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Abstract
We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their

pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs based on electric imaging

logging data. We automatically identify and extract fracture–vug information from the electric imaging images by adopting

a path morphological operator that remains flexible enough to fit rectilinear and slightly curved structures because they are

independent of the structuring element shape. The Otsu method was used to extract fracture–vug information from the

background noise caused by the matrix. To accommodate the differences in scale and form of the different target regions,

including fracture and vug path, operators with different lengths were selected for their recognition and extraction at the

corresponding scale. Polynomial and elliptic functions are used to fit the extracted fractures and vugs, respectively, and the

fracture–vug parameters are deduced from the fitted edge. Finally, test examples of numerical simulation data and several

measured well data have been provided for the verification of the effectiveness and adaptability of the path morphology

method in the application of electric imaging logging data processing. This also provides algorithm support for the fine

evaluation of fracture–vug reservoirs.
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1 Introduction

Fractures and vugs are the main reservoir space and

seepage channels in fracture–vug reservoirs (Yang et al.

2011). Due to their complexity and heterogeneity, their

distribution mechanism has a significant impact on detailed

reservoir evaluation (Li et al. 2015; Wang et al. 2013).

Currently, identification and quantitative evaluation of

fractures and vugs have become the focus for exploration

and development of fracture–vug reservoirs (Wu et al.

2013; Li et al. 2017a, b, c; Thachaparambil et al. 2013).

Geologists have worked deeply on pore structure charac-

terization (Bian et al. 2014; Gunter et al. 2014; Chen and

Heidari 2014; Holden et al. 2014; Gao et al. 2015). Many

articles have been published about the acoustic and elec-

trical parameters of fracture–vug rocks (Wang et al. 2011;

Tang et al. 2013; Xu et al. 2014; Chen et al. 2014; Zhang

et al. 2015; Pan et al. 2017). Both conventional logging and

electric imaging logging have been applied as the main

well logging methods for fracture–vug identification and

extraction. Though conventional logging has been well

developed (Lyu et al. 2016; Zazoun 2013; Shalaby and

Islam 2017; Amartey et al. 2017), it cannot achieve accu-

rate results because of the low vertical resolution. Electric

imaging logging, which is characterized by its high vertical

resolution and borehole coverage, can display fractures and

vugs intuitively. It has been a key step for interpreters to

identify and describe fracture–vug information from con-

ductivity images (Lai 2011).
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To calculate the fracture–vug parameters accurately,

logging image segmentation plays an important role in

separating fractures and vugs from the formation matrix.

However, various segmentation algorithms have different

effects on extraction accuracy (Tang 2013; Cui et al. 2016;

Liu et al. 2017; Xie et al. 2017). For automatic fracture–

vug identification and extraction, it is necessary and

important to study the image segmentation method suit-

able for the characteristics of the electric imaging images.

Until now, the main electrical imaging logging software,

including GeoFrame from the Schlumberger corporation,

eXpress from the Atlas corporation, LEAD from CNPC

logging and Logview from GEOTECH, requires inter-

preters to extract the fracture or vug based on a human–

computer interaction platform. Thus, it depends on human

subjectivity and experience, which results in poor effi-

ciency and involves a lot of labor.

Domestic and international scholars have performed

much research on the automatic recognition and quantita-

tive evaluation of electrical imaging logging. For example,

marker-controlled image segmentation has been used to

mark the outline of necessary geological features and

compute geological parameters (Delhomme 1992). The

Hough transform was used to extract sinusoids from the

electric imaging images and automatically calculate the

formation occurrence of stratification and fracture (Hall

et al. 1996). To trace fractures in the reservoir, a Gauss–

Laplace operator was used to remove horizontal geologic

features such as the stratigraphic boundary of the enhanced

electric imaging image (Chitale et al. 2004). Wavelet

transforms were used to estimate the fracture density

(Tokhmechi et al. 2009). MATLAB was used to identify

fractures automatically, detect sinusoids in the images and

calculate the fracture parameters (Cornet 2013). In addi-

tion, some scholars draw mathematical morphology into

the image processing of electrical imaging logging and

achieve good results (Xiao et al. 2015; Xavier et al. 2015;

Li et al. 2017a, b, c). With the limitation of the complex

geologic environment and logging conditions, the methods

above cannot automatically identify fracture–vug infor-

mation completely and achieve the required quantitative

interpretation accuracy. In particular, they cannot accu-

rately describe irregular fractures and vugs. In recent years,

in the field of image processing, path morphology, by

constructing flexible structuring elements, has been pro-

posed to identify elongated and curved subimages (Heij-

mans et al. 2005; Talbot and Appleton 2007). The method

has been used for medicine, road extraction, etc. (Wang

2014), but not for geophysical logging. With the com-

plexity of the image distribution, this research aims to

realize separation of fractures and vugs from a complex

geological background and obtain their quantitative

parameters automatically.

