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Abstract Enhancement of technology and techniques for

drilling deep directed oil and gas bore hole is one of the

most important problems of the current petroleum industry.

Not infrequently, the drilling of these bore holes is attended

by occurrence of extraordinary situations associated with

technical accidents. Among these is the Eulerian loss of

stability of a drill string in the channel of a curvilinear bore

hole. Methods of computer simulation should play a

dominant role in prediction of these states. In this paper, a

new statement of the problem of critical buckling of the

drill strings in 3D curvilinear bore holes is proposed. It is

based on combined use of the theory of curvilinear elastic

rods, Eulerian theory of stability, theory of channel sur-

faces, and methods of classical mechanics of systems with

nonlinear constraints. It is noted that the stated problem is

singularly perturbed and its solutions have the shapes of

localized harmonic wavelets. The calculation results

showed that the friction effects lead to essential redistri-

bution of internal axial forces, as well as changing the

eigenmode shapes and sites of their localization. These

features make the buckling phenomena less predictable and

raise the role of computer simulation of these effects.

Keywords Directed bore hole � Drill string � Critical
states � Singular perturbation � Friction forces � Harmonic

wavelet

1 Introduction

Not long ago, rather shallow wells with simple outlines

were drilled in oil and gas fields. However, at the present

time, deeper and more complicated trajectories of bore

holes are designed in connection with exhaustion of easily

accessible hydrocarbon sources. In 2015, the record

13.5 km horizontal bore hole was drilled in the Sakhalin

region, Russia. According to experts’ opinions, most of the

substantial achievements in the power engineering of the

current century are associated with this technical direction.

Particularly, some are related to the pioneering investiga-

tion of industrial extraction of shale oil and gas, whose

deposits in the world essentially exceed conventional

reserves. However, as a rule, drilling of such bore holes is

attended by extraordinary phenomena bringing emergency

situations. One of them is unstable bending buckling of a

drill string (DS) in the channel of a curvilinear bore hole

(Brett et al. 1989; Dawson and Paslay 1984; Kyllingstad

1995; Sawaryn et al. 2006; Gulyayev et al. 2009; Gao and

Liu 2013; Huang and Gao 2014; Gao and Huang 2015).

This effect is associated with deterioration of conditions of

contact interaction between the DS and the bore hole wall,

enlargement of friction forces, impossibility of transferring

the required axial force to the bit, and the DS lockup sit-

uation. To predict these effects and exclude them in prac-

tice, computer simulation should be employed.

In parallel with the static phenomena of buckling of the

DSs, there also can occur very complicated nonlinear

dynamic processes accompanied by extraordinary

stable and unstable changes of the DS rotation. Among

them there are axial, torsional, bending, and whirl vibra-

tions, inevitably linked with deterioration of the drilling

efficiency (Liu et al. 2013, 2014a, b).
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The effects of loss of equilibrium stability in these

mechanical systems are manifestations of one of the most

general law of nature—the law of quantitative changes

transferring to qualitative ones. In different spheres of

reality, these changes are realized by different ways. In

mechanics, they are studied on the basis of bifurcation

theory.

The problem of mechanical instability and bifurcational

buckling acquires crucial urgency in the technology of long

curvilinear bore hole drilling because it is specified by

essential complications but is not yet understood. Current

experience testifies that no well is drilled without problems.

They are connected with the complexity of mechanical

phenomena accompanying the drilling process and the

absence of dependable methods of computer modeling

providing the possibility to predict emergency situations

and to exclude them in advance. In a vertical bore hole, the

DS stability loss occurs at its lower part following the

spiral buckling mode typical for a rod stretched, com-

pressed, and twisted simultaneously (Lubinski et al. 1962;

Gulyayev et al. 2009).

However, the problem of theoretic simulation of DS

buckling in the channel of a curvilinear bore hole acquires

supplementary difficulties associated with the necessity of

integrating differential equations with variable coefficients

in the full range of the large length of the DS. Besides, the

problem possesses essential complications stemming from

appearance of additional constraints, imposed on the DS by

the well wall surface, and application of contact and fric-

tion distributed forces, as well as change of orientation of

gravity forces compressing the DS to the well wall

(Dawson and Paslay 1984; Wang and Yuan 2012;

Gulyayev et al. 2014).

Comprehensive reviews of results achieved in this

direction are presented in the literature (Cunha 2004;

Mitchell 2008; Gao and Huang 2015). It stems from these

analyses that, as a rule, the approaches used in bifurcational

analysis are based on the eigenmode approximations by

regular sinusoids and spirals, while the critical values of

loads and buckling shapes are rather guessed. As Cunha

notes apparently this circumstance is the reason of con-

clusions that solutions of the problem on stability loss of

the DSs in curvilinear bore holes gained by different

authors are in contradiction with each other and reality

(Cunha 2004).

Mitchell emphasizes ‘‘that there are still challenging

problems to solve and difficult questions to answer’’ in the

domain of the DS buckling (Mitchell 2008). Among them,

the fundamental unresolved questions remain:

• What is the critical buckling load in curved, 3D bore

holes?

• What effect does friction play in DS buckling?

The last achievements in this domain are discussed by

Gao and Huang (2015).

Gulyayev et al. (2014, 2015) elaborated a new mathe-

matic model of a DS stability loss in smooth curvilinear

channels. Without taking into consideration friction effects,

they showed that the stated problem was singularly per-

turbed and so, typically, the modes of buckling were rep-

resented by boundary and localized effects in the shapes of

wave packages or wavelets.

