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Abstract: In recent years, as the exploration practices extend into more complicated formations,
conventional well log interpretation has often shown its inaccuracy and limitations in identifying
hydrocarbons. The Permian Wutonggou Formation hosts typical clastic reservoirs in the Eastern Junggar
Basin. The sophisticated lithology characteristics cause complex pore structures and fluid properties.
These all finally cause low well testing agreement rate using conventional methods. Eleven years’ recent
statistics show that 12 out of 15 water layers have been incorrectly identified as being oil or oil/water
layers by conventional well log interpretation. This paper proposes a methodology called intelligent
prediction and identification system (IPIS). Firstly, parameters reflecting lithological, petrophysical and
electrical responses which are greatly related to reservoir fluids have been selected carefully. They are
shale content (V,), numbered rock type (RN), porosity (@), permeability (K), true resistivity (RT) and
spontaneous-potential (SP). Secondly, V,, @ and K are predicted from well logs through artificial neural
networks (ANNGs). Finally, all the six parameters are input into a neuro-fuzzy inference machine (NFIM)
to get fluids identification results. Eighteen new layers of 145.3 m effective thickness were examined by
IPIS. There is full agreement with well testing results. This shows the system’s accuracy and effectiveness.

Key words: Eastern Junggar Basin, potential pay zone identification, well log interpretation, intelligent

system, neural network, neuro-fuzzy inference machine

1 Introduction

In recent years, as the exploration practices expand into
much wider areas, formation situations have become more
and more complicated than before. It is a big challenge for
conventional well log interpretation techniques to identify
potential pay zones accurately. The Permian Wutonggou
Formation in the eastern Junggar Basin hosts some of the
most important clastic reservoirs in the Xinjiang oil field. The
reservoirs are in various types of lithology with sophisticated
characteristics: siltstone, fine sandstone, conglomerate, while
some are filled with ash and tuff, some are filled with clay and
shale to different degrees. They cause various and complex
pore structures and have a high bound water saturation
averaging 47%. Statistics for 2001-2011 show that 12 of 15
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water layers have been incorrectly identified as oil or oil/
water layers by conventional well log interpretation. It has
increased well testing costs too much.

Commonly, pay zones can be recognized by drawing
cross plots (Cheng, 2008). This is effective under specific
formation situations. The RT-@ cross plot should be used
under several situations: single rock type, rarely shale
content and stable formation water properties. However, this
method often considers too few factors to recognize more
complex layer situations. Frequently, because of the complex
formations, it is very difficult to get effective cross plots.
The Permian Wutonggou Formation is an example of this
problem. Also, it is time consuming and hard to handle when
too much data with inaccuracy, fuzziness and redundancy
is considered. So it is necessary to resort to other methods
to resolve these specific problems. In fact, some researchers
have tried intelligent methods to extract fluid information
from well logs for better accuracy. Zhou et al (1993) tried to
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identify hydrocarbons from well logs by using a fuzzy neural
network (FNN). Elshafei and Hamada (2007) have also used
artificial neural networks (ANN) to identify potential layers
in shaly sand reservoirs. Gao et al (2009) used an emergent
spontaneous organizing feature map to get better accuracy.
Kadkhodaie et al (2009a; 2009b) and Jafari et al (2011)
designed a CMNN (committee machine neural network) to
predict NOC and TOC from log data to find hydrocarbon
potentials. Khoshnoodkia et al (2011) also predicted the TOC
by using fuzzy theory. Karimpouli et al (2010) used a new
supervised CMNN to improve ANN’s performance. Li et al
(2011) used a decision tree (DC), support vector machine
(SVM) and rough set (RS) to identify low gas-saturation
reservoirs. Fernandes (2012) also used ANNSs to determine
the presence of hydrocarbons with well logs and formula
equations. Cranganu and Breaban (2013) have used support
vector regression (SVR) to estimate sonic log distributions
from conventional well logs. In recent years, there have been
many other studies on predicting petrophysics (Zhang et al,
2006; Ye et al, 2011; Jafari and Moghadam, 2012; Wang et
al, 2010), lithology (Wang and Zhang, 2008), classification
(Zhu et al, 2010; Yu et al, 2011) and identification (Zhang
et al, 2011) from well logs or other parameters. Many other
intelligent methods have been used (Wu et al, 2009; Tan et al,
2010; Jafari and Mashohor, 2013).