According to the basic theory of path morphology and

path operators suitable for a curved structure, we apply

path morphology operators to electrical imaging images

and develop a novel automatic identification and extraction

method for fractures and vugs. By comparing and analyz-

ing the conventional data, Logview software analysis data

and core scanning data, we verify the effectiveness and

high precision of the path morphology method in electric

imaging logging data processing.

2 Response characteristics of the borehole
geological structures in the electric
imaging images

Since the conductivity difference between fracture, vug and

matrix with mud invasion, high conductivity fractures and

vugs appear dark, while matrix appears bright in the

electric imaging images. It provides favorable conditions

for efficiently extracting fractures and vugs. However,

other geological structures, such as a stratification plane,

argillaceous stripe, induced fracture, will always have

similar behavior to fractures and vugs. Therefore, before

introducing the path morphological algorithm, it is neces-

sary to summarize the characteristics of the borehole geo-

logical structures in the electric imaging images used for

extracting fractures and vugs.

(1) Stratigraphic interfaces and stratification planes:

These often appear as a group of continuous

complete sinusoidals that are parallel to each other.

Moreover, they have uniform thickness, gentle dip

direction and angle (Fig. 1a).

(2) Argillaceous stripes: The electric imaging images

display bigger thickness continuously and com-

pletely, and they are always parallel to the strati-

graphic interfaces and stratification planes (Fig. 1b).

(3) Fractures: These usually show as low resistivity

strips, shaped like approximate sinusoids with

extended length and a lack of completeness and

regularity in the image (Fig. 1c).

(4) Vug: The solution pores on the small scale appear as

approximate elliptical or speckly, while a cavity on a

large scale appears with short extension as an

irregularity clot, slice or dark stripe (Fig. 1d).

Note that in the electrical images belonging from a frac-

ture–vug reservoir, irregular fractures always overlap the

solution pores or cavities.

(5) Drilling tool fracture: These are caused by drilling

tools with fine radial extensions. They often occur as

in pinnate or echelon arrangements (Fig. 1e).

(6) Fracturing fracture: These always possess small

radial extensions, large longitudinal extensions, and
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appear symmetrical with an approximately 180�
delay (Fig. 1f).

(7) Stress release fracture: They often have uniform

thickness and regular arrangement (Fig. 1g).

3 Path morphology principle and algorithm
in electric imaging logging data

Based on mathematical morphology (Serra 1988; Soille

and Talbot 2001), the path morphology with a more flex-

ible structuring element group provides an effective

detection method for the identification of elongated and

curved structures rather than just straight lines (Heijmans

et al. 2005). We apply the path morphology method to

accomplish the automatic fracture–vug extraction from the

electric imaging images by constructing the adjacency

relation and determining the length of the path operator.

3.1 Path morphology fundamental principles

3.1.1 Adjacency relation

Suppose E is a point set representing pixel locations in a

two-dimensional (2-D) image domain. A direction, i.e., an

adjacency relation, among the pixels in E is denoted by the

symbol ‘‘7!.’’ The set E and its adjacency relation compose

a directed graph called the adjacency graph (Fig. 3). If

x 7! y indicates that there exists an asymmetric directed

path from x to y, y is called the successor of x and x the

predecessor of y. If the adjacency relation ‘‘ 7!’’ is known,

an arbitrarily subset X in the image domain set E is defined

as

dðXÞ ¼ fy 2 Ejx 7! y for some x 2 Xg; ð1Þ

where dðXÞ is a successor set satisfying the adjacency

relation and comprises all pixel points that have a prede-

cessor in X.

Similarly, ~dðXÞ is a predecessor set satisfying the adja-

cency relation and contains all the pixel points that have a

successor in X. As shown in Fig. 2, b1, b2, b3 are successors

of a, and a1, a2, a3 are predecessors of b, so we may

express successor or predecessor set as

dðfagÞ ¼ fb1; b2; b3g, ~dðfbgÞ ¼ fa1; a2; a3g.

3.1.2 Path operator

For a ¼ fa1; a2; . . .; aLg, if an 7!anþ1, or equivalently

anþ1 2 dðfangÞ (n = 1, 2,…, L - 1), a ¼ fa1; a2; . . .; aLg
is defined as a d-path of length L. r(a) represents elements

of the path a existing in E; in other words, r(a) contains all
pixel points which are located on the path a,

rða1; a2; . . .; aLÞ ¼ fa1; a2; . . .; aLg ð2Þ

The operator aLðXÞ is defined as the union of all d-paths
of length L in X belonging to image domain set,

aLðXÞ¼ [ frðaÞja 2 PLðXÞg ð3Þ

where PL represents the d-path set of length L in a subset

X.

