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Hybrid connectionist model determines CO2–oil swelling factor
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Abstract
In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil

recovery (EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process takes place. This

phenomenon results in the oil swelling, which depends on the temperature, pressure, and composition of the oil. The

residual oil saturation in a CO2-based EOR process is inversely proportional to the oil swelling factor. Hence, it is

important to estimate this influential parameter with high precision. The current study suggests the predictive model based

on the least-squares support vector machine (LS-SVM) to calculate the CO2–oil swelling factor. A genetic algorithm is

used to optimize hyperparameters (c and r2) of the LS-SVM model. This model showed a high coefficient of determination

(R2 = 0.9953) and a low value for the mean-squared error (MSE = 0.0003) based on the available experimental data while

estimating the CO2–oil swelling factor. It was found that LS-SVM is a straightforward and accurate method to determine

the CO2–oil swelling factor with negligible uncertainty. This method can be incorporated in commercial reservoir sim-

ulators to include the effect of the CO2–oil swelling factor when adequate experimental data are not available.
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1 Introduction

Due to the growing concern about global warming and the

ongoing demand for energy resources, CO2-based

enhanced oil recovery (EOR) methods have been attracting

both the scientific and industrial interests. When CO2 is

injected into depleted oil reservoirs, different mechanisms

contribute to oil production (Farajzadeh et al. 2009; Godec

et al. 2013; Kuznetsova and Kvamme 2002; Ma et al.

2016). These mechanisms depend on the operational con-

ditions and oil composition. The most common oil pro-

duction mechanisms in CO2-based EOR methods are oil

viscosity reduction, oil swelling, condensation, vaporiza-

tion, and interfacial tension (IFT) reduction (Abedini and

Torabi 2014; Ahmadi et al. 2015; Bachu 2016; Czarnota

et al. 2017; Farajzadeh et al. 2009; Li et al. 2013b, 2015;

Shelton et al. 2016; Yang et al. 2012). Reducing the level

of CO2 emissions in the atmosphere by the use of geo-

logical CO2 storage in depleted oil reservoirs as well as its

role in the oil recovery processes highlights the importance

of further studies of CO2 injection operations and the

corresponding PVT behavior (Ahmadi et al. 2016a, b;

Bachu 2016; Davis et al. 2010; Jamali and Ettehadtavakkol

2017; Kim and Santamarina 2014; Li et al. 2015; Li and

Fan 2015; Liu and Wilcox 2012; Luo et al. 2013; Orr et al.

1982; Sell et al. 2012; Shelton et al. 2016; Yang et al. 2012;

Yu et al. 2015; zeinali Hasanvand et al. 2013).

According to Rojas and Ali (1986) and Tunio et al.

(2011), there are four effective mechanisms contributing to

oil production using CO2-enhanced oil recovery strategies

including (1) oil viscosity reduction, (2) oil swelling, (3) oil

and water density reduction, and (4) vaporization and

extraction of a portion of oil. It is clear that when CO2 is

dissolved in the oil phase, the oil swells and its viscosity

reduces. Hence, the variation in the swelling factor allows

CO2 to substantially expand oil, which eventually improves

the oil displacement and recovery (Perera et al. 2016). The

immiscible CO2–EOR technique is dominated by the oil

swelling phenomenon and oil viscosity reduction. The

degree of oil swelling and oil viscosity change are
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dependent on different parameters including CO2 solubility

in oil, pressure, temperature, and API degree of oil sam-

ples. CO2 solubility is generally considered as the most

significant factor that influences the efficiency of CO2-

based EOR techniques, particularly under low-pressure

conditions. For instance, this mechanism was confirmed

through implementation of pilot-scale tests in Turkey

(Bagci 2007; Issever and Topkaya 1998; Perera et al.

2016).

Experimental investigations and numerical reservoir

simulations on binary systems including hydrocarbons and

CO2 were conducted to improve the hydrocarbon recovery

(Bachu 2016; Bessières et al. 2001; Diep et al. 1998; Do

and Pinczewski 1991; Fukai et al. 2016; Jamali and Ette-

hadtavakkol 2017; Kim and Santamarina 2014; Kiran et al.

1996; Kwak and Kim 2017; Li et al. 2013a, 2015; Li and

Fan 2015; Luo et al. 2007, 2013; Lv et al. 2015; Mulliken

and Sandler 1980; Shelton et al. 2016; Yang and Gu 2005).

