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Abstract: Interwell connectivities are fundamental parameters required to manage waterfloods in oil 
reservoirs. Data-driven models, such as the capacitance-resistance model (CRM), are fast tools to estimate 
these parameters from time-correlations of input (injection rates) and output (production rates) signals. 
Noise and structure of the input time-series impose limits on the information that can be extracted from a 
given data-set. This work uses the CRM to study general prescriptions for the design of input signals that 
enhance the information content of injection/production data in the estimation of well-to-well interactions. 
Numerical schemes and general features of the optimal input signal strategy are derived for this problem.
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design for mature waterfloods using system identification 
techniques. We find general prescriptions to optimize 
the synchronization of injection signals enhancing the 
information content of the dataset. 

The following section reviews the CRM and uncertainty 
bounds for the constrained optimization problem. In Section 
3 we apply input signal design techniques to this problem 
and give a framework to solve the general case numerically. 
Section 4 solves approximated versions of the problem semi-
analytically and gives new insight in general prescriptions to 
obtain an optimum scheme. In Section 5 we summarize the 
results and their implications.

2 Interwell connectivities from the CRM and 
uncertainty

The CRM is based on a discrete material balance (Yousef 
et al, 2006) that connects rates from each injector well Ii(t) to 
the total liquid rate in an associated producer qj(t). Assuming 
constant total compressibility, a linear relationship between 

pressures the evolution equation for the system is

(1), ,j j j i j j i jq t q t f I t   

Here the index =1, 2, …, nj spans the list of neighbors of 
the j-th producer, then nj is the maximum number of neighbors 
of the j-th producer, and the mapping i(j, ) stands for the i-th 
injector (of the full list of injectors) that is connected to the 
j-th producer. This notation may seem cumbersome at first, 

1 Introduction
Data driven models are an alternative to reservoir 

simulation, with the aim of giving an over-determined 
description of the reservoir response to an external stimuli. 
The capacitance-resistance model (CRM) (Yousef et al, 
2006) is a fast tool that allows the estimation of interwell 
connectivities based on time-correlations of input (injection 
rates) and output (production rates) signals via discrete 
mass balance equations. Its importance relies on the fact 
that this is the minimal (low order) model to infer interwell 
connectivities from dynamic field data. Data analysis based 
on this scheme has been successfully applied in many 
waterflood studies (Sayarpour et al, 2009; Weber, 2009; 
Nguyen et al, 2011). 

However field-data is affected by noise and thus well-
to-well interactions can only be calculated within a limited 
accuracy that depends both on noise amplitude and time-
series structure of the data. The first attempts to quantify 
the accuracy and conditions to obtain a well-posed problem 
were done by Albertoni and Lake (2003) and Yousef et al 
(2006). Recently we showed that errors in unconstrained 
analytical estimates of interwell connectivity can be used as 
an upper bound for constrained problems (Moreno and Lake, 
2014), even taking into account the non-zero response time 
in producers. This work uses these results to analyze input 
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but it will be simpler to span the indexes listing the neighbors 
per producer because here only neighboring interactions to 
the j-th producer are important (of course we still do not 
define a priori the neighbor list). The time constant j is a 
measure of the response time in the producer and fi(j, )j are the 
connectivities to the neighboring injectors. In what follows 
we will assume that the time constants are known. However 
this assumption does not yield a loss of generality in practical 
cases because the model applies only when small time 

sensitive to these parameters (Kaviani, 2012).
To obtain the production rate, Eq. (1) can be integrated

(2)
/
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Provided that the time window is much larger than the 
typical response time j for almost all times we have t/ j>>1 
and thus:

(4)
( , ) ( , )( ) ( )j i j j i j j

q f It t  

Then, the production rate is linearly coupled to the 
averaged (in the sense of Eq. (3)) injection rates.

The values of the connectivities can be obtained by least 
qj(t) to the monthly measured 

rates Qj(tk). This is a constrained quadratic programming 
problem that can be solved in a number of ways (Bjorck, 
1996; Boyd and Vandenberghe, 2004). The output of the 
fitting should give information about the reservoir, but it is 
of course affected by uncertainties on the input data. The 
uncertainty in the unconstrained problem has been analyzed 
in different contexts (Ljung, 1999; Weber, 2009), however 
only recently it has been shown that unconstrained analytical 
estimates can be used as an upper bound for the error 
estimation in interwell connectivities (Moreno and Lake, 
2014). The associated Fisher information matrix (Ljung, 
1999) in the present problem is block-diagonal where each 
block reads

(5)
( )

