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Abstract: Offshore drilling has attracted more attention than ever before due to the increasing 
worldwide energy demand especially in China. High cost, long drilling cycles, and low rate of penetration 
(ROP) represent critical challenges for offshore drilling operations. The hydraulic pulse generator 
was specifically designed, based on China offshore drilling technologies and parameters, to overcome 

the characteristics of the hydraulic pulse generator. The relationships between flow rate and pressure 
amplitude, pressure loss and pulse frequency were obtained, which can be used to optimize operation 
parameters for hydraulic pulse jet drilling. Meanwhile a bottom hole assembly (BHA) for pulse jet 
drilling has been designed, combining the hydraulic pulse generator with the conventional BHA, positive 
displacement motor, and rotary steerable system (RSS) etc. Furthermore, the hydraulic pulse jet technique 
has been successfully applied in more than 10 offshore wells in China. The depth of the applied wells 

results showed that hydraulic pulse jet technique was feasible for various bit types and formations, and 
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1 Introduction
Improving offshore drilling rates nowadays encounters 

great challenges. Drilling hydraulics may affect the rate of 
penetration (ROP) in offshore drilling (Folsta and Martins, 

and Tanjung, 2013). Especially the heavy, high-density 

pressure may reduce ROP significantly (Cheng et al, 2011; 
Mohamed et al, 2009). Many efforts have been made to 
improve offshore drilling rates, because offshore drilling is 
generally considered to be high cost and high risk due to high 
offshore platform investment, the harsh natural environments 
and complex downhole hazards (Cheng et al, 2013; Poedjono 
et al, 2007, Patel et al, 2011; Ranieri et al, 2013). In China, 
the costs of offshore drilling on drillships and platforms 
have now reached 1 billion dollars and the daily rate reached 
from $200,000 to $500,000. Offshore drilling is still going 

penetration rates, because the well could be productive. The 
challenges found in offshore drilling have forced oil industry 
researchers to develop new technologies to improve the ROP 
and achieve cost control in offshore drilling (Guan et al, 
2012; Rocha et al, 2003).

In the early 1980s, Johnson et al (1982) proposed the 
self-resonant cavitating pulse water jet theory and designed 
a nozzle with a structure to generate an acoustic self-
resonant cavitating jet. Ghalambor et al (1988) developed 
an intermittent jet nozzle with a rotating disc to change 
drilling fluid velocity. Biianti (1990) designed a pulse jet 
nozzle which could change the port area and increase jet 

Shen and coworkers (Shen, 1987) carried out theoretical and 
experimental research in self-resonant cavitating pulse water-
jet technology. On the basis of hydro-acoustics principles and 
fluid-transient theory, Li and Shen designed a new efficient 

1991).
In the 1990s, Kolle and Marvin (1999) developed 

hydropulse, a negative pressure pulse tool installed with a 
self-circulating lift valve and improved it in the early 21st 
century. Waltech in Canada designed a negative pressure 
pulse tool (Wang, 2005). Based on fluid transient theory, 
researchers in China developed several types of bottom 
hole pulse drilling tools, such as the down hole mechanical-
pulse generator (Chen et al, 2000), the low-pressure pulse jet 
modulator (Yang et al, 2003), and the down hole hydropulse 
vibration drilling tool (Ni et al, 2006a; 2006b).

However, these tools were not applied widely because 
they were not fully reliable. To improve drilling rate further, 
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Li and coworkers have developed a novel tool, a hydraulic 
pulse generator, on the basis of pulse jet theory to improve 
ROP (Fu et al, 2012; Li et al, 2009; 2008; 2010). Moreover, 
the hydraulic pulse generator has been applied widely in 

apply the hydraulic pulse generator to offshore drilling, we 
have conducted tests on the hydraulic parameters in order 
to optimize them for offshore drilling. Hydraulic pulse 
generators are used with different bottom hole assemblies 

ROP.

2 Hydraulic pulse jet drilling
Hydraulic pulse jet drilling is a new drilling technology. 

This technology improves the ROP by a hydraulic pulse 
generator installed upon the bit during drilling. This generator 
consists of a housing, a flow guide device, an impeller 
assembly and a resonant chamber which is also called a 
cavity resonator, etc., as shown in Fig. 1.

The generator is classified according to different outer 
diameters of the body or the housing where the flow guide 
device is installed. One of the most important parts of the 

change the flow direction and velocity of the drilling fluid, 
and then tangential force is generated to make the impeller 
rotate continuously at a high speed, thus producing pressure 
pulses. The impeller assembly consists of the body, an 
impeller, an impeller shaft and a shaft sleeve. The impeller is 
installed on the shaft, and sits on the impeller bed through the 
connection of a shaft sleeve to the both sides of the shaft and 
the bed. Hydraulic pulses generated by the impeller assembly 
form the pulsing source to the resonant chamber. The chamber 
is placed at the bottom of the housing to amplify the pulsing 

the steady drilling fluid flows through the contracted cross-

frequency of the pulse pressure matches the natural frequency 
of the resonant chamber, acoustic resonance of fluids is 

Thus intense pulsing turbulent vortex rings are formed at the 
outlet and impact on the bottom hole.

