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Abstract: Formation testing while drilling is an innovative technique that is replacing conventional 

At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure 

study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and 
sampling in the reservoirs of different permeability. However, the study is only for the cases with water 

numerical studies of the effects of downhole dynamic conditions on formation testing while drilling.

Key words: 

Numerical analysis of the effects of 
downhole dynamic conditions on 
formation testing while drilling

*Corresponding author. email: wangbing@cup.edu.cn
Received August 15, 2013

1 Introduction
Formation testing while drilling (FTWD), based on drill 

stem testing (DST) and wireline formation testing (WFT), 
is an innovation of logging while drilling (LWD). FTWD 
can not only carry out the function of WFT, such as fluid 
sampling, pressure and temperature testing, but also can be 
used for detecting annular pressure and original formation 
pressure in real time to optimize mud formulation and 
improve drilling safety. FTWD is suitable for the formation 
testing of extended reach wells and horizontal wells and 
hence can reduce the drilling time and cost over WFT (Hou 
et al, 2005; Lee et al, 2004; Finneran et al, 2005; Pop et al, 
2005; Proett et al, 2003; 2004; 2010; 2011; Seifert et al, 2005; 
Fey et al, 2011; Masoud et al, 2009; Di et al, 2012a; 2012b; 
2012c). So far only major international oil service companies 
have developed their own FTWD tools, such as StethoScope 
developed by Schlumberger, TesTrak developed by Baker 
Hughes and Geo-Tap developed by Halliburton. In China, 
few national companies have been developing the technology 

during the National 11th Five-Year Plan and the subsequent 
National 12th Five-Year Plan. The representational tools 
are SDC-1 developed by Daqing Drilling Engineering 
Technology Research Institute and CPWD developed by 
CNPC Drilling Research Institute (Ren and Ma, 2005; Su and 
Dou, 2005; Yang and Tian, 2005; Zhang et al, 2006; Li et al, 
2008; Wang et al, 2009; Liu et al, 2010; Zhao et al, 2011).

FTWD starts fluid sampling and pressure testing after 
the drill bit breaks the formation for a short time. The mud 
invasion has just started but the mudcake has not been formed 
entirely and the formation pressure is not stable during the 
procedure. The complicated downhole environment is quite 
different from that of WFT. Therefore, it is important to 

on the pressure testing and sampling. Lee et al (1998) and 

depth of mud filtrate invasion and formation anisotropy on 
fluid sampling of WFT using the finite element method. 
However, the effects of mudcake parameters and filtrate 
invasion on formation supercharge have not been considered. 
Usually, the mud hydrostatic pressure is set higher than 
the original formation pressure to ensure drilling safety. 
Consequently a certain amount of filtrate invasion occurs 
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and this in turn leads to a higher formation pressure near 
the wellbore than the original formation pressure, especially 
in low permeability formations. This so called supercharge 
pressure is shown to be a product of the apparent overbalance 
pressure between the invasion zone and the original 
formation. On the other hand, the mudcake can also isolate 
the wellbore from the original formation and prevent the mud 

A simple equation was formulated for estimating the 
supercharge pressure, assuming that a steady condition is 
reached at the time when the FTWD measurements are made 

follows
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where rf is the radial distance of supercharging, cm; qf is 
the filtrate flow rate through the formation, mL/s; pf is the 
formation pressure, psi; kf is the formation permeability, 

Hence, 
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The above equation indicates that the supercharge pressure 
is related to the apparent overbalance pressure, the mudcake-
to-formation permeability ratio, and the invasion factor.

As the formation testing procedure involves interactions 

problem in a domain of complex geometry. Finite element 
methods (FEM) have shown the ability to quantitatively 
analyze the relationship between the formation pressure 
and parameters in such a complicated situation. In order to 
study the effect of the downhole dynamic environment on 

simulator to study the effects of mudcakes, invasion depth, 

2 Mathematical model
The process of formation testing while drilling is actually 

a process of seepage. The water saturation near the wellbore is 
different from the water saturation of the original formation, 
and there inevitably exists an oil-water phase near the probe 

treatment of formation testing is to solve the problem of oil-

in the formation can be derived as follows (Zhou et al, 2003; 
2007; Gu et al, 2005a; 2005b; 2007; Yi et al, 1997):
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(5)

where k is the absolute permeability of the media, mD; 
Krw and Kro are the relative permeability to water and oil, 
respectively; w and o are the water and oil viscosity 
respectively, mPa·s; Po and Pw are the oil and water pressures 
respectively, psi; Pc is the capillary force, psi; Sw is the water 
saturation; So is the oil phase saturation;  is the formation 
porosity; Cfw is the compression coefficient of the water 

phase; Cfo q is 
rs is the radius of 

probe, cm. 
We can obtain relative permeability curves from the 

data of the numerical reservoir simulation. The relative 
permeability equations (Eqs. (6)-(8)) were applied in the 
model.

