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Abstract: The capacitance-resistance model (CRM) is an alternative to conventional reservoir
simulation. CRM, a simplification of complex numerical models, uses production and injection rates to
infer a reservoir description. There is no prior geologic model. The principal output of CRM fitting is the
fraction of injected fluid (usually water) that is produced at a producer at steady-state. These fractions
are interwell connectivities. Interwell connectivities are fundamental information needed to manage
waterfloods in oil reservoirs. The data-driven CRM is a fast tool to estimate these parameters in mature
fields and allows one to make full use of the dynamic data available. This paper considers the problem of
setting an upper bound on the uncertainty of interwell connectivities for linear-constrained models. Using
analytical bounds and numerical simulations, we derive a consistent upper limit on the uncertainty of
interwell connections that can be used to quantify the information content of a given dataset.
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1 Introduction

For the better part of a half-century, modeling of fluid
flow through hydrocarbon-bearing reservoirs has dominated
reservoir simulation. This is a process whereby the complex
non-linear dynamics of fluid flow, described by partial
differential equations (PDEs) of fluids, is approximated on
a grid block or cell scale. This process is extremely data
intensive, requiring as it does a prior geologic model and a
host of other inputs that are either known or unknowable.
The objective, in most cases, of numerical simulation is to
determine the input-output relationship that represents the
state of the reservoir system. Here we address an alternate
approach, one that directly captures the relationship with
a much smaller (and simpler) model. The approach is the
capacitance-resistance model (CRM). For mature fields,
where water saturations are typically large, the PDEs become
approximately linear, guaranteeing a linear response at least
for stationary rates (Chierici, 1994). The coefficients of such
a linear relation between the total produced rate and the
injection rates of neighboring wells is an intrinsic property
of the reservoir (Yousef et al, 2006), which we call interwell
connectivities. In the general case of a non-constant injection
rate and compressible media and fluids one has to incorporate
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new features in the model, other than simple connectivities,
to fully describe the dynamics of the system. To the best
of our knowledge the simplest model that can incorporate
compressibility effects is the CRM (Yousef et al, 2006). This
model is complex enough to capture the main features of
the system but simpler enough to be calibrated using hard
dynamic measurements such as injection and production
rates. There are many ways to fit the parameters in the model
(Weber, 2009; Liang, 2010), all involving a minimization of
a non-linear objective function (an associated least-square
problem) with constraints in the variables. Despite many
successful applications of this technique (Sayarpour et al,
2009, Nguyen et al, 2011), the limitations in the analysis
imposed by available data have only be partially analyzed
(Weber, 2009; Yousef et al, 2006) in this context. This work
studies the deviation of the parameters estimates with noise
and also their dependence with the time fluctuations of the
input to understand the problems in the fit and possible
solutions. In particular, we show that the unconstrained
optimization problem for the connectivities can be used to
set upper bounds on uncertainty of the constrained case. We
explore the implications of these bounds to avoid spurious
correlations.

2 Theory and bounds

We will assume that the system of interest satisfies the
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conditions for which the simplified description given by CRM
is valid. For this system we have measurements of injection
rates /(#,) in injector i and total liquid production rates Q/(t,)
in producer j in certain time periods ¢, (typically monthly).
Injection rates have small uncertainties compared to
production rates and thus their uncertainties will be neglected
here. Then the CRM-predicted total liquid production rate
q(t) (Q(t,) is calculated; g,(¢) is the model prediction) will
evolve according to:

7‘/‘}([)*“]]-([)ZZfig,a)_;Ii(_;,a)(t) (1

This evolution assumes a system of constant
compressibility, a linear relationship between well pressure
and flow, and constant bottom hole flowing pressures. Here
a=1,2, ..., n, where n;, is the number of neighbors of the j-th
producer and the mapping i(j, &) stands for the i-th injector
in the field that is connected to the j-th producer, uniquely
identified also as the a-th neighbor of the j-th producer. This
notation may seem cumbersome at first, but it will be simpler
to span the indexes listing the neighbors per producer because
here only neighboring interactions to j-th producer matter
(of course we still do not define a priori the neighbor list).
The time constant 7; is a measure of the response time in the
producer and f;; ,; are the connectivities to the neighboring
injectors. This equation can be easily integrated:

g, =4,(0) e+ ;fi(j,a)j <Ii(j,a) > ; 0 )

where <1 i(/.a) >,- (t ) is a function of time obtained by averaging
1 i(j, a)(t)

t e—(t—.c)/r‘,
<1i<f,a>> , 0= ] 1 (5)ds G)
0 j

In the following we will restrict the analysis to the
connectivities, which are the most sensitive parameters to
the fit (Kaviani, 2012), moreover time constants in a well-
behaved case should be small (on the order of months) and
thus the conclusions derived below for 7, constant will hold
approximately also in the general case. Furthermore, to find
analytical estimates we assume that the time window where
data is provided is much larger than the typical response time
7; thus for almost all times we have #/z,>>1 and Eq. (2) takes
the approximate form:

qj (t) = ;fi(j,a)j <1i(j,a) >j(t) (4)

Thus the problem including the response time r; has
exactly the same linear form as the incompressible (z,=0)
case, but instead of using /;; ,, the injection rate is replaced

by the r-averaged <I i( /=a)>,~ (11 ) This replacement represents

no loss of utility because “rate” measured in the oilfield is
always cumulative taken over a finite time interval.

The connectivity estimates are derived from minimizing
the difference between the prediction ¢g,(¢) and the data
O (t,). If the liquid production rate is affected by random
uncorrelated zero-mean noise sources, the appropriate
objective function for this problem (Box et al, 2008) is:

2
E({ff(/‘,a)/}) - Z/;(‘Ij (4:)-0,(1)) ®)
Js

where E({f;.,}) stands for a function £ that depends on the
complete set of connectivities {f;;,,}. The identification of the
statistical expectation operator with temporal data is a form
of the ergodic assumption (Jensen et al, 2000). As is usual,
ergodicity cannot be proven, only assumed. However, its use
here opens up the use of statistical procedures and insights
that have been developed over the years. Least squares
are obtained from the assumption of maximum likelihood
for uncorrelated Gaussian noise. In what follows we will
always use this objective to calculate f; and test the effects of
different noise sources.

The minimization of the objective as given by Eq. (5)
is a quadratic programming problem for which there exists
a unique global optimum when the quadratic form is non-
degenerate. However, note that variables are constrained
by f;>0 (the non-negativity constraint, or NNC) and } f; <1
(when equal to one corresponds to a balanced field or block,
denoted in what follows by BC). One of the objectives of this
paper is to quantify the deviations of such an optimum point
with the noise in Q/(#,) and to understand how the degeneracy
of the solutions is associated with the input signal (injection
rates). Error analysis of the coefficients in linear regression
is not new (for example (Jensen et al, 2000)). What is new
here is error analysis of the coefficients in constrained linear
regression for this model structure and the associated input
design problem.

The constraints on the fitting parameters impose limitations
on the possibilities for explicit solutions, so we will show how
to handle the problem incorporating them at different stages
and solving numerical cases when analytical estimates are
not possible. Let us first consider the simplest case, where the
system is approximately described by non-zero connectivities,
with real values F,, ,, inside the open set associated
to the feasible region (that is ) ;F;;,; <1—0 and F;; >0
for some small 6 ) and that the values of Q%) are affected by
a small noise term

Qj(tk):gj(tk)+§j(tk) (6)

with £(#,) a stochastic variable (which will be assumed
uncorrelated) and gi(#;) being calculated using the real values
that we want to reveal

g ()= ZFi(j,a)j <1i(j,a)>j () (M
This non-zero connectivities will exist between certain

neighbors (listed by ) of each producer. Then the optimum
point can be calculated analytically as:

< ) _
Z:, Ay fi(j,a)j =10, )]
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where the matrix 4"/

ap

Ay = Zk:<l v}, ()T, (1) ®

and the matrix /Q,, is calculated as a sum of products between
injection and production rates

IQja = ;<Ii(j,a)>j (t/c )QJ (tk )

The set of matrices 4” determines the values of the
connectivity estimates, but more interestingly they will play
an essential role in setting upper bounds on deviations in
the general case. These matrices, which are symmetric and
positive semi-definite, are formed by inner-products of the
neighboring injection history vectors of /# components

(<1i(j,a)>j (tl )’ <1i(j,a)>j (tz )’ B <1i(j,a)>j (tW ))

and thus they encode information about the structure of the
temporal series and its correlations. This vector is no more
than the component-wise 7-averaged injection rate history

<Ii(j a)> (t) for each time period ¢,, ..., t,. Now, if these
A

is given by

(10)

matrices are invertible (that is, if the #; injection vectors
which are neighbors to producer ; are linear independent), one
finds a unique solution:

i

Jiai = ;A"/;(J) 10, (11)
which of course coincides with F; = f;; ., in the case of zero
noise &(#,)=0.