Most of these studies investigated the oil swelling effect

primarily as a result of CO2 dissolution in the light frac-

tions of oil. Bessières et al. (2001) and Kiran et al. (1996)

examined the variation in the volume of several CO2–

alkane systems. They concluded that the excess volume

follows a sigmoidal change with the composition/concen-

tration of CO2. The oil swelling effect was determined by

the volume swelling coefficient defined by Yang and Gu

(2005) and Yang et al. (2012). These investigations reveal

that with an increase in the pressure (and consequently the

solubility of CO2 in oil), the volume swelling coefficient of

the oil phase increases. Yang et al. (2012) studied the

behavior of oil swelling through qualitative analysis of the

dispersion of CO2 in oil. Experiments at reservoir condi-

tions (high temperature, high pressure, and live oil com-

position) are, however, challenging. A swelling/extraction

experiment is a well-known technique to record composi-

tion and reservoir fluid volume changes due to CO2 dis-

solution in reservoir oil at a given temperature. Swelling

experiments are typically carried out in a high-pressure-

resistant visual PVT cell with a constant volume, which is

first filled with a specific volume of dead or stock-tank oil

(Tsau et al. 2010). Depending on the number of steps

required to reach the desired pressure, CO2 is injected

gradually to achieve a proper pressure increase. The main

assumption of the swelling experiment is neglecting the

vaporization of intermediate components of oil into the

CO2 phase until reaching the minimum miscibility pres-

sure. The oil volume change owing to the swelling effect at

each pressure step is recorded and the amount of CO2

dissolved in the oil is measured. An increase in the pressure

results in vaporization of a part of oil components, and the

oil-rich phase shrinks. It should be noted that the phase

behavior of the CO2 and oil system can be visually detected

using a swelling test. Various parameters including the

bubble point pressure, solubility of CO2, and swelling

factor are usually employed to tune the equation of state

(EOS) for the phase behavior modeling purposes (Tsau

et al. 2010). Different sizes of visual PVT cells can be

utilized for swelling experiments; these cells include 140

mL (Hand and Pinczewski 1990), 170 mL (Harmon and

Grigg 1988), 190 mL (Orr et al. 1981), and 450 mL. Holm

and Josendal (1982) recommended that a volume of 30% of

the cell volume should be considered as the sample size for

the swelling test. Therefore, the proper volume range is

40–100 mL of the crude oil sample to perform the swelling

tests using the corresponding PVT cells. The most impor-

tant issue with the sampling size is the time needed to

achieve an equilibrium condition after each pressure

change. The mixing process of large volumes of gas and oil

at a given pressure seems to be another major concern in

such a swelling test.

Thomas and Monger-McClure (1991) studied the effect

of the CO2–oil swelling factor on oil recovery from light

oil reservoirs using cyclic CO2 injection. They correlated

the oil incremental value to the CO2–oil swelling factor.

Based on the results, an increase in the CO2–oil swelling

factor led to an increase in the amount of produced oil

(Thomas and Monger-McClure 1991).

Dong et al. (2001) determined the CO2–oil swelling

factor by comparing the measured densities of the dead oil

sample, reservoir live oil, and mixture of CO2 and reservoir

oil. Ghedan (2009) claimed that at high CO2 concentrations

the CO2–oil swelling factor will be 1.25–1.6; in most of the

cases, the CO2 content should be greater than 50%. Ning

et al. (2011) carried out several multiple contact experi-

ments (MCEs) to figure out the contribution of oil swelling

as well as reduction in oil viscosity to the oil production

from Alaska North Slope viscous oil. Heidaryan and

Moghadasi (2012) investigated the influence of swelling

and viscosity reduction on oil production using both

experimental and theoretical methods. Based on their

research outcome, they concluded that the optimum value

of the CO2–oil swelling factor should be 1.7 to reach the

maximum oil production from the reservoir (Heidaryan and

Moghadasi 2012).

Through a systematic research work, Sugai et al. (2014)

experimentally determined oil swelling factors in porous

media using two different types of micromodels (e.g., fine

beads and coarse beads). They investigated the effect of

interfacial area on the oil swelling and CO2–oil swelling

factors. They used a digital camera to take images to

determine the amount of oil trapped in the micromodels at

different times. They obtained the swelling factor from the

tests after a constant saturation degree in the porous sys-

tems was confirmed. In addition, they employed an oil–

CO2 simple contact model in a visual cell to determine

CO2–oil swelling factors at different pressures via utilizing
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a digital camera and an image processing method. They

compared CO2–oil swelling factors from both types of the

experiments to decide what other parameters should be

taken into account to further improve the accuracy and

reliability of the existing approach. According to the

experimental results, they concluded that an increase in the

interfacial area results in increasing the oil swelling. In

other words, the swelling factor in the case of the fine bead

micromodel was larger than that in the coarse bead

micromodel due to an increase in the interfacial area (Sugai

et al. 2014). Or et al. (2016) experimentally investigated

the contribution of CO2–oil swelling and viscosity reduc-

tion to the oil recovery through implementation of CO2 gas

foaming in heavy oil reservoirs. It was concluded that CO2

foam swelling increases with an increase in the pressure

drawdown in a well. Also, further swelling of foamy oil

can mobilize the residual oil towards the producer well,

especially in the immobilized zone (Or et al. 2016).