Pet.Sci.(2014)11:391-400



393
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Capillary pressure equation:
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The pressure equation in the mathematical model is an elliptic equation (Eq. (9)), which can be solved by the Garlerkin 
method, 

o

e e

e e

rw ro
o p f p e

w o

rw
p e c p e2

s w

( ) d d

d d

i i

i i

Pk K k K
P N C N

t

k Kq N n P N
r

   
(9)

where 1, 2, 3, ...,i n e is unit area, n  is the boundary normal; Npi is the shape function of pressure equation.

For the saturation equation (Eq. (10)), the stiffness matrix in the finite element model established with the Garlerkin 
method is an ill-conditioned matrix, and the solved equations are pathological equations. Therefore, the least squares method is 

equations can be derived as
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where i=1, 2, 3, …, n; Nsw is the shape function of the 
saturation equation.

computed an example of 3D spherical flow in an isotropic 
formation, as an analytical solution for this case can be 
obtained too. A comparison of our numerical results with 

illustrated in Fig. 1, given the initial formation pressure of 

of the probe of 1 mL/s, the diameter of the probe of 1.27 cm, 
and the formation permeability anisotropy in terms of kz/kh of 
1. It can be seen that there is almost no difference between the 
numerical and analytical solutions. The relative errors are less 
than 0.1%. We thus believe that the finite element model is 
reliable and accurate enough. The tiny difference between the 

the calculation of the analytical solution. Fig. 1 A comparison of the analytical solution and 
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3 Modeling of changed formation pressure 

According to the field cases of downhole mud filtrate 
invasion and formation supercharging, we established a two-
dimensional axisymmetric model in the simulation software, 
as is shown in Fig. 2. In this model, the wellbore radius is 0.1 
m, the model is 10 m in radius and 5 m in thickness. We set 

the model, and assigned the parameters to the different zones 

1). 

3.1 Effect of mudcake permeability on supercharge 
pressure

formation supercharge near the wellbore. Initially, assuming 
that the formation exposed to drilling fluids is completely 
sealed by the mudcake we started with these parameters: the 
mudcake thickness is 0.5 cm, the formation permeability is 
1 mD, the wellbore pressure is 5,500 psi, both the formation 
pressure and boundary pressure are 5,000 psi, and other 
parameters are listed in Table 1. We then increased the 
mudcake permeability to calculate the formation supercharge 
step by step. Fig. 3 demonstrates these results from our FEM 

supercharge pressure becomes higher when the mudcake 
permeability increases. The sandface pressure just behind the 
mudcake exceeds the formation pressure by 308 psi when 
the mudcake permeability is 0.01 mD. As the radial distance 
from the wellbore increases, the supercharging becomes 
weaker. At the distance of 5 m away from the wellbore, the 
wellbore pressure has little effect on the formation pressure 
even though the mudcake quality becomes very poor. As also 
shown in Fig. 3, as long as the mudcake permeability is less 
than 10-5 mD, the formation supercharge near the wellbore 
can be ignored. This is because the mudcake deposited on 
the wellbore face breaks the pressure connection between the 

into the formation, thus the wellbore hydrostatic pressure has  
little effect on the formation pressure around the wellbore. 

FTWD is operated in a short time just after the drill 
bit breaks the formation. At this moment, some filtrate 
immediately invades the formation near the wellbore, but 
the mudcake has not formed entirely and hence the mudcake 
quality is poor. In such cases, wellbore supercharge may 

Fig. 2 Two-dimensional axisymmetric geometry for 
modeling downhole dynamic conditions
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Table 1 The parameters for modeling downhole dynamic conditions

Porosity Permeability
mD

Fluid density
kg/m3

Fluid viscosity
mPa·s

Compressibility
psi-1

Pressure
psi

Thickness
cm

Formation 0.3 1.0 800 1.0 3×10-6 5000 –

Mudcake 0.15 10-2-10-5 – 1.0 0.1 – 0.5-2.0

– – 1000 0.5 – 5500 –

occur near the wellbore and cause problems for FTWD. In 
field applications, the drilling and logging engineers have 
to do pressure testing at appropriate locations where the 
mudcake quality is good and the formation pressure is stable.