There are many factors affecting underground fluid
identification. Lithological, petrophysical properties and
electrical responses comprehensively reflect fluid information.
Meanwhile, these properties are implicated deeply in large
numbers of well logs. Prediction models should be elaborately
founded on careful selection and analysis of massive, fuzzy,
redundant data considering real formation situations. This
is always challenging work. However, the literature above
have only records simple methods to predict fluid information
directly from well logs. Complex problems have been
over simplified. Based on these, this paper has proposed a
methodology called intelligent prediction and identification
system (IPIS), which considered specific situations in the
Eastern Junggar Basin. The IPIS based on ANN and FIS
theory divides the problem into two parts and resolves it by
steps. There are mainly three parts as follows. The ideas of
IPIS are in the first part. Data pre-processing and construction
of models are in the second. An example and applications
have been shown finally.

2 The methodology of intelligent systems

2.1 Reservoir characteristics

Basically lithological, petrophysical properties and
underground electrical responses provide fluid information.
It is essential to estimate reservoir characteristics to check
the sensitive log parameters and then to design the IPIS
objectively. Some basic information is shown in Table 1. The
details are as follows.

1) The reservoirs are found in various lithology types:
siltstone, fine sandstone, sandy conglomerate and so on.
Some are filled with ash and tuff, while most are filled with
clay and shale to different degrees. They are divided into four
classes by grain size in Table 1. The finer the formation, the
more bound water will be present. 47% montmorillonite is
contained in clay and shale in average. It will expand when
encountering water and block micropores.

2) The average porosity is 12%, while the average
permeability is 4.4 mD. Complex pore structure determines
low movable fluid porosity and permeability.

3) Complex lithological properties and pore structures
result in intricate fluid distribution. The average bound water
saturation from core data is 47%. For the well log of true
resistivity (RT), an oil layer is 4.36-32.7 Q-m with an average
12.8 Q-m, while RT of a water layer is 3.37-16.9 Q-m with
8.07 Q-m as the average value. As these parameters overlap
they cannot distinguish oil from water.

In a word, the variance of lithology and mineral
components causes heterogeneity of pore structure. And both
of them are the major causes to determine poor electrical
response. They comprehensively reflect intricate fluid
distributions.

2.2 Model idea and method

Definitely, fluid information affects a large number
of log data. It is often difficult and inaccurate to extract
valuable fluid data from them directly. In fact, this problem
can be processed by steps. The proposed methodology,
the intelligent prediction and identification system (IPIS),
mainly consists of two steps. 1) Based on understanding
formation situations, select and predict parameters reflecting
lithological, petrophysical and electrical responses which are

Table 1 Formation characteristics

Shale, % Throat radius, um Porosity, % Permeability, mD Bound water saturation, %
Lithology
Range Mean Range Mean Range Mean Range Mean Range Mean
Mudstone with sand 9.5-13.1 10.8 0.08-1.87 1.02 2.1-14.9 7.6 0.01-12.5 2.45 44.8-58.9 54.7
Silt and fine sandstone 7.8-9.6 8.2 0.69-1.88 1.51 1.2-21.1 11.1 0.42-15.9 4.56 45.6-54.2 49.1
Medium and coarse sandstone ~ 6.9-8.2 7.4 1.01-2.3 1.32 5.2-24.9 12.5 1.38-45.1 4.87 38.9-49.6 44.8
Conglomerate 3.6-7.2 5.6 1.3-2.2 1.54 6.6-24.1 16.7 5.04-28.9 5.65 29.7-44.8 38.7
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closely related to formation fluid recognition. 2) Put these
parameters into an inference system to identify fluids directly.
Step 1 concentrates and abstracts key information from large
fuzzy and redundant data, and then provides critical inputs for
step 2 to get best results.

The selection of inputs from step 1 to step 2 is of great
importance. When two potential layers have similar pore
structures and electrical responses, the finer lithology layer
with higher shale content is likely to be a pay one (Cheng,
2008). If two layers have similar lithological properties and
electrical responses, the more complex pore structure layer
may have oil potential. Certainly, two layers with almost the
same lithology and petrophysical properties will be normally
distinguished by subtle differences of electrical parameters.
Considering the specific formation in this paper, shale content
(V,,) and rock type (RN) are chosen here to describe lithology.
@ and K are considered together to describe pore structure
situation. True resistivity (RT) and spontaneous-potential
(SP) will be chosen to reflect fluid properties. Normally, shale
content may be mainly defined from gamma ray counts (GR)
by empirical formulae (Li, 2006) or other well logs. The sand
rock type is often determined by sandstone grain size. @
and K are highly related to well logs (Amaefule et al, 1993;
Bloch, 1991). ANNs are designed instead of conventional

ANN2

Well logs HINPUTS

ANN3

ANN1 V>

Classification —RN—|
——
——K—>
Normalization—RT—>

Normalization—SP—

methods to better determine formation parameters here. Three
ANN models are used to train and calculate V,, @ and K
respectively. Rock types are labeled by numbers. RT and SP
are obtained from log data.