Habibi et al. (2017) carried out experiments on CO2–oil

systems to determine the interaction between CO2 and oil

in tight rock samples. They conducted constant composi-

tion experiments (CCEs) to determine the CO2–oil swelling

factor and other measurable fluid and thermodynamic

characteristics. Also, they performed CO2 cyclic injection

experiments to determine the amount of oil recovery. The

CO2-oil swelling factor in their study was defined as ‘‘the

volume of the oil after CO2 injection divided by the volume

of the oil before CO2 injection into the cell.’’ In their

experiments, increasing CO2 concentration from 48.4% to

71.1% resulted in an increase in the CO2–oil swelling

factor from 1.21 to 1.39, respectively. According to their

experimental data, the oil swelling and expansion, CO2

dissolution into the oil, and CO2 diffusion into core sam-

ples are the main mechanisms contributing to the oil pro-

duction (Habibi et al. 2017).

There are a few studies that have developed a reliable

correlation or a deterministic model for predicting CO2–oil

swelling factors. Welker (1963) proposed a very simple

correlation to estimate the CO2–oil swelling factor. Their

correlation suffers from the lack of applicability, particu-

larly for light and intermediate crude oil samples. Simon

and Graue (1965) developed a graphical method to deter-

mine the oil swelling factor. Their method was developed

based on limited data samples from heavy crudes. Chung

et al. (1988) proposed a simple correlation to estimate the

oil swelling factor for CO2/heavy crude oil systems. Emera

and Sarma (2006) developed a correlation to forecast the

oil swelling factor for both light and heavy crude oils.

However, they utilized a limited number of data points

while developing their correlation. Table 1 demonstrates a

summary of correlations and models to calculate the CO2–

oil swelling factor.

Vapnik (1998) proposed the support vector machine

(SVM) as an extended version of conventional artificial

intelligent tools. SVM is a practical method which has been

widely used for classification, regression, and pattern

recognition (Cortes and Vapnik 1995). The principle idea

of SVM is to transform the nonlinear input space to a

higher-dimensional feature space to find a hyperplane via

nonlinear mapping (Baylar et al. 2009; Cortes and Vapnik

1995). It is based on the statistical learning theory (SLT)

and structural risk minimization (SRM) concepts (Me-

hdizadeh and Movagharnejad 2011). SVM tools obtain the

solution via solving the quadratic programming (QP); the

SVM always results in a global optimum solution, unlike

other regression techniques such as neural networks, as the

QP problem is a convex function (Vong et al. 2006).

However, it suffers from computational burden.

The LS-SVM has not been used to model the CO2–oil

swelling factor in the literature, to the best of our knowl-

edge. This study employs the least-squares support vector

machine (LS-SVM) paradigm, as a hybridized version of

the original SVM method, to calculate the CO2–oil swel-

ling factor. A genetic algorithm (GA) is utilized as an

optimization technique to optimize the hyperparameters of

the LS-SVM model. Through the comprehensive literature

review, extensive experimental data are used for model

development and validation.

2 Theory

2.1 Least-squares support vector machine (LS-
SVM)

Suykens and Vandewalle (1999) proposed the least-squares

support vector machine (LS-SVM) model as an alternate

formulation of the SVM regression. The LS-SVM enjoys

similar advantages as SVM. Also, it requires solving only a

set of linear equations instead of a quadratic programming

(QP) problem, which is computationally less demanding.

Given the training set fxk; ykg, k ¼ 1; 2; . . .;N, where
xk 2 Rn is the kth input data in the input space and yk 2 R

represent the output variable for the given input variable

(i.e., xk) and N refers to the number of the training samples.

