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Abstract Seismic inversion performed in the time or fre-

quency domain cannot always recover the long-wavelength

background of subsurface parameters due to the lack of

low-frequency seismic records. Since the low-frequency

response becomes much richer in the Laplace mixed

domains, one novel Bayesian impedance inversion

approach in the complex Laplace mixed domains is

established in this study to solve the model dependency

problem. The derivation of a Laplace mixed-domain for-

mula of the Robinson convolution is the first step in our

work. With this formula, the Laplace seismic spectrum, the

wavelet spectrum and time-domain reflectivity are joined

together. Next, to improve inversion stability, the object

inversion function accompanied by the initial constraint of

the linear increment model is launched under a Bayesian

framework. The likelihood function and prior probability

distribution can be combined together by Bayesian formula

to calculate the posterior probability distribution of sub-

surface parameters. By achieving the optimal solution

corresponding to maximum posterior probability distribu-

tion, the low-frequency background of subsurface param-

eters can be obtained successfully. Then, with the

regularization constraint of estimated low frequency in the

Laplace mixed domains, multi-scale Bayesian inversion in

the pure frequency domain is exploited to obtain the

absolute model parameters. The effectiveness, anti-noise

capability and lateral continuity of Laplace mixed-domain

inversion are illustrated by synthetic tests. Furthermore,

one field case in the east of China is discussed carefully

with different input frequency components and different

inversion algorithms. This provides adequate proof to

illustrate the reliability improvement in low-frequency

estimation and resolution enhancement of subsurface

parameters, in comparison with conventional Bayesian

inversion in the frequency domain.

Keywords Low-frequency � Complex mixed-domain �
Laplace inversion � Bayesian estimation � Multi-scale

inversion

1 Introduction

There are many ill-conditioned geophysical inversion

problems in geophysical prospecting due to the absence of

sufficient field data. So their solutions may become

unstable or non-unique. Although there has been enormous

development in seismic acquisition technology to achieve

the acquisition of broadband seismic signals (Day et al.

2013; Kroode et al. 2013; Haavik and Landrø 2015), the

signal-to-noise ratio (SNR) of low- and high-frequency

components is also controversial topics, specifically for

frequencies lower than 2–5 Hz and higher than 100 Hz.

However, low frequencies play an important role in seismic

exploration, especially for resolution enhancement, better

imaging quality, effective inversion processes and direct

fluid identification. As we know, the width of the main lobe

of the wavelet depends on the relative high-frequency
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energy and broadening the low-frequency bandwidth can

effectively reduce the amplitude of wavelet side lobes

(Kroode et al. 2013; Liu et al. 2013). Considering the

influence of low frequencies on seismic imaging and

velocity analysis in contrast to high frequencies, less

absorption, less scattering and better penetration of low

frequencies illustrate their importance in the field of deep

imaging technology (Pedersen and Becken 2005; Spjuth

et al. 2012; Cao and Chen 2014; Zhang et al. 2015).

Geophysicists still prioritize low-frequency regularizations

in waveform, impedance, elastic and AVO inversion (Zong

et al. 2012; Kroode et al. 2013; Li et al. 2016a) to improve

the stability of the inversion process and the rate of con-

vergence to a precise earth model. Low-frequency shadows

under hydrocarbon reservoirs (Chabyshova and Goloshubin

2014; Zhang et al. 2014; Yin et al. 2015a; Li et al. 2016b)

and fluid mobility measurements of the saturated reservoir

based on low frequencies (Chen et al. 2012; Yin et al.

2015a) are also two important frequency-dependent seis-

mic attributes to describe reservoir characteristics.

Due to the deficiency of field data, many regularization

terms are applied to decrease the problem about the lack of

low- and high-frequency components, such as prior infor-

mation on model parameters, bounding and geological

constraints (Tarantola 2005; Kim and Kim 2011; Zhang

et al. 2013; Yuan and Wang 2013; Hamid and Pidlisecky

2015; Yin et al. 2013, 2015b; Zong et al. 2015; Liu et al.