In this problem, fundamental unresolved questions

remain: What role is played by the friction factor in stability

loss phenomena and how to include it in the analytical or

numerical model. Mitchell remarks: ‘‘Perhaps the most

important force, and the force least studied in the analysis of

buckling, is friction’’ (Mitchell 2008). The magnitude of the

friction force is usually not that difficult to determine. The

difficulty is determining the direction of the friction vector.

We agree that this vector cannot be determined for stationary

elastic systemswith friction contacts because this problem is

statically indeterminable (Mitchell and Samuel 2009). But if

one of the contacting bodies slides on the surface of another,

then the vectors of sliding velocity and friction force are

collinear and the last one can be easily determined. This

peculiarity facilitates the problem on the analysis of friction

effects on critical buckling of the DS.

In the first place, it is necessary to point out that every

balanced stationary state of the DS is preceded by its steady

sliding motion associated with tripping in or out operation

and drilling is accompanied by kinematic friction. As a

rule, the coefficients of kinematic friction exceed their

magnitudes established in static equilibrium. Besides,

usually, the indicated technological procedures happen

with certain ultimate longitudinal velocities, while the DS

buckling occurs with very small velocities. In this case, the

lateral buckling velocities (and the appropriate lateral

friction forces) can be assumed to equal zero. Then, all the

friction forces are axial and are oriented in one direction.

Then, the moving DS experiences action of the more

intensive friction forces which have deleterious effects

upon the stability of its quasi-static equilibrium. Therefore,

at this state, the bifurcational buckling of the DS should

first of all be analyzed.

Secondly, the friction forces acting on the DS and all the

functions of its total stress–strain state can be specified by

rather simple calculation means.

Thirdly, with the use of these functions, the constitutive

linearized homogeneous equations of critical equilibrium

of the DS can be constructed. Their eigenvalues and

eigenmodes determine critical loads on the DS in the bore

hole channel and shapes of its bifurcational buckling.

To realize this approach, the nonlinear theory of elastic

curvilinear rods is used. Its foundations are stated in
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monographs (Antman 2005; Gulyayev et al. 1992). A

three-dimensional statement of this theory is expounded by

Gulyayev and Tolbatov (2004). Its application to analysis

of the DSs buckling in inclined rectilinear bore holes is

described by Gulyayev et al. (2014). Below, it is formu-

lated in a concomitant reference frame moving on the bore

hole surface constraining the DS transformation. Owing to

this, the total order of the differential equation is reduced to

four. A two-step algorithm is proposed. At the first step, the

stress–strain state of the moving DS under action of gravity

and friction forces is determined; at the second step, the

eigenvalue problem for linearized equations is solved. It is

shown, that the buckling modes have the shapes of har-

monic wavelets with localization segments depending on

the friction forces.

2 Basic assumptions concerning drill string
bending in a curvilinear bore hole

The problem about nonlinear elastic bending of a DS rel-

ative to the immovable coordinate system OXYZ inside a

channel cavity of a curvilinear bore hole is considered and

shown in Fig. 1. In the considered case, the DS is lowering

along its axial line but the surfaces of the DS and the bore

hole are in contact throughout the DS length. The DS does

not rotate; hence, the distributed friction torques equal

zero. Assuming that the DS movement is quasi-static, then,

the inertia forces are small and can be disregarded, so only

the distributed gravitational (fgr), contact (fcont), and

frictional (ffr) forces are acting on every element of the DS.

As shown in Fig. 1, the fgr force is vertical, fcont is applied

normally to the axis line at the contact point, and ffr force is

opposite to the axial velocity of the descending element.

It is believed, also, that the DS element displacements

can be comparable with the bore hole cross-sectional

dimensions, but the curvature radii of its axis line L are so

large that the DS strains are small and its stress–strain

states are elastic. They are specified by the principal vec-

tors of internal forces FðsÞ and internal moments MðsÞ,
where s is the natural parameter defined by the length of the

DS axis line L measured from some initial point to the

considered one.

The external and internal force factors have to satisfy

the following differential equations of equilibrium

(Gulyayev et al. 1992, 2014):

dF

ds
¼ �fgr � fcont � ffr;

dM

ds
¼ �t� F; ð1Þ

where t is the unit vector directed along the tangent to the

axis line L.

If Eq. (1) is projected on the immovable coordinate

system OXYZ, it will be possible to receive six scalar

equations of the element equilibrium. However, in a gen-

eral case, it is more convenient to express them in axes of

some movable trihedron. Usually, if elastic bending of the

unconstrained curvilinear rod is studied, the Frenet trihe-

dron with unit vectors of normal n, binormal b, and tangent

t are used. They are calculated by the formulae:

t ¼ dR

ds
; n ¼ r

dt

ds
; b ¼ t� n ð2Þ

where RðsÞ is the radius vector of the DS element in the

OXYZ coordinate system; r(s) is the curvature radius of the

line L.

Yet, if the DS is in contact with the well wall surface,

then, the axis line L lies and slides in the channel surface R
of radius a (Fig. 2) which is equal to half-difference

a ¼ d1 � d2ð Þ=2;

where d1 and d2 are the diameters of the bore hole and DS

cross sections, respectively.

This surface can be parameterized by parameter u,

determining the axis line T of the bore hole

XT ¼ XTðuÞ; YT ¼ YTðuÞ; ZT ¼ ZTðuÞ ð3Þ

and parameter v, prescribing position of a point in the

generating circle (Fig. 2). Here, u; v are curvilinear coor-

dinates in the surface R; R is the channel surface of the

bore hole wall; XT, YT, ZT are the X, Y, Z coordinates of the

line T.