Using a nonlinear function uð�Þ, which maps the training

set in the input space to a high (and possibly infinite)-

dimensional space, the following regression model is

constructed:

y ¼ xTuðxÞ þ b with x 2 Rn; b 2 R;
uð�Þ 2 Rn ! Rnh ; nh ! 1 ð1Þ

in which, x denotes the weight vector and b signifies a bias

term. Note that the superscript ‘‘n’’ refers to the dimension

of data space and ‘‘nh’’ is attributed to the higher-
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dimensional feature space (Vong et al. 2006). When the

LS-SVM is applied, a new optimization case will be gen-

erated. The implemented strategy deals with the following

optimization problem:

min

x; b; e
J x; eð Þ ¼ 1

2
xTxþ 1

2
c
XN

k¼1

e2k ð2Þ

subject to the following equality constraint:

yk ¼ xTu xkð Þ þ bþ ek k ¼ 1; 2; . . .;N ð3Þ

where c represents the regularization parameter, which

compromises between the model’s complexity and the

training error (Mehdizadeh and Movagharnejad 2011), and

ek is the regression error. The Lagrangian is constructed as

follows in order to find the solution of the un-constrained

optimization problem:

L x; b; e; að Þ ¼ J x; eð Þ �
XN

k¼1

ak xT/ xkð Þ þ bþ ek � yk
� �

ð4Þ

where ak stands for the Lagrange multiplier or support

value. To attain the solution of Eq. (4), differentiating the

equation with respect to x; b; ek; ak gives:

oL x; b; e; að Þ
ox

¼ 0 ! x ¼
XN

k¼1

aku xkð Þ ð5Þ

oL x; b; e; að Þ
ob

¼ 0 !
XN

k¼1

ak ¼ 0 ð6Þ

oL x; b; e; að Þ
oek

¼ 0 ! ak ¼ cek; k ¼ 1; . . .;N ð7Þ

oL x; b; e; að Þ
oak

¼ 0 ! yk ¼ u xkð ÞxT þ bþ ek;

k ¼ 1; 2; . . .;N
ð8Þ

After removing the variables x and e, one acquires the

Karush–Kuhn–Tucker system as follows:

0 1Tt
1t Xþ c�1I

� �
b

a

� �
¼ 0

y

� �
ð9Þ

In Eq. (9), y ¼ y1. . .yN½ �T, 1N ¼ 1. . .1½ �T,
a ¼ a1. . .aN½ �T, I is an identity matrix, and

Xkl ¼ u xkð ÞT�u xlð Þ ¼ K xk; xlð Þ8k; l ¼ 1; 2; . . .;N.

K xk; xlð Þ is the kernel function and must meet Mercer’s

condition (Li et al. 2008). Three typical choices for the

kernel function are:

• K x; xkð Þ ¼ xTk x

• K x; xkð Þ ¼ ðsþ xTk xÞ
d

• K x; xkð Þ ¼ exp �x� x2k
�
r2

� �

The resulting formulation of LS-SVM model for func-

tion estimation becomes:

y xð Þ ¼
XN

k¼1

akK x; xkð Þ þ b ð10Þ

Table 1 Correlations and models for calculating CO2–oil swelling factor (SF)

Correlation Considerations/limitations References

SF ¼ 1:0þ 0:35 solubility scf=bblð Þð Þ
1000

Developed for oils at T = 80 �F and 20� API\ oil

gravity\ 40� API
Welker (1963)

Graphical correlation: This model is a function of CO2 solubility,

oil molecular weight (MW), and oil density at 60 �F.
Not recommended for high-pressure ranges

P\ 2300 psi

110 �F\T\ 250 �F
12� API\ oil gravity\ 33� API

Simon and Graue

(1965)

SF ¼ ql
q�S

S = CO2 solubility, g/cm
3

q = oil density without CO2 at the same temperature

and 1 atm pressure, g/cm3

ql = solution density, g/cm3

16.89� API oil gravity
75 �F\ T\ 200 �F
14.7 psi\P\ 5014.7 psi

Chung et al. (1988)

For MW[ 300

SF ¼ 1þ 0:3302Y � 0:8417Y2 þ 1:5804Y3 � 1:074Y4

� 0:0318Y5 þ 0:21755Y6

For MW\ 300

SF ¼ 1þ 0:48411Y � 0:9928Y2 þ 1:6019Y3 � 1:2773Y4

þ 0:48267Y5 � 0:06671Y6

Y ¼ 1000� c
MW

� �
� solðmole fractionÞ2

	 
exp
c

MWð Þ� �

23 �C\T\ 121.1 �C
0.1 MPa\P\ 27.4 MPa

12� API\ oil gravity\ 37� API

Emera and Sarma

(2006)
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where s refers to the slope, d stands for the polynomial

degree, r2 is the kernel sample variance, and b; að Þ repre-
sents the solution to the linear system of equations shown

in Eq. (9).