However when the matrix is singular, the solution to the
problem is non-unique. The matrix becomes singular when
the injection rate vectors are linearly dependent, a situation
that can happen in field-wide injections where fluids are
injected through common surface manifolds. Albertoni and
Lake (2003) used a uniqueness index to identify this problem;
Yousef et al (2006) tested the so-called Ridge regression.

As can be expected, the transition is not sharp, and when
a particular matrix becomes closer to being singular the
uncertainty in the estimate, which is directly related to this
ambiguity, will become more sensitive to noise. To show
this, let us assume that the random uncorrelated errors &(#,)
satisfy @(tk)/[c_,’j,(tk)@r(tkr)]=5kk.c5,_-,-.a_,-2, here [.] denotes average
over noise realizations. These errors will yield to deviations
Of .= JiG.oi —Ufig.wy] in the estimated values of the
connectivities. Under the previous assumptions (and assuming
that the errors are small enough to maintain all the constraints
inactive) we have:

2] ) 2 12
|:é‘f;(j,a)j j| - Aaa O-j ( )
Eq. (12) clarifies the relation between uncertainty and
data structure. Of course, the noise in total production rates
sz generates indeterminacy in the connectivities but, more
importantly, the data structure, encoded in the inner product

matrix 4 of the neighboring injector history, defines the
amplification factor for such a relation. In particular when the

aa

matrix is closer to an ill-defined condition, where injection
vectors are linear dependent, the coefficient will diverge. In
contrast, for certain injection signals the matrix At(zfg) will be
better (A;;(j ) smaller), making the dataset more informative
because the estimation will be more robust to noise. In
the general framework of time series analysis Aijﬁ) are the
blocks of the so-called Fisher information matrix (Box et
al, 2008). Most of the literature on the subject is restricted
to unconstrained cases; thus in the following we analyze
possible deviations for this model structure in the presence
of active constraints. Finally, note that we can determine the
error estimated in Eq. (12) without actually fitting the model
to data. In the following we use analytical estimates when
possible and compare the results with numerical simulations
that span different types of active constraints.

3 Numerical simulations

3.1 Unconstrained case

We will show in the following that even when constraints
are active, the set of matrices A(EQ will set upper bounds on
uncertainty and guide the optimization of future injection
with the objective of minimizing uncertainty. To contrast
these ideas with analytical bounds, we compare the estimates
with numerical simulations that include, progressively, the
effect of constraints. Our numerical examples typically
involve inverted 5-spot patterns generated with 10 lines of
10 producers and 9 lines of 9 injectors with connectivities
populated randomly between the first neighbors in the
inverted 5-spot. Injection rates were varied randomly with
15% probability between 50 and 100 m*/d (units here will be
irrelevant because of the linearity of the underlying model)
and producers were assumed to evolve according a CRM
evolution. Time constants were fixed in 1 month and monthly
data were fitted for each realization of the stochastic noise
{&(#)} in the original production rates. Gaussian and white
noise were used; the same results described below hold for
both cases if the proper measure of noise level is chosen. In
what follows we describe explicitly the white noise examples,
in these cases the stochastic variables are taken in the range
() in [—L/2, L/2] thus the parameter L will be referred as
noise amplitude or noise level (analogously for Gaussian
noise the width of the Gaussian distribution will measure
the noise level) which also defines the mean deviation [(%,)
fjr(l‘k)]:5kkr5jer2/12. Fig. 1 shows a typical single producer
in the synthetic field and its associated fit. To study the
dependence of the fitting parameters with noise level we used
a sequence of increasing noise levels L. For each L we have
generated 100 realizations of the set {{(#,)}. Each of those
realizations was fitted and the mean connectivities and root
mean square deviations were calculated for each noise level.
Thus, for each noise level L we end up with a distribution
function for the fitted connectivities (that is represented in
these simulations by 100 samples). The fitting uses a (least-
squares) quadratic programming problem for which there
are many possible numerical schemes (Bjorck, 1996);
our implementation is a gradient-based scheme that takes
advantage of the model structure (e. g. sparse connections).
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Fig. 1 Typical liquid production rate data and fit in synthetic simulations.
This is a typical response of one producer in the field that has 100 producers
and 81 injectors.