With their use, the DS bending is preset in the 2D space

of the R surface by equalities

Drill string

X

Y

Z

u

v

fcont

f fr

fgr

Bore hole wall

Direction of the DS 
movement in the bore 
hole channel

O

Fig. 1 Scheme of a drill string in a bore hole channel
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u ¼ uðsÞ; v ¼ vðsÞ ð4Þ

Then, to describe the line L transforming, it is convenient

to introduce additional right-hand reference frame oxyz with

unit vectors i, j, k, moving on the constraining surfaceR along

the line L. In doing so, the unit vector i is the internal normal

to the surface R and the vector k is tangent to the curve L.

Now, it becomes possible to introduce an analogue

x ¼ kxiþ kyjþ kzk ð5Þ

of the Darboux vector (Dubrovin et al. 1992; Gulyayev

et al. 1992).

In this equality, kx and ky are the appropriate compo-

nents of the vector X ¼ b=r of the curvature of the line L

along the ox and oy axes; kz is the value

kz ¼ lim
Ds!0

Dw=Ds ð6Þ

determining rotation of the oxyz system around the vector k

when this reference frame moves along the line L from the

point sto the point s ? Ds.
Here, Dw is the elementary angle of vector i rotation.

Generally, if displacements of a rod are not constrained,

its curvature 1/r can be calculated by the formula:

1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2X

ds2
þ d2Y

ds2

� �2

þ d2Z

ds2

s

ð7Þ

and, subsequently, its components kx and ky can be deter-

mined. However, in the considered case, the rod axis L lies

in the surface R with prescribed geometry and so it is more

convenient to specify functions kx(s) and ky(s) in the terms

of its geometrical parameters.

To do so, it is necessary to consider internal and external

geometries of the surface R. Its internal geometry is

defined by the first quadratic form:

U1ðu; vÞ ¼ a11du
2 þ 2a12dudvþ a22dv

2; ð8Þ

where a11, a12, and a22 are parameters of the quadratic

form. With their use, the geometrical objects, lying in the

surface R, are described and calculated.

In the considered case, the surface R is a channel and

then the coordinate lines u = const and v = const are

orthogonal and a12(u, v)=0. Owing to this, the curvature kx,

coinciding with geodesic curvature kgeod of the curve L, is

expressed with the use of the formula (Dubrovin et al.

1992)

kx ¼ kgeod ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

a11ðu0Þ2 þ a22ðv0Þ2
h i�3=2

ðu00v0 � v00u0 þ Av0 � Bu0Þ: ð9Þ

Here, coefficients A and B are represented through the

Cristoffel symbols Cjj
i by the equalities

A ¼ C1
11 u0ð Þ2þC1

22 v0ð Þ2; B ¼ C2
11 u0ð Þ2þC2

22 v0ð Þ2 ð10Þ

The surface R shape, curvatures, and external geometry

are determined by parameters b11, b12, b22 of the second

quadratic form:

U2ðu; vÞ ¼ b11du
2 þ 2b12dudvþ b22dv

2: ð11Þ

If the surface R is a channel, the correlation b12 = 0 is

valid for the chosen coordinate u and v. Then, on the basis

of the Euler theorem (Dubrovin et al. 1992), the curvature

ky of the line L can be equalized to appropriate normal

curvature knorm of the surface R in the direction of the

curve L. In its turn, the curvature knorm is expressed through

principal curvatures k1, k2 of the surface R

knorm ¼ ky ¼ k1 cos
2 hþ k2 sin

2 h: ð12Þ

Here, h is the angle between the directions of curve L

and coordinate line u; k1 and k2 are the normal curvatures

of lines v = const, u = const, respectively. They can be

represented as follows:

k1 ¼ b11=a11; k2 ¼ b22=a11 ð13Þ

The gained relations (6), (9), (12) permit one to

study elastic bending of the DS in a movable reference

frame (5).

3 Nonlinear constitutive equations of the drill
string bending in a curvilinear channel

To deduce constitutive equations of bending, the drill string

sliding along its axial line in a curvilinear bore hole Eq. (1)

is represented in a moving reference frame oxyz with unit

vectors i, j, k. Then, the absolute derivatives dF/ds and

dM/ds in Eq. (1) can be expressed as follows:

v

s

z
u

L

y

x

Fig. 2 Sliding of axial line L in reference surface R
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dF=ds ¼ ~dF=dsþ x� F; dM=ds ¼ ~dM=dsþ x�M;

ð14Þ

Here, ~d. . .=ds is the symbol of local derivative in the

oxyz system.

Vectors F, M, fgr, fcont, ffr are resolved into their com-

ponents in the i, j, k trihedron:

F ¼ Fxiþ Fyjþ Fzk; M ¼ MxiþMyjþMzk;
fgr ¼ f grx iþ f gry jþ f grz k; fcont ¼ f contx i; ffr ¼ f frz k:

ð15Þ

In these correlations, the advantages of the chosen

approach and reference frame used are obvious. Indeed, the

fcont force is normal to the surface R, it is collinear with the

vector j, and has only one component. The problem on

specification of friction forces is considerably harder.

Assuming that the friction interaction between the DS tube

and the bore hole wall obeys Coulomb’s law (Berger 2002;

Mitchell and Samuel 2009; Samuel 2010)

ffr � lfcont ð16Þ

where l is the friction coefficient.

Following Eq. (16), the fraction can be subdivided into

static friction (‘‘stiction’’) between non-moving surfaces and

kinetic friction generated between sliding ones (Fig. 3).