In the literature, some comprehensive descriptions of the

SVM are available (Burges 1998; Suykens and Vandewalle

1999; Vapnik 1998). The theory of LS-SVM is systemat-

ically explained by a number of researchers (Suykens and

Vandewalle 1999; Suykens et al. 2002). Also, Liu et al.

(2005a, b, 2007) provide a detailed comparison of the SVM

and LS-SVM methods.

2.2 Genetic algorithm

Genetic algorithm (GA) is a stochastic method to solve

optimization problems involving a fitness criterion, sur-

vival of the fittest, and different genetic operators, includ-

ing crossover and mutation to satisfy a pre-defined fitness

quantity, resembling the Darwinian evolution by natural

selection (Niazi et al. 2008). The significant feature of the

GAs and the other similar evolutionary algorithms is that

they are derivative-free. The stochastic nature of the

algorithm with dynamic evaluation of the fitness function

brings a powerful systematic random search engine. This

approach is an alternative to derivative-based methods to

deal with problems in which the fitness function is non-

differentiable, discontinuous, highly nonlinear, with mul-

tiple local optima, or stochastic (Reihanian et al. 2011).

3 Data gathering

Extensive data points for the CO2–oil swelling factor have

been extracted from the literature (Abedini et al. 2014;

Chung et al. 1988; Mosavat et al. 2014; Tsau et al. 2010;

Wei et al. 2017). The statistical parameters for these data

samples are reported in Table 2. As it is clear from Table 2,

the data samples contain a broad range of crude oils from

heavy oils to extra-light oil samples. The collected data

also cover a wide range of temperature, pressure, and CO2

solubility.

4 Methodology

In this paper, four parameters are considered as input

variables to the LS-SVM model. These parameters are (1)

CO2 concentration in oil (mole fraction of CO2), (2)

pressure, (3) temperature, and (4) the oil API degree. The

output variable from the LS-SVM model is the CO2–oil

swelling factor.

A total number of 225 data samples were extracted from

the literature to develop our LS-SVM model to estimate the

CO2–oil swelling factor. The data samples were divided

into two data sets. The first set (also called the training data

series) contained 80% of the total data points to construct

the LS-SVM model. The second set of data contained 20%

of the entire data points employed to validate the LS-SVM

model.

The radial basis function (RBF) was selected because of

its promising performance and simplicity as it only con-

tains one adjustable parameter and has been successfully

applied (Ahmadi 2015; Keerthi and Lin 2003; Reihanian

et al. 2011). In the model development using LS-SVM with

the RBF kernel function, according to Eqs. (9) and (10),

the optimization of c and r2 is a crucial task. It was con-

firmed that the optimal magnitudes of these two vital

parameters are required to better design a LS-SVM model

towards greater precision and generalization (Vong et al.

2006).

According to Ahmadi and Ebadi (2014), Ahmadi et al.

(2014a, b), and Fazeli et al. (2013), the application of non-

population-based optimization methods such as simulated

annealing and Levenberg–Marquardt (LM) is not recom-

mended due to their drawback in handling the nonlinearity

in SVM methods. GA was applied in this research study to

optimize the parameters of LS-SVM (c and r2) and the

Table 2 Statistical parameters of the data points (Abedini et al. 2014;

Chung et al. 1988; Mosavat et al. 2014; Tsau et al. 2010; Wei et al.

2017) used for developing LS-SVM model

Parameter Minimum Maximum Average

Oil gravity, API degrees 16.8 46.11 32.8

Temperature T, �F 68 200 109.5

Pressure P, psi 14.7 4100 1187.6

CO2 concentration (mole

fraction)

0 0.86 0.525

Mutation

Crossover

SelectionR
ep

ro
du

ct
io

n 
pr

oc
es

s

New population

Encoding and initializing
population

Train LS-SVM

GA fitness evaluation

CriterionNo

Yes

 Improved parameters:    and    2γ σ

Fig. 1 Flowchart of hyperparameters selection based on GA
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average absolute relative deviation (AARD). The

flowchart for the hyperparameter optimization using a GA

algorithm is depicted in Fig. 1. The optimization procedure

was repeated several times to attain the most plausible

solution corresponding to the global optimum of the fitness

function. As a result, values of r2 and c were obtained:

0.268829 and 33.4091, respectively.

5 Results and discussion

This study presents a new deterministic approach to obtain

the swelling factor with higher accuracy. The oil swelling

factor for the system of CO2 and light oil versus pressure at

different temperatures is demonstrated in Fig. 2. The

variations of the oil swelling factor with pressure at various

temperatures are shown in Figs. 3 and 4 for intermediate

and heavy oil samples, respectively.