2016; Li et al. 2016a). The above-mentioned methods only

account for overcoming multiple solutions and avoiding

unrealistic values of the local minima in the objective

function. Among all influence factors, the background of

estimated parameters is seriously dependent on the accu-

racy of the initial model, which plays an important role in

supplementing the low-frequency components of conven-

tional seismic inversion. Therefore, selecting a suit-

able initial model can enhance the convergence rate and

increase the estimation reliability in seismic inversion

(Shin and Cha 2008; Zong et al. 2016; Yin et al. 2016; Li

et al. 2016b). However, the reliable prior information of

subsurface parameters cannot always be established in

some cases, such as in a well-less exploration field, which

will increase the difficulty in seismic inversion and inter-

pretation works.

To mitigate the model-dependent problem of seismic

inversion, geophysicists have attempted to deploy inver-

sion without a precise preliminary model and exploit the

limited data to derive the ultra-low-frequency information

of our interested parameters. As we all know, if the

damping effect is appended in the pure frequency domain,

one novel inversion strategy in the complex frequency

domain is yielded, which can alleviate the ill-conditioned

problem of band-limited inversion slightly (Sirgue and

Pratt 2004). Shin and Cha (2008) proposed a waveform

inversion algorithm based on the zero-frequency compo-

nent of the damped wave field in the pure Laplace domain

to recover the long-wavelength velocity models. Due to the

algorithm’s drawback of penetration depth, the complex

Laplace–Fourier-domain inversion strategy was proposed

(Shin and Cha 2009; Ha and Shin 2012, 2013; Hu et al.

2015) via a series of low-frequency components within

5 Hz and damping constants, which can enlarge the input

energy and improve the penetration depth of subsurface

models. Recently, seismic envelope inversion that was

performed in the envelope domain to predict the low-fre-

quency background of subsurface velocity by synthesizing

the envelope’s misfit function has attracted the attention of

geophysicists (Wu et al. 2014; Luo and Wu 2015; Luo et al.

2016). Complex Laplace-domain inversion and envelope

inversion are two different representatives of low-fre-

quency estimation methods, but both aim at excavating the

low-frequency response from the original data and

improving the construction of low-frequency a priori

information of the ill-posed inverse problem.

Based on the previous research in low-frequency

inversion, we propose a novel Bayesian impedance inver-

sion method in the Laplace mixed domains, which is not

dependent on the precision of the initial model. Margrave

(1998) proposed the Fourier mixed-domain formulation of

a non-stationary convolution model when studying the

time-variant deconvolution in the frequency domain. In this

paper, the deduction of the Laplace mixed-domain formula

of the convolution model is the first step of our method,

which is comprised of the Laplace seismic spectrum, the

wavelet spectrum and time-domain reflectivity. Further-

more, the Bayesian estimation system is lodged in our

inversion process to enhance the stability and resolution of

estimated parameters. For the next step, the object function

of complex Laplace mixed-domain inversion can be

established, accompanied by the linear increment initial

model of subsurface parameters with L2-norm regulariza-

tion. Furthermore, the feasibility of complex Laplace

mixed-domain inversion and multi-scale strategy is

demonstrated by the 1D synthetic and 2D overthrust model

tests. Finally, one successful field case with the proposed

method is displayed, and the results illustrate its great

potential for low-frequency recovery and high-resolution

estimation.

2 Laplace mixed-domain seismic model

The Laplace transform can be considered as the Fourier

transform of the damped time-domain signal. Assuming the

time-domain signal yðtÞ, the Laplace transformation of yðtÞ
can be stated as,
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YðsÞ ¼
Z þ1