Fig. 2 shows a typical response for the mean
connectivities of one injector as a function of the noise level
L in the case described above where constraints (NNC and
BC) are inactive. Now the mean values remain unchanged
and deviations agree with the analytical estimates, as shown
in Fig. 3. The comparison between calculated and estimated
deviations for all the connectivities in the field is visualized
in Fig. 4, where we plot a histogram for the ratio 7=df,,casured/
Of wsimatea TOT all the values of L and possible pairs. This
clearly shows a distribution centered at »=1. The finite width
is generated by the finite size of the sampling (100 noise
realizations of each experiment). Now let us consider the
cases where one or more constraints are active.
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Fig. 2 Mean connectivities vs. noise level (L) for a typical case when BC
and NNC are not active. The parameters f,-f, are the connectivities to four
producers.

3.2 Constrained cases

To be able to work out further the analytical estimates in
constrained cases other assumptions must be taken. Let us
start by assuming that we have only positive connectivities
between all the pairs in the problem and the producers have
the same time constant z/=7, in this case, and when deviations

Fig. 3 Root mean square deviation (dimensionless) from the mean values
of connectivities vs. noise level for a typical case when BC and NNC are
not present. Solid lines are calculated analytically. Numerical calculations
fluctuate because of finite sampling.
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Fig. 4 Frequency of the ratio 7=0f; .qured/fesimaca fOT all the connectivities
and noise levels (L). Neither BC nor NNC are active. Here there are only
non-zero nearest-neighbor connections.

of the data from the physical values are not large, we can
calculate the minimum of the objective under the BC

Zﬁ,-:l

J

(13)

As we are assuming now that, in principle, any pair can be
connected we do not need to distinguish between neighbors
here (that is, the mapping i= i(j, @) is unnecessary here for
this particular analytical estimate). Thus, using Lagrange
multipliers it is easy to show that

1
f=>4.10, +W(ZA” - ZIQ“)
i ! K

where N is the number of producers. Taking into account the
deviations associated with the fluctuations {(#,)} one can use
the previous equation to obtain the covariance matrix of the
fluctuations from the mean value df;; = fi;..y —fij«y] » NamMely

[5]3/'5](171 = 4;

s

(14)

(6,-1/N)(8, ~1/N)o? (15)

In this case fluctuations for different producers are
correlated through the BC. To understand the typical
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behavior we take two particular cases. For example,
if N—oo the unconstrained case is recovered as can be
expected intuitively; when N—o the constraint for each
injector has no effect on producers and fluctuations become
uncorrelated. For the other case assume o, ’=¢" to compute

the autocorrelation [é‘ﬁf}:A;lo-z(l—l/N). So the BC

suppresses part of the fluctuations because of the presence
of an extra relation between the connectivities. In typical
situations some of the connections are eliminated a priori
thus yielding a problem similar to the previous one; however,
in such a case equations cannot be decoupled systematically
unless the network structure (the neighbor list) is defined.
Nevertheless it can be seen from numerical simulations that
when BC is active and only first neighbor connections are
positive, the resulting fluctuations are always smaller than the
unconstrained analytical bound, including the cases where
some connectivities are eliminated a priori (this is the case,
for example, in a balanced nearest neighbor interacting field).
Again, the mean values of the connectivities do not change
with noise, and root mean square deviation from the mean
is always upper-bounded by the unconstrained estimate.
So in this case, where some connectivities are eliminated
a priori and the field is balanced, the uncertainty using the
unconstrained case is always an upper bound.