The static regimes occur under conditions when the

motive forces cannot overcome the resistance of cohesion

forces which have some ultimate value fult ¼ lfcont. Once
the ultimate value has been achieved, the contacting bodies

begin to move relative to each other with realization of

kinetic friction which does not depend on the velocity w

magnitude and is equal to fult. Besides, the vector ffr of this

force is collinear with the vector w and the equality

ffr ¼ �l fcontj j w
wj j ð17Þ

becomes valid.

This correlation permits one to investigate the processes

of the DS buckling during its axial motion. Indeed,

assuming that the DS is under conditions of tripping

operations and internal axial force Fz(s) does not achieve

the critical value. Then, the DS moves along its axial line

with the axial velocity wz without buckling, the friction

forces f frz sð Þ are directed along it, and lateral components of

these forces equal zero. Next, when the critical axial force

Fcr
z sð Þ is achieved and slightly exceeded, the DS begins to

buckle with the small lateral velocity wy(s), generating

small lateral friction forces

f fry ðsÞ ¼ f frz ðsÞ � wyðsÞ=wz ð18Þ

which impede the DS buckling with the induced velocity

wy.

Assuming that the generated friction forces (Eq. (18))

stopped the buckling process, then wy(s) = 0 and the lat-

eral forces f fry sð Þ ¼ 0. However, the critical axial forces are

exceeded (though slightly), the DS remains unstable, and

again it begins to buckle, but this time, it selects very small

velocity wy(s) in Eq. (18), inducing very small lateral for-

ces f fry sð Þ, which cannot stop the buckling process. There-

fore, it is considered that if in the DS, sliding along its axial

line in the bore hole channel, the internal axial forces

Fz(s) exceed critical value Fcr
z , the influence of induced

lateral friction forces f fry sð Þ on the buckling process can be

neglected.

Therefore, the friction force is collinear with the vector

k and its value constitutes (Mitchell and Samuel 2009)

f frz ¼ �l f contx

�

�

�

�, where signs ‘‘?’’, ‘‘-’’ are selected

depending on the direction of DS movement.

Then, the system of vector correlations (1), (5), (14), and

(15) can be reduced to the system of three scalar equations,

describing equilibrium of internal and external forces:

dFx=ds ¼ �kyFz þ kzFy � f grx � f contx ;

dFy=ds ¼ �kzFx þ kxFz � f gry ;

dFz=ds ¼ �kxFy þ kyFx � f grz � f frz ;

ð19Þ

and three equations of internal moments equilibrium

dMx=ds ¼ �kyMz þ kzMy þ Fy;

dMy=ds ¼ �kzMx þ kxMz � Fx;

dMz=ds ¼ �kxMy þ kyMx:

ð20Þ

Take into consideration that, according to the rod theory,

bending moments Mx, My are determined by equalities

Mx ¼ EIkx; My ¼ EIky; ð21Þ

where E is Young’s modulus; I is the moment of inertia of

the DS cross-sectional area. Then, substituting Eq. (21)

into the third equation of system (20), one gains

dMz=ds ¼ 0: ð22Þ

Hence, Mz = const and its value can be calculated with

the help of appropriate boundary conditions.

Now, with the introduction of the proposed movable

reference frame oxyz and vector (5), representing an ana-

logue of the Darboux vector, it became possible to rewrite

the second equation of system (20) in the form:

Kinetic friction

 

f fr

w

Static
friction

Fig. 3 Diagram of the Coulomb friction
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Fx ¼ �EIk0y � EIkxkz þMzkx: ð23Þ

Thereafter, contact force fx
cont is found, using the first

equation of system (19),

f contx ¼ EI k00y þ k0xkz þ kxk
0
z

� �

þMzk
0
x � kyFz þ kzFy � f grx

ð24Þ

In the results, systems (19) and (20) are reduced to three

equilibrium equations

dFy

ds
¼ EIkxk

2
z �Mzkxkz þ EIk0ykz þ Fzkx � f gry ;

dFz

ds
¼ �EIkxk

0
x � EIkyk

0
y � f grz � f frz ;

dkx

ds
¼ �Mz

EI
ky þ kykz þ

1

EI
Fy:

ð25Þ

This system should be supplemented by the equations

of the surface R, constraining displacements of the DS.

They are formulated on the basis of channel surface

properties with the use of Eq. (3). Generally, if the line T

has a 3D geometry, the surface R can be represented as

follows:

X ¼ Xða;XT ; YT ; ZT ; u; vÞ; Y ¼ Y(a;XT ; YT ; ZT ; u; vÞ;
Z ¼ Z(a;XT ; YT ; ZT ; u; vÞ ð26Þ

However, the most overwhelming obstacle associated

with this problem consists of the necessity to simulate

friction forces accompanying DS deformation. These for-

ces are statically indeterminate for elastic systems. So, it is

expedient to analyze particular cases of the DS movement

inside curvilinear channels of simple trajectories and to

study their stability. Of particular interest in this avenue of

inquiry is incipient buckling of a DS in different segments

of a plane circular channel because it adequately depicts

the most general regularities of friction forces impact on

the buckling phenomena.

4 Bifurcational equations of DS equilibrium
in a circular bore hole

Let a DS be lowering in a plane circular bore hole. Then,

it slides along the bore hole bottom line and its axis line is

a circle of a radius q ? a, where q is the radius of the

bore hole axis T and a is the system clearance. In sliding,

the DS is subjected to action of gravity (fgr), contact

(fcont), and friction (ffr) forces. In consequence of these

forces, the DS can be compressed in some segments of its

length where it can begin to buckle without losing its

contact with the well wall. It is necessary to predict the

critical states of the DS and to construct the modes of its

stability loss.