( , ) ( , )( ) ( )j
i j k i j kj j

k

A I t I t  

This is, each block is associated with one producer and 
the dimension of the block is equal to the number of injection 
wells that are possibly connected to that producer (for 
example, but not necessary only, nearest neighbors). In this 

are known, Moreno and Lake (2014) studied the general 
problem of information-degradation when this is not available 
a priori. The deviation of the parameters in the constrained 
problem from their mean values ( , ) ( , ) ( , )i j j i j j i j jf f f  
(here[.] denotes average over noise realizations) when the 
noise is uncorrelated is bounded by

(6)2 1( ) 2
,

j
ji j jf A  

where j is the standard deviation of the noise in the 
j-producer rates. Gaussian uncorrelated errors are not the 
most general type of model, and some correlated sources may 
exist in practice. However, the case considered here is the 

widely used assumptions in the literature. Thus the Fisher 
information matrix (with blocks given by Eq. (5)) can be used 
to design the input injection in such a way that the uncertainty 
in the parameter estimation is a minimum. The mathematical 
problem is to choose an injection scheme ( , ) ( )i jI t  that under 
some optimality criteria can minimize this uncertainty. In the 
following sections we analyze this problem in detail.

3 Input design: general case

Input design is a well-known problem in system 

al, 2008) where many aspects have been studied (Fedorov, 
1997; Zarrop, 1979). In the present context we have seen 
how the unconstrained case can be used to set an upper 
bound on the errors in the parameter estimates. Thus future 
injection signals can be designed to minimize the upper 
bound. This will be the best possible input, in the sense of 
information content, to fit the model without any other a 
priori knowledge of the system. The problem can be treated 
using techniques for input design. The first task is to select 
an optimality criterion which will give the relative weights to 
the uncertainty growth factors 1( )jA . There are many possible 
optimality criteria (Boyd and Vandenberghe, 2004), here, 
to treat the general case, we chose the so-called A-optimal 
design, with objective function:

(7)
1( )

,

j

j

S A

This objective is proportional to the sum of eigenvalues 
of the uncertainty ellipsoid and results in a well behaved 
quantity for large systems. It is also the sum of squares of 
the deviation growth rate bounds for all the injector-producer 
pairs.

The problem involves an injection rate for each future time 
period, we assume without loss of generality that the signal 
I i(j, )(t) t1, ..., tk, ..., tw. The 
solution has to take into account the minimum and maximum 
allowed rates per injector Ii(j, )

Min<I i(j, )(tk)<Ii(j, )
Max and 

also a similar constraint for the total rate. The latter will 
guarantee that at least a total rate of Imin is being injected and 
that the total injection limit (typically plant capacity) Iplant is 
not exceeded. These constraints are important to take into 
account operational restrictions that avoid the interference of 
the inter-well interaction test with expected total production. 
The optimization of the input to enhance the informative 
content of the data is carried out within the gap allowed by 
productivity constraints. 

If the injection rates are discretized the problem can 
be written in standard form using basis functions (Boyd 
and Vandenberghe, 2004) but this results in a difficult 
combinatorial problem. The constraints on the input 
signal and structure of the model resembles that of input 
optimization for aircraft parameter estimation (Reid, 1972; 
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Morelli, 1990); thus a time domain approach is the most 
adequate to incorporate the restrictions on the input. Not all 

here because further constraints have to be included on 
the injection history. In oil field operation a selective 
change of injection rates will have a cost, thus Walsh-like 
(Morelli, 1990) linear combinations of input signals are not 
convenient. To solve the problem in the general case via a 
fast implementation we have used high-level commercial 
software, namely General Algebraic Modeling System 
(GAMS). Many optimization solvers are available under 
GAMS, we have selected CONOPT (a general propose 
non-linear programming solver) to minimize our objective 
function. In our problem the variables are injection rates for 
each time period I i(j, )(tk) thus, to obtain a smooth solution, 
we solve different steps that progressively penalize functions 
with the same performance (in the sense of uncertainty) 
but with more fluctuations in the rate. Specifically we have 
included a cost function that measures the total number of 
changes in the input for a given scale , namely

(8)

2

( , ) ( , ) 1
22, , 1 ( , ) ( , ) 1

( ) ( )

( ) ( )

i j k i j k

j k i j k i j k

I t I t
C

I t I t

and set the upper bound

(9)C C  

The constraint on C  rule out all functions that are highly 
). Moreover, in the limit  to 0, 