0

yðtÞe�stdt ¼
Z þ1

0

yðtÞe�rte�i2pftdt ð1Þ

where YðsÞ, r and s are the Laplace spectrum of the input

signal, damping coefficients and complex frequency,

respectively. Here, s can be expressed as rþ i2pf . By

substituting Robinson stationary convolution for yðtÞ in

Eq. (1), Eq. (1) can be rewritten as,

Yðrþ i2pf Þ ¼
Z þ1

0

Z þ1

0

wðt � sÞmðsÞds
� �

e�rte�i2pftdt

ð2Þ

where wðt � sÞ represents the band-limited seismic wavelet

and mðsÞ shows the underground reflectivity. Then, inter-

changing the order of integration of Eq. (2), it can be

rewritten as

Yðrþ i2pf Þ ¼
Z þ1

0

Z þ1

0

wðt � sÞe�rte�i2pftdt

� �

� mðsÞds ð3Þ

According to the time-shifting property of the Laplace

transform, the final Laplace mixed-domain equation of

time-domain convolution can be written as

Yðrþ i2pf Þ ¼ Wðrþ i2pf Þ
Z þ1

0

mðsÞ � e�rse�i2pf sds

ð4Þ

where Wðrþ i2pf Þ indicates the Laplace spectrum of the

time-domain wavelet. The natural exponential term e�rs �
e�i2pf s refers to the time-shifting operator or Laplace

operator. To see the significance of the Laplace–Fourier

transformation more precisely, the damped wavelets

(20 Hz) and synthetic seismic in the time domain with a

series of damping parameters are displayed in Fig. 1. The

damped wavelets corresponding to damping constants 0, 8

and 16 s-1 are shown in Fig. 1a–c. The damped synthetics

with previous damping constants are shown in Fig. 1d–f. In

Figs. 2 and 3, the Laplace–Fourier spectra of a 20-Hz

Ricker wavelet and synthetic seismic are displayed in

detail. In Fig. 1, we can see that the damped wavelets

behave asymmetrically along with variations of attenuation

values, especially with a large damping coefficient 16 s-1;

this is caused by asymmetric attenuation of the Laplace

transform. Similarly, the deep attenuation effects of seis-

mic signals are stronger than shallow attenuation. From the

contour maps of the Laplace spectrum in Fig. 2, the energy

of low frequencies has a strong increase variation below

2.0 Hz, which deviates from the normal decrease tendency

at high frequencies. The magnitudes of the Laplace spec-

trum indicate that the energy below 2.0 Hz increases

gradually with variations of Laplace damping coefficients

under the condition of r\ 30, which is described in

Fig. 3a, b more clearly (i.e., the low-frequency components

are amplified with the Laplace damping coefficients). The

tremendous variations may increase the weights of low

frequencies and lead us to recover much richer low-fre-

quency responses of a subsurface model in complex

Laplace-domain inversion than conventional time-domain

and frequency-domain inversion.

3 Impedance inversion in the Laplace mixed
domains

To discuss the inverse problem more clearly, Eq. (4) is

simplified and a constant angular frequency xj is assumed,

so the discrete matrix equation of Eq. (4) can be given as,

Yxj
¼ Wxj

� C � Exj
�m ð5Þ

where Wxj
, C and Exj

are the Laplace spectrum of

wavelets, damping matrix of subsurface reflectivity corre-

sponding to each sample and Fourier forwarding matrix,

respectively. Yxj
is the vector of the input Laplace seismic

spectrum, and m is the vector of interested parameters. The

Laplace spectrum of wavelets can be written as a diagonal

matrix,

Wxj
¼

Wðr1þ ixjÞ 0 � � � 0

0 Wðr2þ ixjÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Wðrk þ ixjÞ

2
6664

3
7775
k�k

ð6Þ

In Eq. (6), k is assumed to be the number of damping

coefficients, and the Laplace damping matrix can be stated

as,

C ¼

e�s1r1 e�s2r1 . . . e�snr1

e�s1r2 e�s2r2 . . . e�snr2

..

. ..
. . .

. ..
.

e�s1rk e�s2rk . . . e�snrk

2
664

3
775
k�n

ð7Þ

where n is the number of time samples and sn is the time

index. The input of damping coefficients r in matrix C

plays important role in the estimation of low frequency.

The discrete Fourier forwarding matrix Exj
can be given

as,

Exj
¼

e�is1xj 0 . . . 0

0 e�is2xj . . . 0

..

. ..
. . .

. ..
.