In this case, the surface R is a torus described by

Eq. (26) in the form:

X ¼ a sin v; Y ¼ q 1� cos uð Þ;
Z ¼ q sin uþ a sin u cos v

ð27Þ

By their application, the geometric parameters used in

Eqs. (8), (11), and (13) are determined:

a11 ¼ ðqþ cos vÞ2; a12 ¼ 0; a22 ¼ a2;
b11 ¼ ðqþ a cos vÞ cos v; b12 ¼ 0; b22 ¼ a;
k1 ¼ cos =ðqþ a cos vÞ; k2 ¼ 1=a

ð28Þ

The geodesic curvature kgeod = kx is calculated from

Eq. (9)

kgeod ¼ kx ¼ �aðqþ a cos vÞ u00v0 � v00u0 � sin vu0
1þ a2ðv0Þ2

aðqþ a cos vÞ

" #

:

ð29Þ

The normal curvature knorm = ky is determined by the

equality

knorm ¼ ky ¼ cos v
1� a2ðv0Þ2

qþ a cos v
þ aðv0Þ2: ð30Þ

Angle h between directions of tangents to lines L and u at

the considered point is introduced. Then, sin h = av0,
cos h = (q ? a cos v)u0. Here, value u0 is prescribed by

the formula:

u0 ¼ du=ds ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� auv0Þ2
q

qþ a cos v
: ð31Þ

With the use of these formulae, the appropriate components

of the gravity force are constructed:

f grx ¼ fgri ¼ �f gr sin u cos v;

f gry ¼ fgrj ¼ f grðsin u sin v cos hþ cos u sin hÞ;
f grz ¼ fgrk ¼ f grð� sin u sin v sin hþ cos u cos hÞ:

ð32Þ

Here, the distributed gravity force fgr is defined by the

formula

f gr ¼ gðcst � cmudÞp d21 � d22
� 	

=4

where cst and cmud are the densities of steel and mud; d1
and d2 are the external and internal diameters of the DS

tube.

Now, it became possible to formulate constitutive

equations of the stated problem relative to unknown vari-

ables Fy, Fz, kx, v, and u. They are deduced on the basis of

Eqs. (25), (29), (31), and (32):
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dFy

ds
¼ EIkxk

2
z �Mzkxkz þ EIk0ykz þ kxFz � f grðsin u sin v cos hþ cos u sin hÞ;

dFz

ds
¼ �EIkxk

0
x � EIkyk

0
y � f grð� sin u sin v sin hþ cos u sin hÞ;

dkx

ds
¼ �Mz

EI
ky þ kykz þ

1

EI
Fy;

dv

ds
¼ v0;

dðv0Þ
ds

¼ 1

aðqþ a cos vÞu0 kx � sin v
1þ a2ðv0Þ2

aðqþ a cos vÞ þ
u00v0

u0
;

du

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2ðv0Þ2
q

ðqþ a cos vÞ :

8
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:

ð33Þ

This system with appropriate boundary conditions,

determining external axial forces and torques, can be used

for modeling nonlinear elastic bending of a DS in the cir-

cular channel cavity of a bore hole. Assuming that in the

general case the DS can bend and take new deformed

shapes remaining in contact with the bore hole wall

throughout its length. If during this shape transformation

small elastic displacements of the DS correspond to small

increments of the external force perturbation, then the

considered equilibrium state is stable. In the vicinity of this

state, the linear differential equations deduced from the

nonlinear system (33) with the use of linearization proce-

dure are not degenerate and have only one solution.

However, if the DS is loaded further, the coefficients of the

linearized equations continue to evolve and the state can be

reached when these equations become degenerate and

acquire an additional (bifurcating) solution along with the

initial one. Because of this, the state reached is critical

(unstable) and the bifurcating solution represents the

buckling mode.

The peculiarity of the nonlinear problem stated for the

buckling of a DS in the circular channel is that the tube

does not change its shape in the subcritical states and so the

coefficients of the linearized equations of the equilibrium

change owing to the step-by-step enlargement of the axial

force Fz(s) with the external load increase. In that event,

the stated problem is analogous to the problem of Eulerian

stability of a rectilinear rod because it is also associated

with the eigenvalue search and eigenmode construction.

To identify the critical equilibrium and the stability loss

of the DS moving along the bore hole bottom, system (33)

should be linearized in the vicinity of the considered state

and its eigenvalues and eigenmodes should be found.

During the prescribed movement, the static and kinematic

conditions Fz = Fz(S), u = u0 ? s/(q ? a), u0 = 1/

(q ? a), u00 = 0, v = 0, v0 = 0, v00 = 0, kx = 0, ky = 1/

(q ? a), kz = 0 are satisfied. As a consequence of bifur-

cational deformation, the system parameters assume small

variations dv, dkx, dFy. They are calculated with the help of

linear homogeneous equations

d

ds
dFy ¼Fzdkx� f gr sin u0þ

s

qþa

� �

dvþ f gracos u0þ
s

qþa

� �

dv0;

d

ds
dv¼ dðv0Þ;

d

ds
dðv0Þ ¼� 1

aðqþaÞdvþ
1

a
dkx;

d

ds
dkx ¼

1

EI
dFy;

8
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:

ð34Þ

arising from system (33) after taking into account that

du = 0, dky = 0, dFz = 0.