3.2 Effect of mudcake thickness on supercharge 
pressure

thickness on the formation supercharge pressure given that 
the formation and the mudcake have permeability of 1 and 
10-3 mD, respectively. The other parameters of the model 
are listed in Table 1. These simulation results are shown 
in Fig. 4. It can be seen that the formation pressure is not 
affected by the mudcake thickness at the radial distance 

Fig. 3 The effect of mudcake permeability on supercharge pressure
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of 5 m away from the wellbore. However, the pressure at 
the borehole wall exceeds the formation pressure by 69 psi 
when the mudcake thickness is 0.5 cm. On the other hand, 
when the cake thickness is over 2.0 cm, the supercharging 
is reduced substantially and can be ignored. This is because 
that the thicker mudcake formed on the wellbore face better 

and hence the wellbore hydrostatic pressure has little effect 
on the formation pressure. Therefore, the location where the 

be considered as a candidate formation to be tested.

wellbore becomes lower. When the formation permeability 
increases to 10 mD, the supercharge pressure decreases 
substantially and can be ignored. According to the simulation 
results, the location for pressure testing should be selected 
where the formation of a permeability over 10 mD. 

Final ly,  we analyzed the inf luence of  mudcake 
permeability on fluid sampling. The simulation parameters 
are as follows: The cake thickness is 1 cm and the pump rate 

wellbore is followed by a transitional zone of 15 cm to the 
non-invaded zone. The simulation results are shown in Fig. 
6. It can be seen that the sampling quality will substantially 
degrade when the mudcake permeability is higher than 
0.01 mD due to continuous invasion of fresh mud filtrate. 
Therefore, the mudcake permeability should be considered in 

Fig. 4 The effect of mudcake thickness on supercharge pressure
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3.3 Effect of formation permeability on supercharge 
pressure

To investigate the effect of formation permeability on 
formation supercharge, we analyzed the changes of formation 
pressure at different formation permeability when the 
mudcake thickness and permeability were set at 1 cm and 10-3 
mD. Fig. 5 shows that when the formation permeability is 
0.1 mD, the formation pressure near the wellbore exceeds the 
original formation pressure by 225 psi. With an increase in 
the formation permeability, the supercharge pressure near the 

Fig. 5 The effect of formation permeability on supercharge pressure
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invaded into the formation to differing extents. To quantify 
the effect of filtrate invasion on pressure testing and fluid 
sampling, we developed a geometrical model (Fig. 7) and the 
model parameters are listed in Table 2.

Fig. 7 Two-dimensional axisymmetric geometry for 
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Table 2

Permeability 
mD

Pressure
psi

Fluid density
kg/m3

Fluid viscosity 
mPa.s

Compressibility
psi-1

Original formation 10 5000 800 1.0 3×10-6

Transitional zone 8.0 5300 850 0.6 3×10-6

Flushed zone 5.0 5500 900 0.5 3×10-6

in low permeability reservoirs was studied. The permeability 
valves of the original formation, transitional zone and the 

of filtrate invasion on reservoir permeability have not been 
considered. The other parameters are given in Table 2. 
Simulation results (Fig. 8) show that the draw-down pressure 
declines most rapidly and then recovers to the original 
formation pressure (5,000 psi) quickly when the filtrate 
invasion depth is 10 cm. However, the pressure drawdown 
reduces significantly and the buildup pressure maintains 
above the original pressure for a long time when the invasion 
depth increases. The reason is that the pressure of the invasion 
zone is higher than the original formation and the supercharge 
pressure cannot be balanced in a short time. Therefore, the 
original formation pressure may not be able to be measured 
in the subsequent recovery process. In these cases, it is very 
difficult to measure the original formation pressure in low 
permeability reservoirs. 

the mud invasion, the further the pressure drops. However, 
the pressure buildup has not changed much with different 
invasion depths. After 40 seconds all these curves buildup 
to the original formation pressure. This illustrates that the 
mud invasion has a slight effect on formation pressure 
measurements in a reservoir of moderate to high permeability.
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Fig. 8 