Accessibly, the operator aL has the algebraic properties

of the mathematical morphology opening, including

increasing monotonicity, antiextensivity and idempotence

(Heijmans et al. 2005), so aL is defined as the path opening

operator, and L is defined as the length of aL. In this paper,

in order to extract fractures and vugs from electric imaging

images regarded as subset X, we need to look for the union

of all pixel points which satisfy d-path of length L (aLðXÞ).

3.1.3 Adjacency graph available for electric imaging image
characteristics

According to the different vertical and horizontal exten-

sions for the different target geological bodies, we need to

design the vertical and horizontal adjacency graph avail-

able for the electric imaging image characteristics (Fig. 1).

The adjacency graph measures their angles, while the

operator length L measures their extension and connectiv-

ity. According to the different characteristics of borehole

geological structures, we designed the vertical and hori-

zontal adjacency graph (Fig. 3).

(1) Vertical adjacency graph

For fractures with large vertical extension, we design a

vertical adjacency graph to extract them from the images.

We define each pixel of the set E in the 2-D image domain

satisfying this adjacency relationship: starting from the

a

b1

b

a1 a2 a3

b2 b3

Fig. 2 Adjacency relation. Hollow points represent the image domain

set E, while solid points represent subsets of E
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chosen pixel to its adjacency pixels in the 0�, 45�, 90� and
135� directions, so the set E and its adjacency relation

compose a directed graph, called the vertical adjacency

graph (Fig. 3a). We place each pixel of the electric imaging

image I in the vertical adjacency graph and perform the

path opening. It can keep the high-angle fracture extended

from 0� to 135�, the drilling tool fracture and the fracturing

fracture mainly in the vertical direction (Fig. 3a). Then, we

determine the corresponding path lengths L as threshold

values to separate the high-angle fracture from the drilling

tool and fracturing fractures.

(2) Horizontal adjacency graph

Similarly, for target geologic structures with a large

horizontal adjacency extension, we design a horizontal

adjacency graph to distinguish them. We define each pixel

of the set E satisfying this adjacency relationship: starting

from the chosen pixel to its adjacency pixels in the - 45�,
0� and 45� directions, so the set E and its adjacency relation

compose a directed graph called the horizontal adjacency

graph (Fig. 3b). We place each pixel of the electric

imaging image I into the horizontal adjacency graph and

perform the path opening. It can keep the low-angle frac-

ture extended from - 45� to 45�, stratigraphic interfaces,

stratification planes, argillaceous stripes and stress release

fractures in the horizontal direction. Then, we determine

the corresponding path lengths L as threshold values to

separate low-angle fractures from other fractures.

Specifically, the path lengths of the vug are much

smaller than of the tectonic or induced fractures, so we

determine smaller path lengths L as the threshold value to

extract them.

Note that the number of the d-paths grows exponentially
with the operator length L for the common periodic adja-

cency graph (Fig. 3). For example, for the horizontal

adjacency graph shown in Fig. 3b, except for at the

boundary, there exist irreversible 3L�1d-paths of length L

starting from an arbitrary pixel, and the path opening can

be understood as the union performing the morphological

opening with the 3L�1 structuring elements. However, these

structuring elements are not translational to each other.

This is the difference between path opening and morpho-

logical opening. Obviously, it is inefficient to compute all

these operations. We apply an efficient decomposition

algorithm (Talbot and Appleton 2007) to realize the mor-

phological path opening algorithm applicable to electric

imaging logging as follows.

3.2 Path opening algorithm for fracture–vug
extraction

Primarily, we need to convert the electric imaging image X

into a binary image B. Take the vertical adjacency graph as

an example in Fig. 3a, and let B(x) denote the value of the

pixel point x on the binary image B and (x1, x2) denote the

coordinates of x. We calculate two values at each pixel x:

the longest path length l�½x� traveling upward from pixel x

(not including x itself) and the longest path length lþ½x�
traveling downward from pixel x. If B(x) = 1, the maxi-

mum path length through x is l½x� ¼ l�½x�þlþ½x� � 1. If

B(x) = 0, set l½x�¼ 0. We use the recursive formulas (4) and

(5) to compute l�½x� and lþ½x�:
l�½x� ¼ 1þmaxðl�½ðx1 þ 1; x2Þ�; l�½ðx1 � 1; x2

þ 1Þ�; l�½ðx1; x2 þ 1Þ�; l�½ðx1 þ 1; x2 þ 1Þ�Þ ð4Þ

lþ½x� ¼ 1þmaxðlþ½ðx1 � 1; x2Þ�; lþ½ðx1 � 1; x2

� 1Þ�; lþ½ðx1; x2 � 1Þ�; lþ½ðx1 þ 1; x2 � 1Þ�Þ ð5Þ

(a) (b)