Coefficient Fz(s) in the first equation is determined with

the help of the second equation of system (33). It results in

dFz

ds
¼ �f grz � f frz ¼ �f gr � lf cont: ð35Þ

Here, signs ± are selected for the operations lowering

and hoisting of the DS, contact force fcont is established

through the use of the first equation of system (19) in the

form:

f cont ¼ � 1

qþ a
Fz � f grx ¼ � 1

qþ a
Fz þ f gr sin u ð36Þ

Substituting Eq. (36) into Eq. (35) gives the linear differ-

ential equation of the first order:

dFz

du
� lFz ¼ �ðqþ aÞf gr cos u� lðqþ aÞf gr sin u ð37Þ

Let u = U, s = S, then

FzðuÞ ¼
ðqþ aÞf gr
1þ l2

�2lðcos u� cosUÞ � ð1� l2Þðsin u� sinUÞ

 �

þ FzðUÞ;
ð38Þ

where Fz(U) is the compressive force applied to the DS at

its lower end u = U; U is the u coordinate value at s = S.

Four first-order differential Eq. (34) are equivalent to

one homogeneous fourth order equation

dvIV þ 1

aðqþ aÞ �
Fz

EI

� 


dv00 � f gr

EI
cos u0 þ

s

qþ a

� �

dv0

þ f gr

aEI
sin u0 þ

s

qþ a

� �

� Fz

aEIðqþ aÞ

� 


dv ¼ 0: ð39Þ

It is derived from the assumption that in buckling the

friction force ffr is directed along the DS axis line. To find

states of bifurcational buckling of the DS, the Sturm–

Liouville problem (eigenvalue problem) should be formu-

lated for Eq. (39). Its statement is based on the finite dif-

ference method and the construction of the corresponding

matrix of algebraic equation coefficients. The matrix
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elements depend on multiplier Fz(s) before the dv value in

Eq. (39) which in its turn is determined by the boundary

force Fz(U) and the distributed friction force in Eq. (38).

Then, the critical (bifurcational or eigen) value of the

external force Fz(U) applied at the end u = U (i.e., s = S)

is found by its varying through the trial-and-error method

application.

It is notable that the torque Mz is not present in Eq. (39).

This means that critical states of DSs in circular bore holes

do not depend on Mz values (as well as in rectilinear ones

(Gulyayev et al. 2014)).

5 Critical buckling of a DS moving
inside a channel of a circular bore hole

The primary objective of this paper lies in investigation of

the influence of friction forces on the stability of a DS

moving inside a curvilinear bore hole. Notwithstanding the

fact that the simplest trajectory in the shape of a circular arc is

chosen for the bore hole configuration, this example permits

us to trace the principal peculiarities of the buckling pro-

cesses proceeding in curve channels. It consists in the pos-

sibility to generate localized buckling wavelets in the most

unexpected places of the hole length. Additional uncertainty

is contributed to this situation by axial friction forces gen-

erated during lowering or hoisting the DS. It is considered

that themotion is slow, and inertia forces can be disregarded.

Then, the DS can be partially compressed and partially

stretched by distributed variable gravity forces fgr(s), vari-

able frictional forces ffr(s), and axial force Fz(U) applied at

the DS end s = S with an angular coordinate u = U. So,

Eq. (39) cannot be solved by analytical methods.

To find bifurcational states of the DS, Eq. (39) was

algebraized by the finite difference method for different

values of Fz(U) force, and the states when the matrix of

linear algebraic equations became degenerate were

assumed to be critical. At this state, the eigenfunction

Fz
cr(s) and eigenmode dv(s), representing the shape of the

buckling DS, were constructed.

In numerical analyses, the DS section 0 B s B S was

divided into 500 finite difference pieces. The calculation

results were tested with a doubled number of pieces. The

checking confirmed the adequate precision of the

computations.

In order to trace the influence of friction forces on the

DS buckling, every calculation example was examined

with the use of frictionless and frictional statements. The

analytic results are compared.

In Fig. 4, the geometric scheme of the DS, lying inside

the lower quarter of a circular channel, is presented. At its

lower end, the DS axis is tangent to the horizontal, its

spanning angle u = U - u0 and position of the top end

s = 0 were varied. The DS is pinned at both its ends.

Influences of the DS length S, radius q, clearance a, and

friction force ffr on critical values Fz
cr(U) were examined for

the next values of the system parameters:

E = 2.1 9 1011 Pa, cst = 7.8 9 103 kg/m3, cmud = 1.3 9

103 kg/m3, d1 = 0.1683 m, d2 = 0.1483 m, l = 0.2. Every

example was studied for the cases ffr = 0 and ffr = 0 and

clearance values a = 0.5, 0.1, 0.05, 0.03 m. Although the

first value of a is not practicable, it is included into analysis

to reveal the trend of critical states evolving with clearance

change.

The findings of the calculations evidence that if the DS

is rather short, the clearance a is not small, and the radius q
is large, the DS buckles similarly to the Eulerian beam

under critical axial forces Pcr = p2EI/S2 and they are

unaffected by the hole friction. However, the situation

varies radically with the length S and angle u enlargement.

As it becomes longer, the system begins to exhibit prop-

erties of singularly perturbed structures and to localize

unpredictably its short buckling waves in boundary layers

(see Fig. 5a for frictionless case) or in inner zones with the

larger values of compressive axial force (see Fig. 5b for the

case of frictional interaction). In the theory of waves, such

modes are termed the wave packages (Crawford 2011), in

the applied mathematics they have come to known as

harmonic wavelets.

In Table 1, the calculation results for the 1200-m DS

inserted into the circular bore hole with a radius q of

1146 m are given. The spanning angle for this example is

u ¼ 60o. It can be seen that the DS buckling character

depends on the character of the Fz(s) function distribution

and its external value locations. Thus, if a = 0.5 m and

ffr = 0, the DS is stretched at its top end s = 0 and com-

pressed at its lower one s = S. The critical value

Fz
cr(S) = -98.33 kN of the external compressive axial

Fz(0)

s = 0

Fz(S)

Direction of the DS 
motion

Distributed friction 
forces s = S

Fig. 4 Schematic of the circular DS segment
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force Fz(s) applied at the pinned end s = S is maximal

throughout its length. So, the buckling wavelet is localized

in the boundary zone, justifying the properties of singularly

perturbed systems (Chang and Howes 1984; Elishakoff

et al. 2001; Gulyayev et al. 2014).

