 
marine environment, the axial force can neither be detected, 
nor calculated. Therefore, FEA is employed to obtain the axial 
force through ABAQUS. The finite element model (see Fig. 8) 
is based on the engineering parameters, listed as follows.

Similarly, the distribution of moment can be obtained. 
Also, the distribution characteristics of other random 
parameters of the riser and its defect can be directly obtained 
from the engineering project, listed in Table 4.

Pet.Sci.(2014)11:139-146

The total length of the riser model is 95.7 m, including 8.5 
m in the air, 80.5 m in the ocean and 6.7 m under the seabed. 
The outer diameter and wall thickness are 508 and 6.35 mm, 
respectively. API X-60 steel is used for the riser, with Young’s 
modulus of 210 GPa, Poisson’s ratio of 0.3 and density of 
7,850 kg/m3. The significant wave height and maximum wave 
height are 4.4 and 7.5 m, respectively. The returning period of 
wave and current is 15 years. The significant wave period and 
maximum wave period are 6.9 and 8.8 s. The surface layer, 
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Table 4 Parameter distribution

D
mm

t
mm

d
mm

α
rad

σu

MPa
Fa

kN
Mo

kN·m
po

MPa

Distribution Normal Normal Lognormal Lognormal Normal Normal Normal Normal

Mean 508 6.4 2.5 0.0562 565 706.07 64.43 4.5

COV (Coefficient of variation ) 0.04 0.02 0.08 0.05 0.07 0.31 0.45 0.05

3.2 Reliability calculation through HL-RF algorithm 

The HL-RF algorithm (Hasofer and Lind, 1974; Rackwitz 
and Flessler, 1978) was employed to perform reliability 
calculations. The HL-RF algorithm is the advanced form, 
which is widely used due to its high efficiency (Koduru and 
Haukaas, 2010; Thorndahl and Willems, 2008; Yang, et al, 
2006). It is formally recommended for engineering by the 
Joint Committee of Structural Safety (JCSS). In this paper, 
the HL-RF algorithm is employed to calculate the reliability 
index (β), failure probability (Pf) and sensitivity (η). 

In the first step, the initial value of each most-probable-
failure-point (MPFP, P*) is set as the equivalent mean value 
of each variable: for the variables with normal distribution, 
the equivalent mean value is set as the mean value; for the 
variables with non-normal distribution, the equivalent mean 
value is calculated from the mean value (He and Wang, 
1993). In this work, the corrosion depth (d) and half of the 
corrosion angle (α) should be transformed into equivalent 
values. In addition, sensitivity (η, Eq. (15)) and cosine of 
direction-angle (λ, Eq. (16)) are calculated at MPFP. Based 
on the above values, the reliability index (β) can be obtained 
by solving the limit state function (Eq. (14)). If the relative 
error between two adjacent indexes is bigger than 1×10-6, 
re-calculate MPFP (Eq. (17)), η and λ, with which the new 
index can be worked out. The above-mentioned steps will 
continue until the relative error between two adjacent indexes 
is smaller than 1×10-6. Finally, the failure probability (Pf, Eq. 
(18)) is calculated. 

Simil
random p
Table 4. 

COV 
 

3.2 Relia

The H
reliability
efficienc
recomme
algorithm

In the
mean val
the mean
from the 
angle (α)
direction
can be o
indexes 
worked o
is smalle

i 

larly, the dis
parameters of

 

Distributio
Mean 

(Coefficient of

ability calcul

HL-RF algori
y calculation
y (Koduru an
ended for eng
m is employed
e first step, th
lue of each v
n value; for 
mean value 

) should be tr
n-angle (λ, Eq
obtained by s
is bigger tha
out. The abov
er than 1E-6. F

 

 
1

i P
n

i
i

g x

g x


  

 

stribution of 
f the riser and

on N

f variation ) 

lation throug

ithm (Hasofe
ns. The HL-R
nd Haukaas, 

gineering by t
d to calculate
he initial valu
variable: for th
the variables
(He and Wan
ransformed in
q. (16)) are c
solving the lim
an 1E-6, re-c
ve-mentioned
Finally, the fa

2

P

P





              

Fig. 10 Frequ

moment can 
d its defect ca

Table 4

D 
mm 

t
mm

Normal Norm
508 6.4
0.04 0.02

gh HL-RF al

er and Lind, 1
RF algorithm

2010; Thorn
the Joint Com
e the reliabilit
ue of each mo
he variables w
s with non-no
ng, 1993). In
nto equivalen

calculated at 
mit state fun

calculate MPF
d steps will co
failure probab

               (15

uency histogram

be obtained
an be directly

4 Parameter dist

d 
mm 

mal Lognormal
2.5 

2 0.08 

lgorithm  

974; Rackwi
is the advanc

ndahl and Wi
mmittee of Str
ty index (β), f
ost-probable-f
with normal 
ormal distrib

n this work, th
nt values. In 
MPFP. Base

nction (Eq. (1
FP (Eq. (17)
ontinue until

bility (Pf, Eq.