Fig. 3 Adjacency graph available for electric imaging image characteristics. a Vertical adjacency graph. b Horizontal adjacency graph. Black

dots represent pixel points in 2-D image domain, and the arrow represents the adjacency relation
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Analogously, for the horizontal adjacency graph in

Fig. 3b, according to recursive Eqs. (6) and (7), we com-

pute l�½x� and lþ½x� for each pixel x:

l�½x� ¼ 1þmaxðl�½ðx1 þ 1; x2 � 1Þ�; l�½ðx1
þ 1; x2Þ�; l�½ðx1 þ 1; x2 þ 1Þ�Þ ð6Þ

lþ½x� ¼ 1þmaxðlþ½ðx1 � 1; x2 � 1Þ�; lþ½ðx1
� 1; x2Þ�; lþ½ðx1 � 1; x2 þ 1Þ�Þ ð7Þ

For details of the recursive computation of l�½x� and
lþ½x�; see Heijmans et al. (2005) and Talbot and Appleton

(2007).

Searching the path length L of the operator aLðXÞ for

each borehole geological structure as the appropriate

threshold value, the pixels x that satisfy l½x�\L are

removed, and the set comprising all the pixels for l½x� � L is

the result of the path opening operation. The image of the

maximum path length is generated by substituting the

maximum path length l[x] for B(x). The minimum value

between two peaks in the frequency distribution of the

maximum path length l[x] for all pixels corresponds to the

threshold value of the path length L for each geological

structure along the borehole. To identify these different

structures, we perform the path opening operation to the

electric imaging images by their appropriate threshold

values L.

According to the adjacency graph (Fig. 3a), we imple-

ment the opening transform to separate fractures in the

electric imaging logging as shown in Fig. 4. In Fig. 4a, the

black dots indicate the target pixels set X contained in

image domain set E, and the light gray boundary including

dots and arrows indicates the adjacency graph. In Fig. 4b,

the green, red and blue dots represent isolated points,

planar structures and curved structures, respectively. We,

respectively, ascertain L = 2 and L = 6 as the threshold

values of the path length for separating the three kinds of

structures. As shown in Fig. 4b, we compute the path

opening a2ðXÞ of a set X and remove the green isolated

points (background noise), while a6ðXÞ is computed for

removing the red planar structures (vugs) and ultimately

reserving the blue curved structures (fractures). Conse-

quently, for fracture–vug recognition from electric imaging

images, we determine the suitable adjacency graph and the

corresponding path length of the operator aL to suppress

the noise and extract various geologic bodies.

4 Noise suppression and fracture–vug
extraction from simulated data based
on path morphology

In this section, we apply the path operator aL to process the

simulated data of the electric imaging images. Placing each

pixel point from the electric imaging image into the ver-

tical and horizontal adjacency graph, we determine the

appropriate path length L as the threshold value to split the

different geological images into subimages with respective

maximum path length. The path opening method can

achieve noise suppression and automatic fracture–vug

extraction and efficiently characterize the fracture–vug

reservoirs.

4.1 Quantitative estimation of the fracture–vug
parameters in the conductivity images

In electric imaging logging, the original conductivity data

are acquired from the electrode array of instruments

scanning the borehole wall, which is then transferred to a

ground system that processes and shows these data as a 2-D

conductivity image covering the full borehole. We used the

FMI instrument belonging to the MAXIS-500 imaging

logging series developed by Schlumberger and designed

(b)(a)

Fig. 4 Path opening operation for extracting fractures and vugs
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the simulated formation models comprising of fracture–

vug information and calculated their parameters. There are

four main plates and four folding plates, including 192

microelectrodes acquiring 192 conductivity curves in the

FMI instrument. They provide higher vertical resolution

and borehole coverage, i.e., 0.508 cm and 80%, respec-

tively, in a 20.32 cm borehole. After filling the blank strips

of the electric imaging logging images, the number of

horizontal sampling points along the borehole will reach

almost 250. After pretreatment, the conductivity data from

192 plates are calibrated to a static image with the corre-

sponding color distributed in the borehole direction from 0�
to 360� (Gaillot et al. 2007). To display fractures and vugs

more completely, we need to convert the static image into a

dynamic image. We select 2ft as the length of sliding

window and 1/2 window length as step length and repeat

static color calibration in the window for the whole well.