The situations change if ffr = 0 (see position 1 in

Table 1). Then, the maximal compressive value

Fz
fr = -93.97 kN of the axial force shifts to the bore hole

interiority and the system becomes singularly perturbed

inside its length. Then, the buckling wavelet also displaces

inside the DS segment.

If a B 0.1 m (positions 2–4 in Table 1), the DSs buckle

under the action of greater forces and the smaller a is, the

more complicated is the mode of stability loss. It becomes

also harder to predict the zone of the buckling localization

in the presence of friction forces. Besides, the buckled zone

propagates through a larger region of the DS length and at

a = 0.03 m the boundary effect drifts from the right end of

the diagram to its left end. As this takes place, the buckling

mode pitch (k—pitch of the eigenmode wavelet) becomes

smaller and smaller. Thus, the wavelet pitch k & 26 m for

a = 0.5 m and it is 10.5 m for a = 0.03 m.

Now, consider the instance when the bore hole channel

arc is symmetrically disposed relative to the vertical

(Fig. 6). The computations are fulfilled for the values

S = 2400 m, q = 1146 m, u ¼ 120o. If the friction effects

are not taken into account, then, the representative func-

tions, determining the DS buckling, can be obtained by

simple symmetric prolongations relative to the vertical of

the appropriate functions represented in Table 1 for the

asymmetric arc (compare Figs. 5a, 6a). As this takes place,

the critical values of boundary forces Fz
cr(s) given in

Table 1 for a frictionless asymmetric hole become equal to

critical values Fz
cr(S/2) for the corresponding DSs in

Table 2.

The presence of friction effects leads to shifting the

buckling wavelet positions in both cases (see Figs. 5b, 6b)

but the maximal values of the appropriate critical functions

Fz
cr(S) (located in the wavelets zones) and wavelet pitches

remain approximately equal, though shapes of their buck-

ling modes acquire some distinctions.

It is of interest that if the DS length is larger than the

wavelet extension, then the critical value of Fz
cr(s) does

not depend on the DS size and with the enlargement of

the spanning angle u the noted peculiarities come into

particular prominence. These conclusions are verified

by Table 3 charted for u ¼ 180o, q = 1146 m, and

S = 3600 m.

So then, juxtaposition of these results with the data

displayed in Table 3 for u ¼ 180o enables us to infer that

in the case of the absence of friction the buckling

wavelets are localized in the central zone of the DS

length, they are identical for every value of clearance a,

and are realized under similar values of axial force Fz
cr

achieved at the middle point s = S/2. It is evident that in

this case, the buckling effect does not depend on the

boundary conditions at the ends s = 0 and s = S. As this

takes place, the pitches k of the eigenmode half-har-

monics equal the distances between two adjacent zeros

do not demonstrate essential differences. Their values at

S = 2400 m and 3600 m (u ¼ 120o and 180o) are listed

in Table 4. They are seen to be invariant if the bifurca-

tion buckling zone is small and they diminish with a

decrease in a. In the cases of frictionless contact of the

DS with the bore hole wall, the k values are identical for

both length S at clearance values a = 0.5 m and 0.1 m,

but their distinction becomes conspicuous at a = 0.05 m

and a = 0.03 m.

The influence of the friction forces on buckling modes is

more appreciable. They cause not only the diversification

of the buckling zone positioning but lead to these zones

widening as well (see Table 3). Besides, in the every zone

limits, the pitches of conventional harmonics become also

variable (see Table 4 for ffr = 0).

Fig. 5 Buckling of the DS in an inclined circular channel of a bore hole. a Frictionless model of the immovable DS. b Frictional model of the

moving DS
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Table 1 Functions of the critical axial force Fz
cr(s) and buckling modes dv(s) for the case S = 1200 m, q = 1146 m, u ¼ 60o

No. a, m Friction force value Function of the critical axial force Fz
cr(s), kN Mode dv(s) of stability loss

1 0.5 ffr = 0

0 400 800 1200
-400

0

400
cr ( )zF s

s, m 

cr ( )zF s = −98.33

0 400 800 1200
s, m 

v

ffr = 0
cr ( )zF s = −66.02 

0 400 800 1200
-400

0

400
−93.97 

0 400 800 1200

2 0.1 ffr = 0

0 400 800 1200
-400

0

400
cr ( )zF s = −234.0

0 400 800 1200

ffr = 0

0 400 800 1200
-400

0

400
−224.9 cr ( )zF s = −196.9 

0 400 800 1200

3 0.05 ffr = 0

0 400 800 1200
-400

0

400
cr ( )zF s = −347.1 

0 400 800 1200

ffr = 0
−331.6

0 400 800 1200
-400

0

400
cr ( )zF s = −303.6

0 400 800 1200

4 0.03 ffr = 0

0 400 800 1200
-400

0

400
cr ( )zF s = −469.2 

0 400 800 1200

ffr = 0

0 400 800 1200
-400

0

400

−445.2 
cr ( )zF s = −417.26 

0 400 800 1200

Fig. 6 Buckling of DS in a symmetric circular channel of a directed bore hole. a Frictionless model of the stationary DS. b Frictional model of

the moving DS
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It is intriguing to compare the obtained results with

the analytic solution deduced for the limiting case when

the curvature radius q tends to infinity in the absence of

friction effects. Then, it is valid to assume that the rec-

tilinear bore hole is horizontal and the infinitely long DS

is prestressed by the axial force Fz(s) remaining

unchanged throughout its length. In this event, the crit-

ical values of force Fz(s) and pitch k are determined by

equalities (Cunha 2004; Mitchell 2008; Gulyayev et al.