0 0 . . . e�isnxj

2
664

3
775
n�n

ð8Þ

By assuming the number of selected frequencies as l,

joining Eqs. (5)–(8) can yield the forward equation easily

as,
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Fig. 1 Damped wavelets (20.0 Hz) and synthetic seismic in the time domain with a series of damping parameters. a–c are damped wavelets

corresponding to damping constants 0, 8 and 16 s-1, respectively, and d–f are damped synthetic data corresponding to damping constants 0, 8

and 16 s-1, respectively
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ð9Þ

where Y is the complex Laplace seismic spectrum, G is the

product of the wavelet matrix Wxi
and attenuation matrix

C and E is the Fourier operator of the multi-frequency

components. Due to the complexity of Eq. (9), we can

rewrite it in real and imaginary parts as follows,

realðYÞ
imagðYÞ

� �
¼ realðG � EÞ

imagðG � EÞ

� �
�m ð10Þ

Supposing S0 ¼ realðYÞ imagðYÞ½ �T, the real operator
G0L0 ¼ realðG � EÞ imagðG � EÞ½ �T in Eq. (10), it can be

written as a simplified form,

S0 ¼ G0 � L0 �m ð11Þ

where S0, G0 and L0 represent the Laplace seismic spec-

trum, wavelet effect and Laplace effect, respectively. It is

worth noting that the input spectrum Yxj
is one real vector

when the input frequency xj is equal to zero. Fourier-do-

main inversion is the special case of Laplace-domain

inversion when there is no input for attenuation coefficients

r. In other words, Laplace-domain inversion is an exten-

sion of Fourier-domain inversion. Besides, the selections of

discrete frequency components and Laplace damping

constants are pivotal problems that can influence the pen-

etration depth of the underground model (Shin and Cha

2008, 2009; Li et al. 2016a).

4 Inversion strategy based on the Bayesian system

For the regularization algorithm in Laplace mixed-domain

inversion, one robust Laplace mixed-domain multi-scale

inversion based on a Bayesian framework is proposed. The

introduction of the model parameter’s priori information

into mixed-domain inversion can help to improve the sta-

bility and anti-noise ability of the proposed approach.

Assuming that the probability distribution of random noise

S0 �G0L0m in the Laplace domain obeys a Gaussian

function and Gaussian probability is taken as the likelihood

function pGaussðS0jmÞ, which describes the fitting degree

between the synthetic and real Laplace spectrum, as men-

tioned here,

pGaussðS0jmÞ ¼ 1

ð2pr2nÞ
kl

exp½�ðS0 �G0L0mÞTðS0 �G0L0mÞ
.
2r2n�

ð12Þ

where r2n is the variance of the residual Laplace spectrum

S0 �G0L0mð Þ between synthetic and real seismic profiles.

Since the mixed-domain convolution contains time-domain

reflectivity, we can easily introduce the available prior

information on estimated parameters to reduce the multiple

solutions of the proposed method. However, the optimum

solution corresponding to Gaussian prior probability lacks

anti-noise performance and does not realize high-resolution

results of subsurface parameters (Alemie and Sacchi 2011).

Because the Cauchy probability distribution of the model

parameters has long tails compared to the Gaussian prob-

ability distribution, it can suppress weak noise and high-

light large reflectivity at the same time. The different

weighting coefficients on constrained parameters of
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Cauchy regularization can achieve sparse solutions and

stable results (Downton 2005; Buland and Omre 2003). So

we introduced the Cauchy prior function pCauchyðmÞ to our

Laplace mixed-domain inversion in this paper. The explicit

expression of the Cauchy function can be stated as

(Downton 2005; Yang 2008; Alemie and Sacchi 2011;

Zong et al. 2015; Li et al. 2016a),

pCauchy mð Þ ¼ 1

ðprmÞn
Yn
i¼1

1þ m2
i =r

2
m

� ��1 ð13Þ

where r2m is the variance of time-domain model parameters

and mi represents the discrete reflectivity. The likelihood

function and prior Cauchy regularization can be linked

together effectively by a Bayesian framework (Yang et al.