Mean-squared error (MSE) and coefficient of determi-

nation (R2) are employed in this statistical analysis as the

performance evaluation criteria for the LS-SVM model in

estimating the CO2–oil swelling factor. The expressions to

obtain MSE and R2 are given below:

MSE ¼ 1

N

XN

i¼1

yactuali � y
predicted
i

	 
2

ð11Þ

R2 ¼ 1�
PN

i¼1 yactuali � y
predicted
i

	 
2

PN
i¼1 yactuali � yactual

	 
2
ð12Þ

where N represents the number of data points, yactuali

denotes the ith observation (real data), y
predicted
i is the ith

output from the model, and yactual signifies the average

magnitudes of observations. The values of MSE and R2 are

tabulated in Table 3 for training, testing, and overall data

stages. The GA-LS-SVM predictions are satisfactory if R2

and MSE are close to 1 and 0, respectively. As can be seen

in Table 3, these criteria were fulfilled.
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CO2-light oil system
(46.1° API oil gravity)

Fig. 2 Swelling factor of CO2–light oil system versus pressure at

various temperatures (Abedini et al. 2014; Chung et al. 1988;

Mosavat et al. 2014; Tsau et al. 2010; Wei et al. 2017), light oil with

an API gravity of 46.11�
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Fig. 3 Variations of swelling factor of CO2–intermediate oil system with pressure and temperature (Abedini et al. 2014; Chung et al. 1988;

Mosavat et al. 2014; Tsau et al. 2010; Wei et al. 2017): a An oil with an API gravity of 33.3� and b An oil with an API gravity of 29.4�
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Figure 5 depicts a comparison between the experimental

data for the CO2–oil swelling factor and the values esti-

mated by the LS-SVM. Figure 5a shows a comparison

between the estimated and experimental data in the training

phase. Figure 5b demonstrates a comparison between the

actual and predicted CO2–oil swelling factor behavior

against the data index in the testing phase. As illustrated in

Fig. 5, there is an excellent match between the oil swelling

factor estimated from the LS-SVM method and those from

experiments.

Figure 6 illustrates the regression plot between the

CO2–oil swelling factor determined by LS-SVM model and

the experimental data points. Figure 6a depicts the scatter

plot for results obtained in the training phase of the LS-

SVM model. As shown in Fig. 6a, the linear fit to data

y = 0.9892x ? 0.0103 has a high correlation of coefficient

(R2 = 0.9944), meaning that the training phase of the LS-

SVM model is performed very well. The results achieved

over the testing (validation) phase are displayed in the form

of a scatter plot in Fig. 6b, based on the developed LS-

SVM tool. As depicted in Fig. 6b, the high value of the

correlation coefficient (R2 = 0.9931) between the predicted

and experimental oil swelling factor shows the superior

performance of the LS-SVM model. Figure 6c illustrates

the regression plot for the whole data set. The predicted

swelling factor values are found to be scattered around the

y = x line, indicating that the LS-SVM model that is

optimized by GA predicts the swelling factor very well.

Figure 7 represents a comparison between the CO2–oil

swelling factor determined by the LS-SVM model and the

real data versus pressure at different temperatures. As

shown in Fig. 7, the LS-SVM model follows the trend of

experimental data points for an immediate oil of 29.4� API
gravity. As the experimental data points show, at a constant

pressure, the magnitude of swelling factor lowers with

increasing the temperature. This behavior was confirmed

by the LS-SVM model. This implies that the proposed LS-

SVM model for determination of CO2–oil swelling factor is

valid and acceptable in terms of technical and conceptual

prospects.

Figure 8 shows the relative error distribution for both

the training and testing phases in developing the LS-SVM

model. According to Fig. 8, the maximum relative error

between the outputs of the LS-SVM model and the

experimental CO2–oil swelling factors is within ± 5% for

the training phase. Also, the maximum relative error

between the CO2–oil swelling factor calculated by the LS-

SVM model and experimental data points is within ± 15%

for the testing phase.