C  counts exactly the total amount of changes in the input 
signal, favoring piecewise constant signals. Thus, solving 
the nonlinear programming (NLP) problem for a sequence of 
geometrically decreasing values of  and using each solution 
as initial guess for the following iteration one can find an 
optimal (or near optimal) solution in typically 6 steps. Fig. 
1 shows a simple example where four injectors affect one 
producer and the total amount of water available to inject 
coincides with the maximum rate for each single well. As 
it can be seen, the optimum corresponds to a signal with 
maximum contrast between the four stimuli on the producer. 
In the following section we develop analytical tools that can 
be applied to study this configuration obtaining the same 
result. When more complex situations that involve many 
injectors and producers are considered the use of the program 
becomes nontrivial, because of its ability to synchronize 
the stimuli in the field within the injection constraints. Fig. 
2 shows an example of such case, solving for the optimum 

layout (and also including constraints). This type of problem 
can be of particular interest for example in pilot design, 
where the interaction between wells is important to determine 
the performance of the process being tested. Moreover, for 
any arbitrary given set of data both the actual and the optimal 
signals can be compared using the Fisher information matrix, 
the latter being the ultimate theoretical maximum for the 
informative content of the set.

The initial step of the program, which here is generated 

using randomly located Gaussian-like inputs, is not trivial and 
some difficulties, such as suboptimal solutions, can occur. 

be overcome using other approximations.

4 Input design: general features
When the constraints min plant( )i

i
kI I t I and C  C

are removed it is possible to use the calculus of variations 
(Elsgolts, 1980) to show that the optimum strategies for 
this problem are of the bang-bang type. More generally, as 
a consequence of the Pontryagin maximum principle, this 
property of the solution was already remarked upon by Reid 
(1972) and Morelli (1990). In the general case where all the 
constraints are included we also find similar results (even 
releasing the constraint C C which allows for general 

follows we argue why this kind of solution is expected (small 
cases, such as two injectors with one producer, can be solved 
exactly by exhaustive search in the low response time limit 

To provide further insight in the optimum strategy (general 
features of the synchronization, shape of the input signal, and 
even GAMS-free algorithms) we will further assume that the 
time constants j are small compared to the time-step. This 
does not imply a loss in generality because high frequency 
components in the input signal are linearly suppressed (as 
it can be seen for a Fourier decomposition of Eq. (3)), thus 
components with frequency much higher than 1/ j are washed 
out, and the signal can be approximated by a piecewise 
constant signal (one value per time-step) that represents 
components of frequency lower than 1/ j.

In such case the Fisher information matrix for a sequence 
of W time periods t1, …, tk, …, tw let’s call it MW, is simply 
the sum of W matrices formed with the local value of the 
injection rates interacting with the n producers:

(10)( )W k
k
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Fig. 1 Optimal injection scheme to minimize future uncertainty in a 5-spot 
pattern with the total water injection rate equal to the maximum bound on 
each injector (100 m3/d). Here the minimum injection rate is zero. 
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with

(11)( )t
k k km t v t v t  

and

(12)
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Suppose MW is given and that we want to select v(tW+1), 
that is the vector of injection rates for the following month, 
in such a way that the choice minimizes uncertainty for 
MW+1. That will be the case for example if we want to solve 
the optimum strategy for the following month given a 
certain injection history. To solve this problem we can use 
E-optimality criteria (Zarrop, 1979) (in the general case this 

be handled). This means that we have to minimize the largest 
eigenvalue of MW+1

-1 or, equivalently, maximize the smallest 
eigenvalue of MW+1. So let vl

(W) be the unit-norm eigenvector 

associated to the smallest eigenvalue l
(W) of MW (if the 

subspace is degenerate the same argument can be applied to 
each element of the basis), if we set v(tW+1)= l

(W) we have

(13)( ) ( ) 2 ( )
1

W W W
W l l lM v v  

Meanwhile for the remaining elements of the basis

(14)( ) ( ) ( )
1

W W W
W r r rM v v r l    

that is, all the other eigenvectors (assumed without loss of 
generality orthogonal to vl

(W)) still remain being eigenvectors 
of the same eigenvalue. Thus, clearly, this choice maximizes 
the contribution of the next measurement to the increase in 
the lowest eigenvalue of MW, which is the same as saying 
that this choice minimizes uncertainty. However, because of 
the constraints on v(tW+1) we will not always be able to select 
a vector contained only in the subspace generated by vl

(W). 
Using the latter observations in the general case, we will 
search for a vector v(tW+1) with the largest projection onto vl

(W) 
satisfying the constraints v(tW+1) in U (U being the feasible 
region). This guess can be explicitly demonstrated using 
perturbation theory, because the smallest eigenvalue l