2015; Yin et al. 2016), which can be expressed by the

conditional probability formula,

p mjS0
� �

¼ pCauchy mð ÞpGauss S0jmð ÞR
p mð Þp S0jmð Þd mð Þ

/ pCauchy mð ÞpGauss S0jmð Þ ð14Þ

Then, the posterior probability distribution p mjS0ð Þ can
be obtained by Eq. (14), so substituting Eqs. (12) and (13)

for Eq. (14) yields,

pðm; rnjS0Þ / exp �
Xn
1

ln 1þ m2
i =r

2
m

� �" #

� exp½�ðS0 �G0L0mÞTðS0 �G0L0mÞ
.
2r2n�

ð15Þ

Due to the monotonic increasing property of the expo-

nential function exp½�, the equivalent form of Eq. (15) can

be expressed as

ln pðm; rnjS0Þ½ � / �ðS0 �G0L0mÞTðS0 �G0L0mÞ

� 2r2n
Xn
i¼1

ln 1þ m2
i =r

2
m

� �
ð16Þ

If we expect the optimum solution corresponding to

maximum posterior probability (MAP), the derivative of

ln pðm; rnjS0Þ½ � can be stated as,

o ln p½ �
om

¼ G0L0½ �T G0L0½ �m� G0L0½ �TS0

þ 4
r2n
r2m

diag ½1þ m2
i =r

2
m�

�1
	 


m ð17Þ

Supposing that
o ln p½ �
om is equal to zero, the following

equation is yielded,

m ¼ G0L0½ �T G0L0½ � þ 4
r2n
r2m

Q

� ��1

G0L0½ �TS0
	 


ð18Þ

where Q is the regularized diagonal matrix and each

coefficient of Q is equal to ½1þ m2
i =r

2
m�

�1
. Due to the ill-

posed property of the seismic inverse problem, the

constraint of the linear background 1 on model parameters

is introduced, which can be stated by L2-norm regular-

ization (Li et al. 2016a; Yin et al. 2016),

Jpri mð Þ ¼ L2
2 1� D �m½ � ¼ 1� D �mk k22 ð19Þ

where D is the regularized integral matrix and 1 is the

relative impedance that is equal to 0:5� ln½IPi=IP0�, where
IP0 is the reference impedance value. With the combina-

tion of Eq. (18) and the prior background constraint (19),

we obtain the final inversion function as

m ¼ G0L0½ �T� G0L0½ � þ 4
r2n
r2m

Qþ e2DTD

� ��1

� G0L0½ �T� S0 þ e2DT1
	 
 ð20Þ

Here, e2 is the positive regularization parameter, which

is used to characterize the weight of the prior information

constraint in the proposed algorithm. When the seismic

data are seriously disturbed by random noise (low S/N), the

regularization parameter e2 should be increased appropri-

ately, otherwise conversely. For the nonlinear Eq. (20),

iterative reweighted least squares are applied to solve the

inverse problem (Tarantola 2005; Yang 2008). Once the

relative reflectivity is achieved, the absolute impedance IPi

can be obtained with the integral operation. For the reso-

lution enhancement and convergence precision of seismic

inversion, the multi-scale inversion strategy with multi-

component successive iterations in the pure frequency

domain is utilized to obtain the final subsurface parameters

after low-frequency estimation in the Laplace mixed

domains.

5 Methodology tests

5.1 1D synthetic tests

To illustrate the effectiveness of the Laplace mixed-domain

inversion, we first investigated the inversion algorithm on

1D synthetic data. Figure 4 demonstrates the seismic

gathers that were generated with resampling well-logging

impedance and one 20-Hz band-limited Ricker wavelet of

zero phase. The conventional estimated results shown in

Fig. 5 without the low-frequency constraints show strong

errors from the theoretical model, especially on the back-

ground of model parameters, which can be seen clearly at

the black ellipses. Figures 6, 7, 8 and 9 show the predicted

parameters with the proposed method under different noise

contaminations. In Figs. 5, 6, 7, 8 and 9, blue lines refer to

the original model, green lines refer to the linear initial

model and red refers to the predicted parameters. With

specific analysis from Fig. 6, we can discover that Laplace
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mixed-domain inversion performs better than the conven-

tional inversion approach shown in Fig. 5 under no-noise

condition and the low-frequency information can be

predicted precisely even though the initial model is in

linear incremental mode. If seismic gathers were contam-

inated by random noise, the estimated low frequency was

2 4 6
0

60

120

180

240

300

360

420

2 4 6
0

60

120

180

240

300

360

420

2 4 6
0

60

120

180

240

300

360

420

2 4 6
0

60

120

180

240

300

360

420

(a) (b) (c) (d)
Ti

m
e,

 m
s

Ti
m

e,
 m

s

Ti
m

e,
 m

s

Ti
m

e,
 m

s

Fig. 4 Synthetic gathers under different noise levels utilizing a known well W and a 20-Hz Ricker wavelet. a Noise-free, b S/N = 20, c S/