Then we simulated the combined effect of invasion 
depth and change of formation permeability due to filtrate 
invasion. The permeability values of the original formation, 
transitional zone and the flushed zone were set at 10, 8 
and 5 mD, respectively. The simulation results in these 
cases are demonstrated in Fig. 9. As can be seen, the draw-
down pressure declines more quickly as the invasion depth 
increases. This is may be due to formation damage caused 
by invasion of mud filtrate, hence the permeability of the 
formation near the wellbore decreases. In general, the deeper 
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Finally, we studied the effect of invasion depth on fluid 
sampling. The initial conditions of the model were assumed 
as follows: the invaded zone near the wellbore is 100% 
saturated with mud filtrate, with a invasion depth of 10, 15 
and 25 cm in the radial direction, respectively. The mudcake 

the formation permeability is 10 mD. A constant pump out 
rate is 15 mL/s. The simulation results are shown in Fig. 10. It 

the sample quality degrades. This is due to more time being 
required to clean-up the filtrate in the longer mixing zone 
(travel distance). Compared to the WFT, the invasion depth is 

clean formation fluids can be obtained in a relatively short 
period of time.

5 Field application of FTWD

probe the quality of the pressure testing while drilling and the 
ability to repeat testing at the same points. The Geo-Tap tool 

Pet.Sci.(2014)11:391-400
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Fig. 10
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was set up with stabilizers for 9 7/8 inches in the borehole in 
the pumps-off mode to avoid vibration from the mud motor 
on the bottom hole assembly. All the pressure points were 
selected by the BP geologist on location while drilling the 
reservoir section. These FTWD (Geo-Tap) data are shown in 
Figs. 11 through 13.

From Fig. 11, we can see that the LWD log data for the 
interval from 4,150 ft to 4,200 ft suggest a mixed sand/shale 
sequence with thin producing layers, and the interval from 

4,260 ft to 4,290 ft is a sand reservoir. The eight test positions 
are located at the two layers. The locations were tested from 
PT#1 to PT#8 where the induction log indicated potential 
hydrocarbons. The results of these tests are also shown in Fig. 
11 and summarized in Table 3. Tool malfunction occurred 
during PT#2, so the formation pressure and drawdown 
permeability were not tested. PT#5 and PT#7 failed due to 
the probe being plugged. PT#1 and PT#8 were repeat tests at 
the same depth (4,153 ft) and the time between the two tests 
was 24 hours. The measured pressures were within 11 psi, 
the difference between the two tests was relatively small and 
this level of repeatability is considered quite acceptable. The 
detailed pressure traces from both tests are shown in Fig. 12 
and Fig. 13. However, the difference of pressure repeated in 
PT#6 and PT#7 was 21 psi at a depth of 4,289 ft, and the time 
interval was 20 min, such result is not acceptable. This shows 
that the pressure at the location was not stable. The reason 
was that the reservoir permeability at this depth was very low 
(less than 1 mD) and therefore formation supercharging exited 
at a depth of 4,289 ft according to our studies. According to 
the above research results, Fig. 5 shows that the supercharge 
pressure over the original formation was more than 25 psi 
when the formation permeability was 1 mD, therefore the 
pressure was found very different between the two repeated 
testing due to the formation permeability being less than 1 
mD, so the tested pressure was not the original pressure and 
the selected testing location was not appropriate. 

Table 3 Modeling parameters

Test number True vertical depth (TVD)
 ft

Hydrostatic pressure
psi

Formation pressure
psi

Drawdown permeability
mD Comments

PT#1 4153 2037 1788 40 Good test

PT#2 4171 2052 NA NA Tool malfunction

PT#3 4171 2050 2018 16 Good test

PT#4 4182 2088 2044 10 Good test

PT#5 4267 2125 NA NA Probe plugged

PT#6 4289 2139 2101 0.8 Good test

PT#7 4289 2138 2080 NA Probe plugged

PT#8 4153 2037 1799 42 Good test

mudcake properties have significant influence on pressure 
testing and fluid sampling. The better the mudcake quality 
is, the weaker the formation supercharge pressure and the 

to determine. It is related to formation permeability and mud 
invasion velocity. The simulations of pressure testing and 

on a low permeability reservoir is significant. The deeper 
the mud invasion, the more difficult the formation pressure 
testing and fluid sampling becomes. In addition, the depth 

6 Conclusions
This paper analyzed the effect of the downhole dynamic 

environment on formation testing with an oil-water two 
phase finite element method. First, the paper investigated 
the influences of mudcake properties and formation on 
supercharging near the wellbore, and then investigated the 
influences of filtrate invasion on pressure testing and fluid 

of downhole dynamic conditions on formation testing while 
drilling to support our simulations.

The simulations of formation supercharging show that the 

Pet.Sci.(2014)11:391-400
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of mud invasion can be estimated by the electrical logging 
curves, so the selection of testing locations and pressure data 
processing should reference the geology information and 
logging data while drilling. 
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