A more complicated case is the general situation, where
some of the gains are (physically) very small or even null
and no a priori elimination was carried out and/or when
fluctuations are large enough to activate NNC. In these cases
both the BC and NNC will be active for the noisy dataset.
A typical case of evolution of the fitting with noise level for
one of the injectors in the field is in Fig. 5. As can be seen,
in contrast to the previous cases the mean values deviate
from the correct answer (at L=0). The reason is that when the
noise is large enough small gains will activate its NNC and
thus fluctuations of small connectivities will be asymmetric,
drifting the mean to larger values (pull up). When BC is not
active the latter drift is the only effect but when BC becomes
active some of the others non-small mean gains (a priori
not identifiable) for the same injector will drift downwards.
Remarkably, deviations from the new mean at each noise
level still remain smaller than the unconstrained bound, as
shown in Fig. 6, however this can be expected from intuition
but it is not easy to prove. The latter observation holds for
all the gains in the problem, Fig. 7(a) shows the statistics of
ratios Ofpeasured/Ofesiimaed 10T two different values of the noise
level. There is a clear shift to values less than one. Moreover,
larger values of the noise level tend to spread the distribution
and skew it toward smaller fluctuations, as can be seen in
the density histogram of Fig. 7(b) where all values of noise
level are considered. This allows estimation not only of an
upper bound on the deviations from the mean but also gives
a measure of the fluctuations in Jf, and thus whether a certain
NNC is being activated or not can be estimated. When a NNC
is activated the associated connectivity mean will increase
and some of the other connectivities for the same injector will
be subject to possible drifts (mean value) in addition to their
own deviations.
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Fig. 5 Evolution of mean connectivities with noise level for a balanced
reservoir. The small connectivity f, (green) drift from its real value (at L=0)
when the noise is large enough to activate the NNC constraint. When this
happens other elements (e.g. f; and f;) will deviate downwards because of
BC.
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Fig. 6 Evolution of the root mean square deviation of the connectivities
from their mean values as a function of noise level (balanced reservoir). In
this case both NNC and BC are active. The drift of the means in Fig. 5 starts
when the noise displayed in this plot is large enough to activate the NNC for
the small gains.
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Fig. 7(a) Frequency of the ratio df;,caured/fesimaica fOr all the connectivities at
two different noise levels (L) in the case of a balanced reservoir. Fluctuations
are bounded from above by the unconstrained case (r <1).

To the best of our knowledge this general case, where
both BC and NNC are active, cannot be treated in closed
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Fig. 7(b) Density histogram for =0, ..qued/ fesimaca a0d for all the values of
the noise level L. The color represents frequency (number of counts).

form. However the previous analysis based on linear response
can be used to set bounds on uncertainty and understand
numerical findings.

Similar problems appear when non-physical connectivities
are not eliminated a priori. If the dataset is absolutely noise
free and the matrices invertible, there will be no spurious
connectivities. However, when the noise is added to the
data small gains will be pulled up drifting the means of
the physical interactions and thus distorting the fit. This
supports the idea of setting to zero connectivities below a
threshold value in a pre-processing step to mitigate the effect
of spurious correlations on the fit of physical connectivities
(Weber, 2009). The following section explores some practical
applications of the previous discussions.

4 Practical aspects and discussion

This section discusses applications of the previous ideas
that are of practical interest, based on the use of the matrices
A,, and A;; as a measure of linear independence in the
context of CRM, specifically giving a direct estimate of the
deviation growth rate of uncertainty via its diagonal elements
A;; This matrix imposes restrictions in the conclusions
that can be extracted from the data available which in this
framework can be estimated without a previous fit.

Let us consider as a first example the case of a single
producer connected to a pair of injectors, in this situation
the information matrix is 2x2 and the inverse can be easily
handled. The bounds for the deviation growth rate are

A22
2
A22A11 - (Alz )
I TR (17)
2
A22A11 - (Alz)

4 = (16)
Ay

When the injection histories are non-overlapping 4,,=0
and A4;'=1/ A,. Thus the more the injection is measured the
lower the bound will be, as expected measurement decreases

uncertainty (4, is an increasing function of the number of
measurements). Moreover, for two given signals /,(f) and 7,(¢)
of fixed shape the coefficients 4,, and 4,, are determined once
the measurement time steps ¢, are determined. In contrast,
the coefficient 4,, depends on the overlap of these signals.
Eqgs. (16) and (17) tell us that overlapping two signals of
fixed shape (4,,#0) always degrade our conclusions (the
denominator decreases for increasing overlap).