N = 10, and d S/N = 5

4 6

x106 x106 x106 x106

0

60

120

180

240

300

360

420

(a)

Ti
m

e,
 m

s

4 6
0

60

120

180

240

300

360

420

(b)

Ti
m

e,
 m

s

4 6
0

60

120

180

240

300

360

420

(c)

Ti
m

e,
 m

s

4 6
0

60

120

180

240

300

360

420

(d)

Ti
m

e,
 m

s

Ip, m.s-1.kg/m3 Ip, m.s-1.kg/m3 Ip, m.s-1.kg/m3 Ip, m.s-1.kg/m3

Fig. 5 Estimated parameters without the constraint of low-frequency estimation in Laplace mixed domains under no-noise condition. a Initial

model, b 5.0–15.0 Hz estimation, c 5.0–30.0 Hz estimation and d 5.0–55.0 Hz estimation. In each figure, blue refers to the original model, green

refers to the initial model and red refers to the predicted parameters
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affected but can be accepted with S/N = 5 in Fig. 9. With

the constraint of low-frequency background, the subsurface

parameters can be recovered by multi-scale inversion with

multi-component iterations easily, as shown in Figs. 6b–d

and 9b–d. The higher consistency with theoretical value

verifies the feasibility of the low-frequency estimation and
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result using 0.0 Hz in the Laplace domain and r changes from 0 to 10, b estimated result using 1.22 Hz and r changes from 0 to 10, c estimated
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progressive optimization Bayesian algorithm in a complex

Laplace domain.

5.2 2D synthetic tests

For further verification of the validity and lateral continuity

of the proposed method, the overthrust mode in Fig. 10a is

utilized to conduct 2D synthetic tests. The synthetic seis-

mic profile shown in Fig. 10c is also obtained from a time-

convolution model with a 20-Hz zero-phase Ricker wave-

let. The linear incremental model is shown in Fig. 10b, and

the lateral value is almost constant. The first step is the

estimation of low-frequency background information.

Figure 10d demonstrates the estimated result of conven-

tional Bayesian impedance inversion with 0 Hz as the input

frequency in the pure frequency domain. It is clear that the

conventional inversion method cannot estimate the low-

frequency information efficiently. The predicted result is

the same as the initial model because there is no input

response of 0 Hz (i.e., 0 Hz is equivalent to no input data).

Figure 11a–d displays the low-frequency estimated results

with different damping coefficients and frequency com-

ponents. If only zero frequency is considered as the input of

the mixed-domain inversion, only the real Laplace spec-

trum can be used to conduct the low-frequency estimation.

Figure 11a shows the predicted result in the pure Laplace

domain (only the real part) with the variation of Laplace

damping constants from 0 to 10. Comparing Fig. 11a with

Fig. 10d, it can be seen that the low-frequency estimation

result with Bayesian inversion in the complex Laplace

mixed-domain can restore the low-frequency background

better than the conventional seismic inversion method. We

can conclude that the introduction of the Laplace damping

coefficient in the inversion algorithm contributes to the
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recovery of the low-frequency response, which is consis-

tent with the theoretical analysis in Figs. 2 and 3.