(W+1) of 
MW+1 (to leading order in the perturbation) is approximately 
given by:

Fig. 2 Optimal injection scheme (rate (m3/d) vs. time (month)) to minimize future uncertainty in a block of four inverted 5-spots. Here injectors 
have non-zero minimum rates and their XY
synchronized bang-bang type input (“bang-bang” means that the signals change between the upper and lower imposed limits). Producers (green 
dots) are connected only to nearest neighbors (injectors represented by their injection-rate plots).
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(15)  
2( 1) ( ) ( )

1 ,W W W
l l W lv t v

Thus the best choice to maximize the smallest eigenvalue 
is the election of an injection rate in the feasible region with 
maximum projection onto vl

(W). The maximum projection 
problem under the constraints can be solved via two linear 
programming problems:

P1: Minimize ( )
1 1 1 1,W

W l Wv t v v t U

P2: Maximize ( )
2 1 2 1,W

W l Wv t v v t U  

because the feasible region U is described by linear 
inequalities. Finally select v(tW+1) from the maximum of the 
two options {(v1(tW+1), vl

(W))2, (v2(tW+1), vl
(W))2}. This method 

can be applied for input signal design using only linear 
programming and the smallest eigenvector/eigenvalue 

in any programming language. The latter also indicates that 
bang-bang type inputs should be expected here because the 

boundaries of the feasible region.
Let us review the case of the inverted five-spot with 4 

injectors as an extension of the application of the previous 
ideas. In this example each injection rate is in the interval [0, 
I0] and the total rate is I0. The injection rate for each element 
can be represented geometrically as one dimension in R4, 
the problem is then to select a sequence of points in R4 that 
represents the piecewise constant values of the optimum input 
signal. With no previous history, the minimum eigenvalue of 
the information matrix is zero for all vectors, we thus have 
full degeneracy. We start applying a stimulus to an arbitrary 

direction for k months, as shown in Fig. 3 for I1. After this 
we have to distribute water among the injectors again. 
To minimize uncertainty the new stimuli must lay on the 
orthogonal space spanned by injectors {I2, I3, I4} (strictly this 
is a bounded set, not a subspace). In principle any direction in 

k months 
of injection rate I0 to injector I2. The following step involves 

result is matrix proportional to the identity (proportionality 
factor equals kI0

2) that minimizes the overlap of different 
stimuli maximizing the information of the dataset. The signals 
for each step are taken to be orthogonal and on one of the 
principal directions {I1, I2, I3, I4}, this is the best alternative 
for global optimization because rates cannot be negative and 
thus the sequence of orthogonal spaces is restricted, principal 
directions maximize orthogonal projections inside the feasible 
region. Despite the fact that this simple case with 4 injectors 
can be tackled by hand, it should be emphasized that the 
previous algorithm does not apply for global optimization 
but only to select the following step injection distribution. 
Nonetheless this method is applicable to many situations of 
interest. Suppose for example that a given dataset is going to 

has generated an estimation of the time constants for each 
producer (now not necessarily small). The question is then 
how to select the injection rates for the following months in 
such way that they are within operational constraints and also 
give as much information as possible. In this case we can 
construct the Fisher information matrix of the input signal 
(Eq. (5))with the available history and find its minimum 
eigenvalue. This eigenvalue, in the general case, will be 
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Fig. 3 Optimum design for an inverted 5-spot with one central producer. Here injection is limited by I0. Stimuli represents the direction in the 
injection space (we only display 3 of 4 dimensions) where the external stimuli is applied. The second line, Signal, shows injection as a function of time. 
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separated by a certain gap to the following larger eigenvalue. 

perturbation theory shows in this case that the best choice 
will be designing an input signal with injection rates within 
the constraints and maximum projection onto the subspace 
associated to the minimum eigenvalue. In this way the single-
shot problem in the general case can also be solved using 
only diagonalization and linear programming.

5 Conclusions
This work studied the input design problem in the context 

of waterflood dynamic data. This problem is of interest 
to enhance the informative content of the dataset when 
an operational gap to modify injection rates is available. 
A numerical scheme and generic features of the optimal 
injection scheme have been derived. In particular it was 
shown that synchronized bang-bang inputs solve the problem 
when the constraints are minimum and maximum injection 
rates. In the general case, where a limited total injection is 
considered, piece-wise constant signals are found optimal. In 
this case we explicitly show how to solve the problem for a 
small future time window using only matrix-diagonalization 
and linear programming.
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