To further illustrate how these ideas can be used we
consider a more general example of a single producer
and many injectors. We want to know if this producer is
interacting or not with a certain neighboring injector, let us
say I,. Of course, one would like to consider all possible
interactions from the very beginning but this may, in
principle, not yield to a well-defined problem because enough
data-points must be available to unambiguously solve the
fitting problem (for example more time periods than possible
connections; that is fitting parameters, must be available but
this is not sufficient). To study to what extent this is possible,
one can construct the matrix 4,, of neighboring injectors
including an increasing number of injectors and see how
the coefficient 4;' changes both with this increasing number
of neighbors and with the number of periods T available.
When we add data-points (increase T) 4,, does not change
dimension; in contrast the number of neighbors N defines
the dimension of the matrix 4, so we write this explicitly
as A,ly. The degradation of the coefficient A\, will measure
how sensitive this inter-well connectivity estimate is to the
existence of other possible interactions around. Fig. 8 shows
the value of 4;)|, as a function of the time periods 7 in the
data set and the possible neighboring interacting elements
N. As can be expected, the more possible neighbors in the
problem, the more sensitive the estimate will be to noise in
the data. In fact, using second-order perturbation theory one
can find that when a new possible neighbor is included in the
problem of order N with matrix 4" '|,, the new problem of
order N+1 with matrix 4|, satisfies:

1 N ’
ol =AYt Al v
e |N zk<1N+l>j (tk)<IN+1>j (tk)£12—11 |N J
. (18)
with
Vi :Z<1N+|>j(tk)<ll>j(tk) (19)

k

Eq. (19) shows explicitly that when the new neighbor has
history overlapping with the previous injection signals (v>0)
it always increases the uncertainty (A1’11|N > AHI|N)- And

when it is temporally uncorrelated (for example because non-
zero values of the averages do not overlap) with the other
injectors this results in no harm to our estimation of the
connectivity. The previous formula agrees with intuition (that
is, a new well in the problem never can help) and gives an
explicit approximation for the perturbed uncertainty.

Fig. 8 shows a useful way to select an uncertainty
tolerance level a priori and explore how many interactions we
will be able to decouple (that is a contour line of fixed Afll)
from the dataset. Of course this plot depends on the particular
injection history, which defines the matrix 4, |y, but there are
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some generic features: more possible interactions increase
uncertainty (as shown before), more time periods always
decrease uncertainty, and finally larger response time in
producers results in larger uncertainty. The latter effect
is because the injection fluctuations below the producer
response time 7; are washed out, giving rise to a smoother set
of vectors. Of course the same reasoning applies to study the
existence of spurious correlations in more general cases, but
when more than one producing well is present one has to take
into account possible drifts as was described in the previous
section.

200
180
160
0.0635

140

120

Time window 7, month

100 0.0014

0 10 20 30 40 50
Neighbors N

Fig. 8 Coefficient sqrt(4},) (in 1/(m’/d) units) as a function of the time

window T in the fit and number of possible interactions (neighbors) N in the
problem. This construction allows the establishment of a safe region to a
given tolerance level. For example 25 neighbors with a time window of 110
months will have a connectivity error of 0.02 per m*/d of noise.

5 Summary and conclusions

This work has analyzed how the temporal structure in
injection (input) dataset and noise in liquid production rate
impose limitations on the information that can be extracted
from correlations of injection/production rates in mature oil
fields where CRM is applicable. Using analytical estimates
and numerical simulations we show that uncertainty for the
unconstrained parameter estimates can be used to set upper
bounds on the fluctuations from the means in the constrained
case. Using the previous observation maximum deviations
can be estimated and the information content of the dataset
studied. In particular, we show that input temporal series
dominates the uncertainty estimates; a general framework to

study possible spurious correlations is possible. Moreover,
second-order perturbation theory applied to this problem
yields analytical bounds that show explicitly the effect of
degradation in parameter estimates when more possible well-
to-well interactions are allowed.
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