To show the influence of frequency selection on the

proposed method, 1.22 Hz with real and imaginary spectra

of damped seismic data is taken into account, which can

yield more reliable low-frequency information, as shown in

Fig. 11b. Different Laplace damping constants can also

affect the penetration depth of the Laplace mixed-domain

impedance inversion, as shown in Fig. 11c–d. Figure 11c

shows that the predicted result of 1.22 Hz as damping

constants varies from 10 to 20. Figure 11d demonstrates

the predicted result with the variation of damping constants
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Fig. 14 Final estimated results with different frequency components. a 3.17–5.13 Hz, b 3.17–10.49 Hz, c 3.17–20.51 Hz and d 3.17–30.51 Hz
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Fig. 15 Estimated results with conventional Bayesian seismic inversion based on the linear incremental model. a 3.17–5.13 Hz,

b 3.17–10.49 Hz, c 3.17–20.51 Hz and d 3.17–30.51 Hz
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from 20 to 30. The estimated low-frequency results and

spectrum of the first trace from Fig. 11 are shown in

Figs. 12 and 13, respectively. It is clear that deeper back-

ground and low-frequency components of estimated

parameters can be recovered better with 1.22 Hz and r
ranging from 0 to 10, especially at the location of the black

arrows. There are two principles for the selection of low-

frequency components. First, the input low frequency of
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Fig. 16 Predicted results of the first trace corresponding to different frequency components extracted from profiles in Fig. 14. a 3.17–5.13 Hz,

b 3.17–10.49 Hz, c 3.17–20.51 Hz and d 3.17–30.51 Hz
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Laplace mixed inversion should always be limited to

0–5 Hz in the first stage. Besides, increasing the frequency

up to 5 Hz appropriately and inputting some indispensable

small attenuation coefficients can improve the reliability of

low-frequency estimation. Second, the selection of low

frequency should be combined with the multi-scale

decomposition of borehole-side seismic. And according to

the scale divisions of low-frequency components, we can

determine the specific low-frequency components required

for large-scale background of elastic parameters (Cao et al.

2009; Yang and Wu 2016).

The next step is frequency-domain inversion by multi-

component successive iterations, which means that the

previous estimated result is considered as the initial model

for the next inversion procedure. Besides, the low-fre-

quency result in Fig. 11b is the initial model of the first

inversion iteration. Figure 14a–d shows the final estimated

impedance profiles of 3.17–5.13, 3.17–10.49, 3.17–20.51

and 3.17–30.51 Hz. We can see that the lateral continuity

and low-frequency background of the model parameter can

be preserved successfully. However, the estimated results

based on the constraint of a linear incremental model with

conventional Bayesian seismic inversion are displayed in

Fig. 15, and there are many errors on the low-frequency

background of the final estimated impedance with con-

ventional seismic inversion, as can be seen especially at the

black ellipses. To evaluate the estimated result more

clearly, the impedance of the first trace from Figs. 14 and

15 is displayed in Figs. 16 and 17. As expected, we see that

the proposed multi-scale inversion can achieve more reli-

able and superior resolution results incorporating the esti-

mated low-frequency background from Laplace mixed-

domain inversion than conventional Bayesian inversion.
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Fig. 18 One real broadband seismic profile collected from the SL

exploration area in east of China
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Fig. 20 Estimated results of the low-frequency model with Laplace

mixed-domain inversion and different input parameters: a the input

frequency components are 0–2.93 Hz and the damping constants r
change from 0 to 5, b the input frequency components are 0–5.37 Hz

and the damping constants r change from 4 to 10, and c the input

frequency components are 0–5.37 Hz and the damping constants r
change from 0 to 5
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6 Field data results

The proposed method was illustrated with 1D and 2D

synthetic tests to verify the feasibility and lateral continuity

of inversion results. However, the real seismic profile is

always contaminated by random noise, especially for the

low-frequency components. To demonstrate the practica-

bility of our method, one real broadband case from the east

of China is studied in this paper. One real broadband

seismic profile collected from the SL oilfield is displayed in

Fig. 18, and the band of effective frequency is

3.0–78.0 Hz.

Figure 19 shows the initial linear model established by

well interpolation, and there is no variation along the

horizontal direction. This linear increment mode is the

input constraint of our Laplace mixed-domain inversion.

Figure 20a–c illustrates the estimated results of the ultra-

low-frequency information incorporating different fre-

quency components and Laplace damping constants.