) 

m of the axial fo

d. Also, the d
y obtained fro

tribution 


rad M

l Lognormal N
0.0562

0.05 

itz and Flessl
ced form, wh
illems, 2008;
ructural Safet
failure probab
failure-point 
distribution,

bution, the eq
he corrosion 
addition, sen
d on the abo

14)). If the re
)), η and λ, w
the relative e
(18)) is calcu

 
orce 

distribution c
om the engine

σu 

MPa 
Fa 

kN 
Normal Norma

565 706.07
0.07 0.31 

er, 1978) was
hich is widel
; Yang, et al
ty (JCSS). In 
bility (Pf) and
(MPFP, P*) 
the equivalen

quivalent mea
depth (d) and

nsitivity (η, E
ove values, th
elative error 
with which t
error between
ulated.  

characteristics
eering project

Mo 
kN·m 

al Normal N
7 64.43 

0.45 

s employed to
y used due to
, 2006). It is
this paper, th

d sensitivity (
is set as the e
nt mean value
an value is c
d half of the 

Eq. (15)) and 
he reliability 
between two
the new inde
n two adjacen

s of other 
t, listed in 

Po 

MPa 
Normal

4.5 
0.05 

o perform 
o its high 

s formally 
he HL-RF 
(η).  
equivalent 
e is set as 
calculated 
corrosion 
cosine of 
index (β) 

o adjacent 
ex can be 
nt indexes 

(15)

(16)
 

 2

1

ii xP
i n

i P
i

g x

g x










  


 
                              (16) 

i ii x i xx                                           (17) 

 fP                         (18) 

The above procedure is implemented as a Matlab program, obtaining MPFP (Table 5) and sensitivity 
(Table 6) of each variable. The reliability index and failure probability are also worked out: the former is 
2.70 and the latter is 0.0035. 
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Table 6 Sensitivity result through HL-RF calculation 

 D t d α σu Fa Po 
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From above reliability calculation, some conclusions are summarized. 
● In terms of marine risers with long-thin corrosion defects under combined loads, the reliability index 

is 2.70 and the failure probability is 0.0035. According to the code of Riser Integrity Management (DNV-
RP-F206, 2008), the probability category is 4 (DNV-RP-F107, 2001). 

● Corrosion depth and wall-thickness are two most sensitive factors. In particular, the former is 
positively correlated, meaning that the greater the value, the greater the risk will be. The latter is negatively 
correlated, which means that the smaller the value, the greater the risk.  

● If the variables’ values reach most-probable-failure-point (MPFP), it is on the border of failure. In 
other words, MPFP is the critical point, which should be avoided. 

 

3.3 Reliability verification through MCIS  

MCIS is employed to perform reliability verification. As Monte Carlo simulation is always low in 
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center at MPFP, obtained from the HL-RF algorithm. The sampling field is dynamically specified around 
the sampling center. Probability distributions of random variables are the same as those in Table 4. MCIS is 
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these results are very close to those obtained from HL-RF calculation, serving as a good verification. 
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The above procedure is implemented as a Matlab 
program, obtaining MPFP (Table 5) and sensitivity (Table 6) 
of each variable. The reliability index and failure probability 
are also worked out: the former is 2.70 and the latter is 0.0035.

Table 5 MPFP result through HL-RF calculation

D, mm t, mm d, mm α, rad σu, MPa Fa, kN po, MPa

513.6 6.3 2.6 0.0561 518.94 733.14 4.6

Table 6 Sensitivity result through HL-RF calculation

ηD ηt ηd ηα ησu ηFa
ηpo

5.011 -7.81 782 0.874 -9.499×10-9 2.094×10-7 5.885×10-7

From above reliability calculation, some conclusions are 
summarized.

● In terms of marine risers with narrow and long 
corrosion defects under combined loads, the reliability index 
is 2.70 and the failure probability is 0.0035. According to the 
code of Riser Integrity Management (DNV-RP-F206, 2008), 
the probability category is 4 (DNV-RP-F107, 2001).