Simon and Graue (1965) proposed a graphical method

for determination of the CO2–oil swelling factor. In this

method, the minimum value of the CO2–oil swelling factor

is equal to 1 and the maximum value is equal to 1.38. Also,

the Simon and Graue technique offers acceptable values for

swelling factor within the limited ranges of API, temper-

ature, and CO2 solubility (Table 1). Hence, this graphical

method is not able to provide reliable outputs over wide

ranges of the input parameters. Figure 9 demonstrates the

scatter plot of the results obtained by the graphical method

proposed by Simon and Graue (1965) versus the experi-

mental values of the CO2–oil swelling factor. As it is clear

from Fig. 9, the linear fit line has a low correlation coef-

ficient (R2). Also, the linear fit has a negative slope, con-

cluding that the value of oil swelling factor at the lower

boundary is overestimated.
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different temperatures (Abedini et al. 2014; Chung et al. 1988;

Mosavat et al. 2014; Tsau et al. 2010; Wei et al. 2017), heavy oil with

an API gravity of 16.9�

Table 3 Performance of GA-

LS-SVM method with

optimized parameters for

prediction of swelling factor in

terms of statistical parameters

Statistical parameters Training data Testing data Overall data

MSE 0.00016 0.0009 0.0003

R2 0.9944 0.9931 0.9953

Average absolute relative deviation (AARD)a 0.7918 4.549 1.5433

Maximum absolute error (MAE) 5.3403 5.4205 5.4205

aAARD ¼
P

yactual�ypredicted

yactual










n
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Figure 10 presents a comparison between the objective

function values calculated by Emera and Sarma (2006)

correlation and the real data of the CO2–oil swelling factor.

Based on Figs. 9 and 10, the linear fit of the data obtained

by Emera and Sarma (2006) correlation has a higher value

of correlation of coefficient in comparison with the method

proposed by Simon and Graue (1965). This is because the

correlation introduced by Emera and Sarma (2006) was

developed using a wider range of data points. However,

this correlation still suffers from the common drawback for

the most empirical correlations which can offer reliable

outputs within limited ranges of input parameters

(Table 1). As illustrated in Fig. 10, the Emera and Sarma

(2006) correlation underestimates the magnitudes of the

swelling factor in the middle range of the data.

Table 4 reports the maximum absolute error (MAE) and

the average absolute relative deviation (AARD) for three

different models based on the experimental data available

for the CO2–oil swelling factor. The MAE of the LS-SVM

model is lower, compared to the Emera and Sarma (2006)

and Simon and Graue (1965) methods. This superior per-

formance is attributed to the high predictive capability of

the developed tool, proper procedure for the training phase,

and careful selection of data samples. Using a broader

range of data samples enables us to develop a more precise

and reliable technique to calculate the CO2–oil swelling

factor.

It should be noted the correlation proposed by Emera

and Sarma (2006) is currently being used in the Computer

Modelling Group (CMG) reservoir simulator package. It

suggests that the LS-SVM strategy introduced in this

research work can be included in the commercial reservoir

simulators for various applications such as simulation of

gas injection processes in the petroleum industry.

Appropriate statistical methods for identifying the

applicability of the model are required for outlier detection.

Recognition of outliers is to determine which data points

may differ from the bulk of the data present in the data

bank under study (Gramatica 2007; Rousseeuw and Leroy

2005). For examining the capability of the LS-SVM model,

the approach of Leverage Value Statistics has been carried

out (Goodall 1993; Gramatica 2007). A graphical method

(William plot) is used for outlier determination in this

research work. The William plot depicts the standardized

residual of the outputs versus corresponding hat (H) values.

Further details on the mathematical backgrounds and

computational procedure of the William method can be

found in the literature (Goodall 1993; Gramatica 2007;

Rousseeuw and Leroy 2005). Figure 11 represents the

William plot for the results obtained from the LS-SVM

model while estimating the CO2–oil swelling factor. Hav-

ing the majority of data points in the ranges of

0�H� 0:055 and �3�R� 3 reveals that the LS-SVM

model is convincing and reliable in terms of statistical

criteria. In addition, it conveys the message that the entire

data are located within the acceptable domains, again

confirming the LS-SVM model offers accurate and satis-

factory predictions.

Analysis of variance (ANOVA) was used to determine

the relative importance of all the input parameters which

are incorporated in this modeling strategy to develop the

connectionist tool for estimation of CO2–oil swelling fac-

tor. The relative significance of the independent variables

including API oil gravity, temperature, pressure, and CO2

concentration (mole fraction) on the swelling factor is

demonstrated in Fig. 12. As it is clear from the results, the

most significant independent parameter is the API degree

of the oil samples, temperature holds the second rank, and

the CO2 concentration exhibits the least impact on the

target parameter.

To show the effectiveness of the developed model for a

real case, we consider sample AC with the composition

reported in Table 5. A swelling test was performed on this

sample with different mole fractions of CO2. As mentioned
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previously, one of the methods for swelling factor deter-

mination is using EOSs. Thus, the Peng–Robinson EOS as

a well-known and robust EOS was utilized to calculate the

CO2–oil swelling factor of sample AC. Figure 13 displays

a comparison between the outputs obtained from the LS-

SVM model, Peng–Robinson EOS, and experimental data

from a swelling test performed on sample AC. As illus-

trated in Fig. 13, both LS-SVM and Peng–Robinson EOS

predict the CO2–oil swelling factor with reasonable accu-

racy. In this case, the LS-SVM underestimates swelling

factor; however, using Peng–Robinson EOS results in

overestimating the swelling factor.