3 Tests of hydraulic pulse jet properties

3.1 Laboratory testing
Test apparatus used in laboratory included: a hydraulic 

pulse generator whose outer diameter is 120 mm, 4 pressure 
sensors with a measuring range from 0 to 5 MPa, a data 
acquisition system made in the US., a BQ700 pump with a 

2.
A photograph of the hydraulic pulse generator is shown 

in Fig. 3. In this test, the sampling interval was 0.005 s, the Fig. 1 Structure of the hydraulic pulse generator
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Fig. 2 Flow chart of the laboratory test
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inlet and outlet pressures of the generator were then measured 
at different flow rates and pressure amplitudes, pulse 
frequency and pressure loss were also measured. The pressure 
amplitudes at the generator inlet and outlet were 0.45-0.92 
MPa and 0.50-1.20 MPa, respectively. Both the inlet and 
outlet pressure amplitudes show a quadratic dependence on 
flow rate, as shown in Fig. 4. The pressure loss was 0.58-
1.60 MPa, showing a quadratic relationship with flow rate, 
as shown in Fig. 5. The pulse frequency was 4.65-8.00 Hz, 

6. 

The schematic of the site test device is shown in Fig. 7.

Fig. 3 Photograph of the hydraulic pulse generator 

Fig. 4
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3.2 Field testing
Field tests were conducted in Well 11-18 in the Shengli 

(3NB1300), a pressure sensor, a digital data acquisition 

Fig. 5
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Fig. 7 Field test apparatus for the hydraulic pulse generator
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The parameters of the hydraulic pulse generator used 
in field tests are listed in the Table 1 and the drilling fluid 
properties are shown in the Table 2.
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Table 1

Main parameters Prototype size

Table 2 

Rotational viscometer readings 
at 3, 6, 100, 200, 300, 600 rpm 

Density
g/cm3

Plastic viscosity
mPa·s

Yield point
 Pa

Gel strength
10sec/10min, Pa mL/30min

pH
 value

Cake thickness 
mm

Funnel viscosity
s

3, 5, 21, 25, 32, 42 1.20 10 8 3/6 5 8.0 0.5 45

The pulse pressure, pulse frequency and pressure loss 
at different flow rates were investigated by surface tests, 
in which the real-time standpipe pressure was recorded 
in conventional drilling and hydraulic pulse jet drilling, 
respectively, as shown in Fig. 8.

When the flow rates were 27.5, 29.7 and 32.0 L/s, the 
corresponding pulse pressure amplitudes were 1.5, 2.1 and 
2.2 MPa, and the pulse frequencies were 8.5, 9.3 and 10.1 
Hz. Compared with conventional drilling, the hydraulic 
pulse generator produced remarkable pulse pressure and its 

Fig. 8
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4 Applications of hydraulic pulse generator 
in offshore drilling

Hydraulic pulse generators have been applied in more than 
10 offshore wells in China, combined with a conventional 
BHA, a positive displacement motor, and a rotary steerable 
drilling system. 

4.1 Combined with the conventional BHA
The hydraulic pulse generator combined with the 

conventional BHA has been applied at a depth of 2,008.5-
2,033.0 m (tested interval) in Well LHV13-2-1S1 in the Bohai 

The conventional BHA applied in this well was as follows: 

Table 4 Comparison of the ROP between the tested and control intervals in Well LHV13-2-1S1

Well interval Depth
m

Length
m

Drilling time
h

ROP
m/h

Improvement Average improvement 

Tested interval 2008.5-2033.0 24.5 10.0 2.45

Control interval 
2418.0-2469.0 51.0 33.8 1.50 63.3

59
2469.0-2508.4 39.4 24.3 1.60 53.1

Pet.Sci.(2014)11:401-407

Control intervals in Well LHV13-2-1S1 with depths 
of 2,418.0-2,469.0 m and 2,469.0-2,508.4 m, were drilled 
out with the same drill tools except without installing the 
hydraulic pulse generator. The drilling parameters for both 
the tested and control intervals are shown in Table 3.

Table 3 Drilling parameters when combined with conventional BHA in 
Well LHV13-2-1S1

Weight on bit
kN

Rotary speed
r/min

Flow rate
L/min

Pump pressure
MPa

50-150 40-60 1500-1600 6-9

Field test results indicated that the length was 24.5 m 
at the tested interval from 2,008.5 m to 2,033.0 m in Well 
LHV13-2-1S1. The net drilling time was 10 h and the average 

with the control intervals. The details are shown in Table 4. 