For fracture identification, the image shows a curved

interface similar to a sinusoid when the fracture plane

intersects the borehole. Combining the geometric rela-

tionship between the fracture plane and borehole (Fig. 5),

we determine the fracture spatial position along the pixel

edge, fit the fracture centerline with a polynomial function

and calculate the fracture occurrence including the dip

angle and direction. The dip angle a of the fracture obeys

the geometric relationship

a ¼ arctgðH=dÞ ð8Þ

N NWSE

0° 360°270°180°90°

North

H

G

H

θ

α

(a) (b)

Fig. 5 a Geometric relationship between the fracture planes intersecting the borehole. b Corresponding planar distribution

1

LENmin

LENmax

Fig. 6 Schematic of the solution pore or cavity fitting with the ellipse
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where H is the vertical distance between the highest and

lowest points of the polynomial and d is the borehole

diameter.

Moreover, h represents the dip direction, i.e., the azi-

muth located at the lowest point of the polynomial.

For the vug identification, we need to mark vugs and

extract their edges from the binary image. A vug is con-

sidered an ellipse fitted with the least squares method.

Therefore, we can acquire the aspect ratio, area and other

parameters by computing the major LENmax and minor

LENmin axes of the fitted ellipse (Fig. 6).

Aspect ratioAspect : Aspect ¼ LENmin=LENmax ð9Þ

Area S : S ¼ pLENminLENmax=4 ð10Þ

In terms of the aspect ratio, the rock matrix is closer to

1.0, while a fracture with a small aperture and long

extension is far less than 1.0. Moreover, the aspect ratio of

the vug, whose shape is nearly circular, is between the rock

matrix and fracture. For the fine reservoir evaluation, we

display the plane porosity, which is the respective ratio of

the area of the fracture, vug or rock matrix to the total area

of the electric imaging image per unit depth, by a 2-D

waveform diagram in ascending order of the aspect ratio.

In other words, we call the diagram a fracture–vug pore

structure spectrum (Fig. 7).

To calculate the fracture–vug parameters automatically

and performing the opening operation of the binary image

based on the path operator from Fig. 3, we can acquire the

target geological structures such as fractures and vugs,

whose interiors are filled with the morphological region-

filling algorithm. After thinning the binary images, we

obtain the fracture centerline fitted with a polynomial

function for extracted fractures, while we detect their

morphological boundaries fitted with elliptic functions for

the extracted vugs.

4.2 Noise suppression and fracture–vug
extraction based on the model data

According to the measured features of the electric imaging

logging instrument, we build two formation response

models, including the fracture model and fracture–vug

model. Figures 8 and 9 are shown as binary images swit-

ched from the conductivity response images. Here, the

vertical depth is 1 m and the number of horizontal sam-

pling points distributed from 0� to 360� is 250. It is well

known that the real conductivity images always comprise

areas with different degrees of noise, mainly caused by the

electronic parts, circuits, collision between instrument and

borehole, and others, so we add 10% salt and pepper noise

to the conductivity models for the binary images.

4.2.1 Noise suppression and fracture extraction
for the fracture formation model

We design a conductivity response model of the fracture

formation composed of one high-angle fracture, three low-

angle fractures and background noise; particularly, the

high-angle fracture and two low-angle fractures are parallel

to each other (Fig. 8a). The extension length of the fracture

connected horizontally is much greater than of the isolated

noise. As shown in Fig. 8c, implementing Fig. 3b as an

adjacency graph for opening operation, the results indicate

obviously that the path length of the fracture (L[ 8) is

greater than the background noise (0 B L B 8). Using the

maximum path length of the background noise as the

threshold value, we can remove the noise (Fig. 8b) and

reserve fractures at L[ 8.

To perform the opening operation to the process

denoising binary image, the low-angle fractures are

extracted using the horizontal adjacency graph, whereas the

high-angle fractures are extracted using the vertical adja-

cency graph (Fig. 3). To acquire fracture parameters, we

pick up the fracture centerlines fitted with polynomials.

The result shows that the path morphology method not only

effectively separates the high and low-angle fractures, but

also commendably keeps the connectivity of each fracture

(Fig. 8).