Figure 20a–c shows the low-frequency estimation results

using 0–2.93 Hz and the damping constants r from 0 to

5, 0–5.37 Hz and damping constants r from 4 to 10, 0–

5.37 Hz and damping constants r from 0 to 5, respec-

tively. Comparing the low-frequency estimation results in

Fig. 20, we can see that the low-frequency result in

Fig. 20c behaves better than in Fig. 20a, b, and if input

frequency components are insufficient and Laplace

coefficients have a deficiency of low constants, it

becomes difficult to recover the low-frequency structure

accurately.

As such, the predicted result in Fig. 20c is considered as

the initial model of next multi-scale inversion in the fre-

quency domain. According to the effective frequency band

of seismic data of 3.0–78.0 Hz, the selections of frequency

ranges in multi-scale inversion are 5.0–12.0, 12.0–32.0,

32.0–60.0 and 60.0–75.0 Hz. To demonstrate the impor-

tance of low frequency in seismic inversion, the final

estimated results are displayed in Fig. 21a–d with different

initial models and different inversion methods. Under the

linear model constraint shown in Fig. 19, the estimated
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Fig. 21 The final estimated results of multi-scale inversion in frequency domain: a estimated result with conventional frequency-domain

Bayesian inversion and initial linear model constraint in Fig. 19, b estimated impedance with multi-scale Bayesian inversion in the frequency

domain and initial linear model constraint in Fig. 19, c estimated result with conventional frequency-domain Bayesian inversion and low-

frequency estimation constraint in Fig. 20c, d estimated result with multi-scale Bayesian inversion in the frequency domain and low-frequency

estimation constraint in Fig. 20c
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results with conventional Bayesian inversion and multi-

scale Bayesian inversion in the frequency domain are

shown in Fig. 21a, b. If the low-frequency result in

Fig. 20c is taken as the background constraint of seismic

inversion, the estimated results with conventional Bayesian

inversion and the proposed multi-scale Bayesian inversion

are shown in Fig. 21c, d, respectively. For the resolution of

the seismic inversion algorithm, we can see from Fig. 21a,

b that multi-scale Bayesian inversion in the frequency

domain can achieve better resolution than conventional

Bayesian inversion, specifically shown at red arrows and

black ellipses. Similarly, the same conclusion can be

deduced from Fig. 21c, d. Most of all, the final impedance

result in Fig. 21d can discriminate the four lithologic

reservoirs more obviously at the four black arrows than the

estimated results with conventional inversion method in

Fig. 21a, c.

Besides, the other major differences occurred in the

black ellipses that the phenomena of relative low impe-

dance in Fig. 21c, d disappeared in Fig. 21a, b, which can

be explained that the initial linear model is insufficient for

recovering accurate information of the underground model.

In Fig. 22, we can see clearly that the borehole-side results

at CDP 220 would have a better estimation with the low-

frequency constraint than the conventional multi-scale

inversion, especially at the three black arrows. Thus, this

adequate proof illustrates that the proposed Bayesian multi-

scale inversion in Laplace mixed domains not only

enhances the low-frequency reliability, but also improves

the resolution of the inversion.

7 Conclusions

To remove the model dependence problem of seismic

inversion, the novel Bayesian multi-scale inversion in the

Laplace mixed domains is elaborated to enhance the ultra-

low-frequency information of subsurface models. The

object function of inversion can be established to improve

the stability, which relies on the Bayesian system and the

linear increment model. Furthermore, the feasibility of

Laplace mixed-domain impedance inversion is demon-

strated by 1-D synthetic tests under different noise levels.

The tests show that our proposed method is capable of

obtaining stable results with S/N[ 5. In addition, appli-

cations on the 2-D overthrust model illustrate the lateral

continuity and reliability of the inversion results. In com-

parison with the inversion results of different input

parameters, we found that low Laplace damping constants

are essential to excavate the low-frequency background of

deeper subsurface structures. Besides, the input frequency

components (less than 5 Hz) of the damped wave field

should be raised appropriately to enhance the input spec-

trum energy. One field case from the east of China

demonstrates the practicability and potential of Laplace–

Fourier impedance inversion. By analyzing the resolution

characteristics of different inversion methods, the results

illustrate that multi-scale inversion in frequency domain

can achieve superior resolution with the help of low-fre-

quency estimation results, as predicted by the Laplace

mixed-domain inversion.
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