The residual oil saturation, which directly corresponds

to the oil recovery factor is inversely proportional to the

swelling factor in CO2-based EOR processes. Hence, an

accurate magnitude of the CO2–oil swelling factor increa-

ses the precision and reliability of the modeling and sim-

ulation studies, which are conducted to capture the main

recovery mechanisms and to determine the production
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performance of CO2–EOR strategies for both heavy oil and

conventional oil reserves. The present study introduces an

accurate and simple-to-use approach to calculate the CO2–

oil swelling factor, which is an influential parameter

throughout CO2 injection operations. The precise value of

this parameter helps engineers and researchers obtain the

residual oil saturation and oil and water relative perme-

ability curves with greater reliability for various oil reser-

voir development stages (e.g., optimization of operational

conditions and economic analysis).

6 Conclusions

We used the least-squares support vector machine (LS-

SVM) to estimate the CO2–oil swelling factor where the

extensive experimental data were utilized. The genetic

algorithm (GA) was employed to tune the model parame-

ters. The following conclusions based on the research

outputs are made:

• The feasibility and performance of the LS-SVM

technique with a RBF kernel function were evaluated

using the available experimental data on CO2–oil

swelling factors.
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Table 4 Maximum absolute error and average absolute relative

deviation to indicate the difference between the predicted values and

experimental data

Method Maximum absolute

error

Average absolute

relative deviation

LS-SVM model 5.42 1.5433

Emera and Sarma method 91.2154 66.92

Simon and Graue method 125.70 56.87
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• GA was implemented to determine the optimal extent

of the model parameters; namely, regularization factor

and variance used in the kernel function which were

obtained to be: c = 33.4091 and r2 = 0.268829,

respectively.

• The hybridized GA-LS-SVM provided excellent results

in predicting the CO2–oil swelling factor. The

performance of the hybrid model was evaluated by

R2 = 0.9953 and MSE = 0.0003, which reveal high

accuracy and reliability of the developed model.

• The relative importance of input variables including

API gravity of oil, temperature, pressure, and CO2

concentration (mole fraction) on the CO2–oil swelling

factor was investigated using a common statistical

approach, ANOVA (analysis of variance). The API

gravity of oil, temperature, pressure, and CO2 content

have the highest to the lowest impact on the objective

function in the research study.

• The LS-SVM features high efficiency, excellent gen-

eralization, and routine computation methodology,

which is suitable for classification and identification

of nonlinear cases such as CO2–oil systems.
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Appendix: sample calculation

LS-SVM toolbox in MATLAB software is first installed.

The next step is dragging and dropping the swelling.mat

file in the MATLAB workspace. The following command

should be then written in the MATLAB environment to

calculate the CO2–oil swelling factor.

SF = simlssvm ({trainX0, trainY0, type, gam, sig2,

‘RBF_kernel’, ‘preprocess’}, {alpha, b}, [API T P Solu-

bility (mole faction)])

For example, consider the following data:

API = 29.4�
T = 176 �F
P = 2257 psia

CO2 mole fraction = 0.66

SF = simlssvm({trainX0, trainY0, type, gam, sig2,

‘RBF_kernel’, ‘preprocess’},{alpha, b}, [29.4 176 2257

0.66])

The swelling factor forecasted by the LS-SVM model is

equal to 0.9327, while the corresponding measured CO2–

oil swelling factor is 0.9334, implying there is a very good

agreement between the predicted and experimental values.

Table 5 Composition of oil sample AC

Component Mole percentage,

%

Molecular weight

N2 0.53 28.014

CO2 1.01 44.01

C1 45.305 16.043

C2 3.9 30.07

C3 1.39 44.097

i–C4 0.63 58.124

n–C4 0.81 58.124

i–C5 0.69 72.151

n–C5 0.41 72.151

C6 1.02 86.178

C7 4.22 96

C8 3.53 107

C9 3.5 121

C10–C12 8.011 145.496

C13–C15 6.521 186.218

C16–C18 4.84 227.455

C19–C23 3.672 283.28

C24–C30 3.203 370.644

C31–C37 2.232 469.117

C38–C46 1.906 579.203

C47–C58 1.489 722.448

C59–C80 1.179 940.536
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