4.2.2 Fracture and pore separation for the fracture–vug
formation model

The fracture–vug formation model comprises four fractures

connected horizontally at various angles, especially the two

low-angle fractures which cut each other. We assume the

shape of the simulated pores on different scales is circular,

and their diameters are, respectively, the length of 12, 20

and 35 sampling intervals (Fig. 9a). It is well known that

Pore aspect ratio
10-4 10-210-3 10-010-1

Fracture Vug Matrix pore

% ,ytisorop enal
P

Fig. 7 Schematic of the fracture–vug pore structure spectrum distri-

bution based on pore aspect ratio (the blue dotted line represents the

fractures; the black one represents the vugs; the red one represents the

matrix pores)
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the extension length of the fracture is much greater than of

the pores. To separate the fractures and vugs at different

scales, we perform the horizontal adjacency graph for the

opening operation and determine a suitable path length of

the operator aL as the corresponding threshold value for

each geological body. Obviously, the path length of these

pores is between fractures and background noise. Accord-

ing to Fig. 9c, there are four peak ranges on frequency

distribution of l(x) and the minimum value between two

peaks as the threshold value of the path length L for vugs

on different scales. Taking the path opening length L = 8

as the threshold value, those pixels belonging to noise

(where l(x)\ 8) are removed after the path opening

operation a8ðXÞ. Similarly we perform a13ðXÞ to the

denoising image by threshold value (L = 13), and these

pixels belonging to small-scale pores (where 8 B l(x)\
13) are filtered out. Then, using the path lengths L = 26

and L = 40 as the threshold values, executing a26ðXÞ and

a40ðXÞ to the previous processed image in turn, we can

successively remove medium-scale pores (where 13 B

l(x)\ 26) and large-scale pores (where 26 B l(x)\ 40)

and ultimately isolate fractures at l(x) C 40. The result
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Fig. 8 a Fracture formation model with 10% salt and pepper noise,

including one high-angle fracture, three low-angle fractures and

background noise. The ordinate represents the vertical relative depth

(m), while the abscissa represents the azimuth. b Separated noise

from the fracture formation model. c Frequency distribution of the

maximum path length l(x) for each pixel x (the red line represents the

threshold value between noise and fracture). d Low-angle fractures

extraction. e Centerlines of the three low-angle fractures. f Polynomial

fit of the centerlines of low-angle fractures. g Low-angle fracture

occurrence (circumferential and radical direction represents dip

direction and dip angle, respectively). h High-angle fractures

extraction. i Centerlines of the high-angle fractures. j Polynomial fit

of the centerline of the high-angle fracture. k High-angle fracture

occurrence
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shows clearly that the path morphology method effectively

extracts fractures and pores from the background noise

(Fig. 9). Particularly, for extracted pores, we detect their

morphological boundaries fitted with an elliptic function,

whereas we acquire the fracture centerlines fitted with

polynomial functions for the extracted fracture. The
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Fig. 9 a Fracture–vug formation model with 10% salt and pepper

noise including four fractures and seven pores. The ordinate

represents the vertical relative depth (m), whereas the abscissa

represents the azimuth. b Separated noise from the fracture–vug

formation model. c Frequency distribution of the maximum path

length l(x) for each pixel x (the red, purple, blue and orange dotted

line represent the threshold values dividing into noise, small pores,

medium pores, large pores and fracture, respectively). d Pore

extraction. e Pore edge detection. f Ellipse fit of pore edges.

g Fractures extraction. h Fracture centerlines. i Polynomial fits of the

fracture centerlines

Table 1 Pore parameters of fracture–vug formation model

Pore (scale) Aspect ratio Size, cm2

Small 0.90 13.2

Medium 0.95 38.4

Large 0.98 125.4

Table 2 Fracture occurrence of fracture–vug formation model

Fracture Dip angle, � Dip direction, �

Blue line 48 88

Red line 35 85

Black line 23 268

Green line 48 88
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specific parameters of fracture and pore are shown in

Tables 1 and 2, respectively.

5 Filling blank strips and matrix separation
in electric imaging images

Before applying the path morphology to identify fractures

and vugs, we need to deal with the original electric imaging

images, including the singular spectral interpolation (Recht

2011; Li et al. 2017a, b, c; Cai et al. 2008; Li et al.

2017a, b, c) for the blank strips and the Otsu method (Otsu

1979; Mala and Sridevi 2016) for matrix separation.

5.1 Singular spectrum analysis and interpolation
reconstruction on conductivity response

During the electric imaging logging measurement, images

appear as blank strips owing to the loss of conductivity data

in the electric imaging logging data because the electrode

plates do not cover the full borehole (Fig. 10). In this

section, we reconstruct the full borehole 2-D electric

imaging images with the singular spectral analysis method.

(1) Convert the electric imaging images to 2-D data in

the frequency domain by a Fourier transform.

(2) Implement the singular spectrum interpolation for

every frequency slice of the 2-D data.

For each frequency slice S ¼ s1; s2; . . .; sNf g, construct
the Hankel matrix:

M ¼ ll1; ll2; . . .; llK½ �

¼

s1 s2 s3 . .
.

sk . .
.

sK
s2 s3 . .

.
sk . .

.
sK . .

.

s3
. .
.

. .
.

sk
sk . .

.
. .
.

sK
sK . .