Thus, three types of property parameters which contain
shale content, rock type number, porosity, permeability,
true resistivity and spontaneous-potential are obtained as
the inputs for the next step—the neuro-fuzzy inference
machine (NFIM). It is also the essence of IPIS. The fuzzy
inference system (FIS) (Li, 1998) is based on fuzzy set and
expert system theories. When it is too hard or expensive to
express the relationship between inputs and outputs by exact
mathematical models, the FIS will be used. All input data
should be fuzzified into fuzzy sets and output data would
be defuzzified from fuzzy sets when an FIS works. Fuzzy
relationships between inputs and outputs are expressed as
IF-THEN rules based on expert knowledge. However, fuzzy
rules are often hard to get from a large amount of data. The
neuro-fuzzy inference machine technique that combines ANN
and FIS has the advantages of both fuzzy inference and neural
network. It can learn fuzzy rules from large amounts of data
by training and checking. Fig. 1 shows the architecture of
IPIS. The details can be found in the following part.

Neuro-fuzzy __
inference |-OUTPUT| 'dentifying
machine result

Fig. 1 Architecture of IPIS

3 Establishment of IPIS

3.1 Data selection and preparation

All the layers of exploration wells in recent eleven years
are considered. These data contain well logs AC (acoustic
time), CNL (compensated neuron log), DEN (density log), RT
(true resistivity), RI (invaded zone resistivity), RXO (flushed
zone resistivity), GR (gamma ray), and SP (spontaneous
potential), core data (shale content, porosity, permeability)
and well testing results. The data are suffering data deficiency
and redundancy to some degree. It is necessary to pick out the
key data of key wells carefully. The rules are as follows: 1)
layers with complete data should be chosen first; 2) layers from
different blocks with different well testing conclusions should
be considered equally; 3) all the layers with core data should be
involved to provide enough training data for prediction models.
Under these rules, 48 layers of 26 wells with well logs and well

testing results and 315 core data points were selected.

3.2 Construction of ANNs

The backward propagation (BP) network is a supervised
training technique that sends the input values forward through
the network then computes the difference between calculated
output and corresponding desired output from the training
data. The error is then propagated backward through the net,
and the weights are adjusted during a number of iterations
named epochs. The course stops when the calculated values
best approximate the desired outputs (Bhatt and Helle, 2002).
Three-layer BP networks with one hidden layer are used here.
The Levenberg-Marquardt (LM) algorithm is used in this
paper for its fast convergence speed (Burney et al, 2004). The
tan-sigmoid and linear equations were taken as activation
functions for hidden and output layers respectively (Hagan
et al, 1996). Two data groups are considered (90% points for
training and 10% for checking). All inputs are normalized by
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Eq. (1) before training.

y (M

max ‘min

N x_xmi
X =

The most important decisions for ANNs are to choose
input log variables and determine net architectures. It is often
hard to determine the neuron number of hidden layers since
there is no common calculation formula. In this paper, input
variables and the hidden layer neuron number are determined
by lots of numerical experiments with Matlab software. Table
2 shows the performance (mean square error, MSE) under
different log variables with different hidden layer neuron
numbers. In order to get the best net structures, almost all
possible input variable sets were considered in numerical
experiments: 4, 5, 6, 7, 8 variables from all eight well logs
were tested in turn. And each input component considered

five kinds of hidden layer neuron numbers: 8, 9, 10, 11,
12. Thus, totally 815 times of numerical experiments were
conducted for each output item: V,, @ and K. In light of
space restrictions only the top performance sets are shown
here. The best models were chosen for IPIS. Figs. 2-4 show
their performances.

Different rock types have different reservoir abilities.
Since rock types are related to well testing results, their
numbers must be ordered. The ordered rules are: if one rock
type has more oil production, it should be labeled with a
larger number. Else if two rock types have almost the same oil
production, the rock type with better petrophysical properties
should be labeled larger. Here, numbers 1 to 4 represent in
turn mudstone with sand, silt and fine stone, medium and
coarse gritty, and conglomerate.