4.2 Combined with the positive displacement motor 
(PDM)

The hydraulic pulse generator combined with PDM was 
applied at the depth of 2,600.0-2,899.0 m in Well CFD18-

The designed depth of Well CFD18-1N-1 (located in the 
west of the Bohai Sea) was 3,010 m (the third section of the 
Dongying Formation). The tested interval was from 2,600.0 
m to 2,899.0 m. The formation lithology was predominately 
sandy conglomerate and pebbly sandstone. The formation 

drillability was poor and the ROP was extremely low in this 
interval.

The BHA with a positive displacement motor applied was 

The BHA including bits and nozzles in the adjacent 
interval of 2,900.0-3,006.0 m was the same as that in the 
tested interval except without the installation of the hydraulic 
pulse generator. The drilling parameters are shown in Table 5.

Table 5 Drilling parameters when combined with the positive displacement motor in Well CFD18-1N-1

Weight on bit
kN

Rotary speed
r/min

Flow rate
L/min

Pump pressure
MPa

Density
g/cm3

Funnel viscosity
s

20-50 80-95 1500-1900 13-16 1.28-1.29 50-65

The length of the tested intervals was 299.0 m, from 
2,600.0 m to 2,899.0 m in Well CFD18-1N-1. The net drilling 
time was 14.25 h. The average ROP was 21.0 m/h, with an 

2,900.0-3,006.0 m. The details are shown in Table 6. A plot 
of drilling time per meter versus well depth measured in Well 
CFD18-1N-1 is shown in Fig. 9.

Table 6 Comparison of the ROP between the tested and adjacent intervals in Well CFD18-1N-1

Well interval Depth
m

Length
m

Drilling time
h

ROP
m/h

Improvement

Tested interval 2600.0-2899.0 299.0 14.3 20.98

Adjacent interval 2900.0-3006.0 106.0 8.0 13.25 58.34
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4.3 Combined with the rotary steerable system
A rotary steerable system (RSS) is mainly used in 

directional drilling where the specialized bottom hole 
equipment is utilized to replace the conventional directional 
drilling tools such as the positive displacement motor. 
They are generally programmed by the measurement while 
drilling (MWD) engineer or directional driller who transmits 
commands using surface equipment using either pressure 

rotation which the tool understands and gradually steers 
towards the desired direction. Smooth wellbore drilled by an 
RSS can reduce the risk of stuck pipes, make tripping and 

Fig. 9 Drilling time per meter in the tested and adjacent intervals 
in Well CFD18-1N-1
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casing running easier, and reduce drilling fluid and cement 
cost. Smooth, horizontal holes are significantly easier to 
complete, particularly in multistage fractures. 

The hydraulic pulse generator combined with the RSS was 
applied at the interval of 2,348.0-2,365.0 m in Well LHV13-

The BHA including the RSS combined the generator 

DP.
The BHA used in the adjacent intervals (2,338.0-2,347.0 

m and 2,366.0-2,418.0 m) for comparison were the same as 
the tested interval except without installing the hydraulic 
pulse generator between the bit and X-over.

The drilling parameters used in the tested and adjacent 
intervals in Well LHV-13-2-1S1 are listed in the Table 7. The 
length of the tested interval was 17.0 m, from 2,348.0 m to 
2,365.0 m in Well LHV13-2-1S1. The net drilling time was 6.0 
h. The average ROP in the tested interval was 3.0 m/h, with 

intervals. The details are listed in Table 8. A comparison 
of drilling time per meter between the tested and adjacent 
intervals is shown in Fig. 10.

Table 7 Drilling parameters when combined with the RSS in Well LHV-13-2-1S1

Well interval Depth
m

Weight on bit
kN

Rotary speed
r/min

Flow rate
L/min

Pump pressure
MPa

Tested interval 2348.0-2365.0 50-120 100-120 1700-1800 9-11

Adjacent interval
2338.0-2347.0 20-110 100-125 1500-1800 9-11

2366.0-2418.0 90-160 50-80 1700-1800 9-11

Table 8 Comparison of the ROP between the tested and adjacent intervals in Well LHV13-2-1S1

Well interval Depth
m

Length
m

Drilling time
h

ROP
m/h

Improvement

Tested interval 2348.0-2365.0 18.0 6.0 3.0

Adjacent interval
2338.0-2347.0 10.0 4.2 2.4 25.0

2366.0-2418.0 53.0 40.8 1.3 130.7

5 Conclusions
1) Laboratory test results showed that when the flow 

rate was 6-10 L/s, the pressure amplitude at the outlet of 
the hydraulic pulse generator was 0.5-1.2 MPa, the pressure 
loss was 0.6-1.6 MPa, and the frequency was 4.65-8.00 Hz. 
The pulse pressure amplitude and pressure loss showed a 
quadratic relationship with the flow rate, while the pulse 

pulse jet drilling technology in different types of bits, 
formations and drilling fluid densities, field tests were 
conducted using the hydraulic pulse generator combined 

Fig. 10 Drilling time per meter in the tested and adjacent intervals in Well 
LHV13-2-1S1
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with the conventional BHA, positive displacement motor and 
RSS. Field results showed that hydraulic pulse jet drilling 

applicability in offshore drilling.
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