2014):

Fcr
z ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIf gr=a
p

; kcr ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIa=f gr4
p

:

Their bracketed values for the corresponding states are

tabulated in Table 4. It can be seen that the calculated results

are closely related for large values of clearance a and the

difference between them grows with a reduction in a.

Table 2 Functions of the critical axial force Fz
cr(s) and buckling modes dv(s) for the case S = 2400 m, q = 1146 m, u = 120�

No. a, m Friction force value Function of the critical axial force Fz
cr(s), kN Mode dv(s) of stability loss

1 0.5 ffr = 0 cr ( )zF s

-400

0

400

0 800 1600 2400

−98.29 

s, m 

cr ( )zF s =83.40

0 800 1600 2400

v

s, m 

ffr = 0 cr ( )zF s = 222.65 

0 800 1600 2400
-400

0

400 −94.11

0 800 1600 2400

2 0.1 ffr = 0
cr ( )zF s = −522 

0 800 1600 2400
-400

0

400
−233.9 

0 800 1600 2400

ffr = 0
cr ( )zF s = 94.46

0 800 1600 2400
-400

0

400
−222.3

0 800 1600 2400

3 0.05 ffr = 0

0 800 1600 2400
-400

0

400

−347.0 
cr ( )zF s = −165.3 

0 800 1600 2400

ffr = 0
cr ( )zF s = −16.09

0 800 1600 2400
-400

0

400
−332.8 

0 800 1600 2400

4 0.03 ffr = 0

0 800 1600 2400
-400

0

400
−468.9 

cr ( )zF s = −287.3 

0 800 1600 2400

ffr = 0 cr ( )zF s = −129.8

0 800 1600 2400

-400

0

400
−446.5

0 800 1600 2400
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Summarizing obtained results, one can recognize that

the found regularities of the realization of critical states and

critical modes evolving are associated, in a large extent,

with the circular geometry of a bore hole and invariability

of its curvature radius q. One might expect that the con-

sidered phenomena will be far more intricate for the wells

with a variable curvature both in the cases of frictionless

contacts and when the frictional interactions occur.

Noteworthy also is the remark in relation to the influ-

ence of the bore hole geometry imperfections on the

buckling process. The geometry imperfections entail

enlargement of distributed friction forces and axial force

Fz(s), on the other hand, the geometry distortions result in a

change of the curvature radius q. Both these factors imply

the essential effect on the buckling process and should be

specially studied.

Table 3 Functions of the critical axial force Fz
cr(s) and buckling modes dv(s) for the case S = 3600 m, q = 1146 m, / = 180�

No. a, m Friction force value Function of the critical axial force Fz
cr(s), kN Mode dv(s) of stability loss

1 0.5 ffr = 0 cr ( )zF s

0 900 1800 2700 3600
-400

0

400 −98.18 

s, m 

cr ( ) 265.2zF s =

s, m 
0 900 1800 2700 3600

v

ffr = 0 cr ( ) 409.2zF s =

0 900 1800 2700 3600
-400

400
−96.95 

0 900 1800 2700 3600

2 0.1 ffr = 0

0 900 1800 2700 3600
-400

0

400 −233.7 cr ( ) 129.7zF s =

0 900 1800 2700 3600

ffr = 0 cr ( ) 277.2zF s =

0 900 1800 2700 3600
-400

0

400 −225.9 

0 900 1800 2700 3600

3 0.05 ffr = 0
cr ( ) 16.85zF s =

0 900 1800 2700 3600
-400

0

400
−346.5

0 900 1800 2700 3600

ffr = 0 cr ( ) 167.2zF s =

0 900 1800 2700 3600
-400

0

400 −335.9

0 900 1800 2700 3600

4 0.03 ffr = 0 cr ( ) 110.7zF s = −

0 900 1800 2700 3600
-400

0

400
−473.5

0 900 1800 2700 3600

ffr = 0
cr ( )=47.05zF s

0 900 1800 2700 3600
-400

0

400
456.1 

0 900 1800 2700 3600
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6 Conclusions

(1) On the basis of the theory of curvilinear elastic rods,

a new statement of the problem of critical buckling

of DSs in 3D curvilinear bore holes with allowance

made for friction effects is suggested. It is assumed

that a DS does not lose its stability in the state of its

stationary equilibrium but it can buckle during its

axial movement when friction forces and their

directions can be easily determined.

(2) The fourth order system of linearized differential

equations of the DS buckling in a curvilinear channel is

deduced with the use of differential geometry methods,

theory of channel surfaces, and classical mechanics of

systems with nonlinear constraints. The method of

numerical solutions of this system is elaborated.

(3) The problem is shown to belong to the singularly

perturbed class, and for this reason, the buckling

modes have the shapes of localized harmonic

wavelets.

(4) As an example, the phenomena of DS stability in

circular channels are studied. The cases of absence

and presence of friction effects are considered. It is

demonstrated that the friction forces stimulate

redistribution of internal axial forces in the DSs

and result in essential shifting of the buckling

wavelet localizations, bringing the buckling phe-

nomenon to the less predictable type.

(5) One might suppose that the considered phenomena

will be far more complicated for thewell with variable

curvatures both in the cases of frictionless contacts

and when the frictional interactions take place.
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