Table 2 Performance of ANNs with best input group and structure

Items Input variables Hidden layer neurons  Training MSE  Checking MSE
V, AC, DEN, GR, SP, RT 8 0.175 0.231
D AC, CNL, DEN, GR, RT, RT/RXO 10 0.089 0.128
K AC, CNL, DEN, GR, RT/RXO 11 0.105 0.139
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30 the second layer, y’ represents the membership degree of
o the ith input to the jth fuzzy set. A Gaussian function given
25 . .
X o by Eq. (2) can be used as the membership function (MF).
S 2 c;and o, represent the center and width of the function.
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0 ‘ - s . s back-propagation algorithm as the BP network to get the best
0.0 5.0 100 150 200 250 300 MFs and weights with minimum errors (Li, 2010; Jafari and

Core data, %
Fig. 3 ANN2 performance to predict porosity

3.3 Construction of the NFIM

Fig. 5 shows a neuro-fuzzy inference machine with n
inputs and 1 output based on T-S (Takagi-Sugeno) fuzzy
model (Li, 2010). The net contains five layers totally. For

Mashohor, 2013). In this paper, 6 inputs and 1 output have
been considered in NFIM. Fig. 6 shows the workflow of
NFIM.

2
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Fig. 5 Structure of NFIM
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Fig. 6 Workflow diagram of the NFIM

The MF numbers of the inputs: V,, RN, &, K, RT and
SP are 4, 4, 3, 3, 3 and 3 respectively. The output is the
identification result with numbers 1 through 4 in accordance
with the well testing results: oil layer, oil and water, water
layer and dry layer. They are ordered by oil potential and then
by total products in accordance with the parameter RN. Two
points should be noted:

1) The MF numbers of ¥, and RN are designed larger
because lithology is the most fundamental and most sensitive

parameter for identifying fluids.

2) Some clustering methods (Gao, 2004) or expert
knowledge can be taken to reduce rules if there are too many
to train rapidly.

Fig. 7 shows that the minimum MSE will be obtained
after 341 iterations. It will be over-trained after that point.
So the number of iterations was set 341 to get the best NFIM
structure. Thus, a well-trained NFIM has been established
successfully. Fig. 8 shows its prediction results compared
with real field data. The output numbers will transform to
the nearest integers to get ultimate classification results. The
agreement rates are 100% among training, checking and real
data.
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Fig. 8 Comparison between real data and IPIS predictions

4 Applications

The well-trained IPIS was programmed into a software
set using Visual Basic script. Fig. 9 shows the comparison of
IPIS interpretation conclusions with final well testing results
for well A. Porosity and permeability from IPIS agreed well
with the core data. The identification results are scatter points
every 0.125 m. The final layers were obtained by merging
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adjacent points which have the same results. So the layering
process was automatic. The upper layer (2,285-2,297 m)
is identified as an oil layer by the conventional method.
However, IPIS results are water layer and dry layer. And the
well testing result is a water layer with 26.2 m’/d production
finally. The lower layer (2,321-2,328 m) is identified as a
poor oil layer by the conventional method. However, IPIS
result is an oil and water layer. The final testing result was
an oil and water layer with an oil production of 8.34 t/d, and

water production of 9.89 m’/d. Eighteen layers of 145.3 m
total effective thickness from 10 new wells were examined by
both conventional methods and IPIS. There was a complete
agreement between IPIS results and final well testing results.
It is obvious that the final models and software have obtained
good results in the eastern Junggar Basin. However, it seems
not always so effective in other areas. The models should be
established carefully according to the goal formations based
on IPIS ideas.
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Fig. 9 Identification results for well A

5 Conclusions

1) Using conventional methods to identify potential pay
zones in exploration wells is often time-consuming and
inaccurate when the formations are complex and well log data
are redundant.

2) An intelligent prediction and identification system
(IPIS) based on an artificial neural network (ANN) and a
fuzzy inference system (FIS) theory has been proposed to
improve conventional methods. The IPIS has chosen six
factors reflecting lithological, petrophysical properties and
electrical responses. Firstly, shale content (V,), porosity (@)
and permeability (K) are predicted by ANNs from well logs
respectively. Then, rock type number (RN), V,,, @, K, RT, SP
are input into a neuro-fuzzy inference machine (NFIM) to get
the recognition results.

3) Some key points should be noted for IPIS. The
six inputs are selected under standards based on fully
understanding the formation situations. Enough numerical
experiments have been done to avoid local convergence and
to get the best structures and input sets of ANNs. The NFIM
is more fault-tolerant than a normal BP net. The number of
iterations will be set to 341 to prevent overfitting and get the
best weights.

4) The agreement rate to recognize 10 layers between IPIS
and well testing results is 100%. Totally 145.3 m have been
correctly recognized by IPIS. It has provided an effective
methodology and a new direction in identifying sophisticated
reservoirs.
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