.
. .
.

. .
.

. .
.

. .
.

sk . .
.

sK . .
.

. .
.

. .
.

sN

2
66664

3
77775

ð11Þ

and

lli ¼ si; siþ1; . . .; siþk�1½ �T; 1� k�N; 1� i�K; ð12Þ

where lli denotes the delay vectors for the 1-D conductivity

signal in the frequency domain, k the length of the delay

vector and K the number of delay vectors.

Performing singular value decomposition for the Hankel

matrix, we construct the reduced-rank Hankel matrix after

cutting off small singular values.

M� ¼ U Rj

� �
VH ; j� r ð13Þ

where Rj are the first j larger singular values, r denotes the

rank of the original k� K Hankel matrix and U and V de-

note the k unitary matrix and K unitary matrix satisfying

the singular value decomposition of the Hankel matrix,

respectively. By performing the inverse Hankel transform

for the low-rank Hankel matrix M�, the elements in the first

column and the last row of the new matrix compose the

reconstructed signal.

(3) To reconstruct the 2-D electric imaging logging data

in the spatial domain, we perform an inverse Fourier

transformation of the 2-D conductivity signal in the

frequency domain.

Figure 11b shows the singular spectrum interpolation

that is used to fill the blank strips in Fig. 11a. The result

indicates that the filled image makes up for the information

that the instrument cannot detect, especially formations

with strong heterogeneity. The interpolation method can

not only suppress noise and improve image quality, but

also reconstruct complete electric imaging logging images.

5.2 Automatic matrix segmentation from electric
imaging images based on the Otsu method

In this section, we apply the Otsu method to automatically

separate fractures and vugs from the rock matrix. The

fundamental principle of the Otsu method is that we

determine the optimal threshold to divide the gray level

histogram of the images into two classes whose variance is

the largest.

As shown in Fig. 12, we define the image F whose size

is Q 9 R pixels, or equivalently,

F ¼ ff ðx; yÞjx 2 f1; 2; . . .;Qg; y 2 f1; 2; . . .;Rgg. Let

f ðx; yÞ be the gray value located in ðx; yÞ. We test k at the

gray level range and determine k as the optimal

htpe
D

Number of microelectrodes

Fig. 10 Schematic of the electric imaging logging data matrix (‘‘*’’

represents practical electric imaging logging data and ‘‘s’’ missing

data)
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segmentation threshold when between-class variance r2ðkÞ
is the maximum.

Figure 11c shows how the Otsu method is utilized to

automatically segment Fig. 11b. Comparing Fig. 11c, b,

we see that the Otsu method is an efficient way to separate

fractures and vugs from the filled electric imaging image.

6 Analysis and processing of practical
logging data

We use the novel path morphology method to extract

fractures and vugs from the fracture–vug reservoir in the

wells A, B and C (as shown in Figs. 13, 14, 15, respec-

tively). Wells A and C are carbonate formations, whereas

well B is a clastic formation. To implement the automatic

fracture–vug extraction and identification based on the

opening transformation, after filling the blank strips of

original electric imaging logging images and applying

conventional logging curves for shale correction, we need

to apply the Otsu method for the threshold segmentation

that targets geological structures such as fractures and

vugs, which are separated from the matrix background in

the real conductivity images.

The original electric imaging images show how the

high-angle fractures cutting the stratification are extremely

developed and complexly distributed, so we determine the

formation as the fracture reservoir (in Fig. 13). According

to the vertical and horizontal adjacency graph, as shown in

Fig. 3, the three high-angle fractures are completely

extracted from the noise and stratification, so the path

opening operation has the advantage of being efficient in

detecting fractures in all directions, especially for groups of

fractures with a large curvature. To acquire the fracture

parameters, we pick the fracture centerlines fitted with a

polynomial.

Figure 14 shows the result of vug extraction from pores

by a path opening operation in contrast to the result of thin

section analysis. Figure 14e shows that intercrystalline

pores are mainly developed in this reservoir. Based on the

path opening operation, we adequately separate the vugs

from the noise background and accurately detect their

edges (Fig. 14c, d). Comparing the plane porosity of vugs

extracted from Fig. 14b by path opening operation with

those from thin section (Fig. 14f), the plane porosity in

Fig. 14b, e is 7.5% and 6.8%, respectively, with a relative

error of less than 10%. The result shows that it is reason-

able to use the path opening operation for the segmentation

of the electric imaging images.
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Fig. 12 Schematic diagram of automatic segmentation based on the

Otsu method
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We perform the path opening operation to process the

electric imaging image from the fracture–vug reservoir and

compare the extraction result with that of multi-threshold

segmentation (Fig. 15). We can distinguish the fracture and

vug subimages extracted by multi-thresholding (Ge et al.