● Corrosion depth and wall-thickness are two most 
sensitive factors. In particular, the former is positively 
correlated, meaning that the greater the value, the greater the 
risk will be. The latter is negatively correlated, which means 
that the smaller the value, the greater the risk. 

● If the variables’ values reach most-probable-failure-
point (MPFP), it is on the border of failure. In other words, 
MPFP is the critical point, which should be avoided.

3.3 Reliability verification through MCIS 
MCIS is employed to perform reliability verification. 

As Monte Carlo simulation is always low in efficiency, the 
importance sampling procedure is employed to avoid this 
weakness (Campioni and Vestrucci, 2004; Levine, 1998; 
Berliner and Wikle, 2007). The principle of MCIS is to 
set the sampling center at MPFP, obtained from the HL-
RF algorithm. The sampling field is dynamically specified 
around the sampling center. Probability distributions of 
random variables are the same as those in Table 4. MCIS is 
implemented in Matlab, to obtain reliability index and failure 
probability for different numbers of samples (Table 7). 

Table 7 Reliability verification through MCIS

Samples β Pf

100 2.6162 0.0044

400 2.7016 0.0035

900 2.6610 0.0039

1600 2.6590 0.0039

2500 2.6646 0.0039
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According to a comparison among the results obtained 
from different numbers of samples (see Fig. 11), 900, with the 
smallest error of both reliability index and failure probability, 
is accurate enough. Moreover, these results are very close to 
those obtained from HL-RF calculation, serving as a good 
verification.

RF algorithm and the MCIS method can be a comprehensive 
solution for the reliability analysis of internal corroded risers.
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Appendix A: Influence of moment
The influence of moment is simulated by commercial 

software, ABAQUS, whose model is the same as the one in 
Section 2.2 (Fig. 2). The riser is subjected to three types of 
loads: internal pressure, axial force and moment. These loads 
are set as their mean values, which are obtained from FEA 
in Section 3.1 (Table 4). In other words, the internal pressure 
is 4.5 MPa, the axial force is 706 kN, and the moment is 
64.4 kN·m. If the model is subjected to two combined loads, 
say internal pressure and axial force, the von Mises stress is 
shown in Fig. A1; if the model is subjected to three combined 
loads, say internal pressure, axial force and moment, the von 
Mises stress is shown in Fig. A2.

Appendix B: Monte-Carlo simulation
The basic Monte-Carlo procedure is employed to 

calculate the reliability of internal corroded risers. The seven 
random variables in the limit state function (Eq. (13)) are 
sampled in the feasible region rather than around MPFPs. 
This leads to high uncertainties in sampling and causes 
inaccurate outcomes with limited samples. According to 
Table B1, although sampling 1 million times, the results are 
not convergent and accurate compared with those obtained by 
MCIS (see Table B1).

Table B1 Monte-Carlo simulation

Samples β Pf

1.0×104 -0.3292 0.6290

2.5×105 0.1509 0.4400

4.9×105 -0.0405 0.5161

6.4×105 -0.1771 0.5703

8.1×105 0.5988 0.2747

1×106 -0.6682 0.7480

1×106 0.1594 0.4367

1×106 -0.2491 0.5984

S, Mises
(Avg:75%)

+4.657e+08
+4.314e+08
+3.970e+08
+3.627e+08
+3.283e+08
+2.940e+08
+2.596e+08
+2.253e+08
+1.909e+08
+1.566e+08
+1.223e+08
+8.791e+08
+5.085e+07
+5.356e+07

Z

X

ODB: moment.odb Abaqus/Standard 6.10-1 Wed Mar 20 10:4 s:o4 GMT+08:00 2013

Step: step-1
Increment   11: Step Time= 1,000
Primary Var: S, Mises
Deformed Var: U  Deformation Scale Factor: +1,000e+00

Fig. A1 Von Mises stress under internal pressure 
and axial force (inner section)

Fig. A2 Von Mises stress under internal pressure, 
axial force and moment (inner section)

S, Mises
(Avg:75%)

+4.663e+08
+4.317e+08
+3.971e+08
+3.625e+08
+3.279e+08
+2.933e+08
+2.587e+08
+2.241e+08
+1.895e+08
+1.549e+08
+1.203e+08
+8.574e+07
+5.115e+07

Z

X

ODB: moment2.odb Abaqus/Standard 6.10-1 Wed Mar 20 10:55:23 GMT+08:00 2013

Step: step-1
Increment   11: Step Time= 1,000
Primary Var: S, Mises
Deformed Var: U  Deformation Scale Factor: +1,000e+00
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