2015), according to the fracture roundness[ 3.5 and the
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fracture reservoir in well A. a Original electric imaging image.
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extracted from b. e Polynomial fit of the fracture centerlines.
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length–width ratio[ 1.5 (Fig. 15b, c). We determine the

minimum value between the first peak and the second peak

in Fig. 15d as the threshold value of the path length L, and

the extracted fractures and vugs are shown in Fig. 15e, f

based on the path opening operation. As shown in Fig. 15,

both the path opening operation and the multi-threshold

segmentation have achieved good segmentation results and

verify the validity of the path opening algorithm for sep-

arating fractures and vugs. In particular, with respect to the

multi-threshold segmentation method, the path opening

operation can better keep the integrity of fractures while

extracting vugs.

We use the path opening algorithm to deal with the

electric imaging image from the fracture–vug reservoir of

the well B in the clastic formation and compare the result

with the Logview software analysis (Fig. 16). The whole-

bore electric imaging image shows that the formation

develops horizontal stratification and vugs, but high con-

ductivity fractures. In contrast to the results of the Logview

software analysis, the vugs surrounded by the pocks auto-

matically picked up by the software are consistent with the

vugs separated from the horizontal stratification by the path

opening operation, and the plane porosity calculated by the

two methods is coherent, which prove the reliability of the

path opening algorithm in vug extraction.

For oil-bearing strata in a carbonate formation (well C),

we compare the interpretations of conventional logging and

core data by analyzing and evaluating the fracture–vug

reservoir after performing the path opening operation

(Fig. 17). Because the reservoir develops secondary pores

and is relatively high in uranium, it causes the natural

gamma radiation to be slightly higher than in the adjacent
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layer. The effective porosity calculated by conventional

logging interpretation is 2.3%–4.4%. The whole-bore

electric imaging logging image and core scanning image

indicate that fractures develop very well with vugs. The

path opening operation is applied to detect fractures in all

directions and to separate the fractures from the vugs. On

the fracture–vug pore structure spectrum, the fractures with

a small aspect ratio show a high amplitude peak on the left;

the high amplitude peaks in the middle indicate that

ellipsoid vugs are developed in the formation; the peak area

on the right, whose aspect ratio is almost 1, represents the

matrix proportion. Given the threshold value of the corre-

sponding aspect ratio for fracture, vug and matrix, their

porosity percentage can be calculated by integrating the

area within the threshold. Calibrating porosity with the

logging data in the pure matrix layer, we compare the

cumulative porosity curve with the core test porosity (blue

points), where the average relative error was 5.0%, which

also indicated the effectiveness of the path opening oper-

ator in extracting fractures and vugs. As shown in Figs. 16

and 17, the path opening algorithm can achieve good

results in automatically extracting fractures and vugs

whether in carbonate rocks or clastic rocks.

7 Conclusion

On the basis of the fracture–vug response characteristics of

the electric imaging logging data, we have developed a

novel fracture–vug identification and extraction method

based on the path morphology. To extract multi-scale

fractures and vugs from the electric imaging logging ima-

ges automatically, we have designed an adjacency graph

available for linear and curved structures such as different

angle fractures and determined a suitable path length of the

operator aL as the corresponding threshold value for each

geological feature. We have successfully applied the new

method to deal with simulated data and practical electric

imaging logging data and draw the following conclusions:

(1) The path morphology method provides an efficient

way to identify fractures and vugs, and we calculate

their parameters automatically by path operators

tracing the linear and curved structures available for

fracture distribution with different linear structures.

(2) The new method has the advantage of being precise

enough to distinguish fractures at different angles by

applying the vertical adjacency graph for high-angle

fractures and horizontal adjacency graph for low-

angle fractures.

(3) The path morphology method can be implemented to

effectively suppress random noise on the electric

imaging logging images and automatically identify

fractures and vugs. Furthermore, the fracture–vug

pore structure spectrum denoted by the pore aspect

ratio not only describes the distribution of multi-

scale pore types, but also performs better in dividing

reservoir types and quantitative evaluation of the

pore structure.

In this paper, the new fracture–vug extraction method

based on the path morphology is still at the exploratory

stage. At present, the path length of operator is chosen at

the minimum point between two peaks belonging to frac-

tures and vugs in the frequency distribution of the maxi-

mum path length. However, it is difficult to choose the

point in practical applications, so we need to explore

searching automatically for threshold values. Furthermore,

we need to study deeply the effect of different adjacency

relations and path opening operators on the extraction of

argillaceous stripes, stratification and high resistivity frac-

tures and thus summarize the extraction templates and

applicable conditions for different borehole geological

structures.
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