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Abstract
In this study, a sandstone interval of the lower Cretaceous successions in SW Iran is analyzed regarding the effects of late 
diagenesis on the alteration of primary reservoir quality and pore system. Petrological and geochemical analyses indicate 
dominant quartz mineralogy (quartz arenite) deposited in distributary channel and mouth bar environments which is embed-
ded in delta front to prodelta argillaceous sediments. Rather than mineralogy and some remaining primary (intergranular) 
porosity, several late (burial) diagenetic processes including multi-phase carbonate cementation, chlorite cementation, and 
chemical compaction, affected the reservoir quality. Most of the diagenetic processes had a decreasing effect on the primary 
reservoir quality. All recognized diagenetic features are related to burial diagenesis of the surrounding open marine shales 
(clay mineral transformation) and expelled diagenetic fluids.

Keywords  Siliciclastic reservoir · Late diagenesis · Reservoir quality · Rock type · Lower Cretaceous · SW Iran

1  Introduction

Siliciclastic rocks have lower diagenetic sensitivity and 
heterogeneity in comparison with carbonates (e.g., Ebanks 
et al. 1992; Slatt and Galloway 1992; Lucia 2007; Ahr 2008; 
Burrowes et al. 2010). Moreover, reservoir heterogeneity 
could be related to syn-depositional and/or post-depositional 
diagenetic processes and features, and varies from pore to 
intra- and inter-field scales (e.g., Slatt and Galloway 1992; 
Slatt 2006; Lucia 2007; Ahr 2008; Enayati-Bidgoli and 
Rahimpour-Bonab 2016). In siliciclastic (reservoir) rocks, 
diagenetic processes are well studied (e.g., Pettijohn et al. 
1987; Morad et al. 2012) but their relationships and develop-
ment mechanisms can be different and crucial in reservoir 
characterization. For example, a clean and quartz-rich sand-
stone (quartz arenite) has a low diagenetic potential and is 

basically prone to cementation (quartz and carbonate) and 
compaction (e.g., Pettijohn et al. 1987; Moore 2001).

In this study, a relatively depositionally homogenous 
quartz arenite reservoir interval of the Lower Cretaceous 
strata in SW Iran is analyzed (Fig. 1). High degrees of dia-
genetic modification and cementation as the main character-
istics of this thin unit led to a heterogeneously distributed 
reservoir and non-reservoir intervals despite its depositional 
homogeneity and high primary intergranular porosity. The 
main aspect of this study is evaluating the role of burial 
diagenesis in the alteration of primary reservoir quality and 
homogeneity, regarding the very low preliminary diagenetic 
potential of the studied interval.

2 � Geological setting and stratigraphy

In the Arabian Plate and Zagros fold-thrust belt (Fig. 1a, 
b), the Cretaceous successions host a considerable part of 
the world’s total hydrocarbon reserves and numerous oil 
reserves of the Middle East (Setudehnia 1978; Scott et al. 
1993; Alsharhan and Nairn 1993; Hollis 2011). Most of 
hydrocarbon reserves in this region are hosted by carbon-
ate successions. On the other hand, siliciclastic reserves 
are of lesser importance, especially in Iran. These include 
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the Cretaceous Burgan Formation and Azadegan Member. 
However, they are more frequent in the neighboring Arabian 
countries (e.g., Sharland et al. 2001; Alsharhan and Nairn 
2003; Ghazban 2007).

There are several siliciclastic intervals or reservoirs in the 
Arabian territories. Toward Iran (Zagros), they are replaced 
by calcareous—argillaceous successions (Fig. 1c; e.g., Shar-
land et al. 2001). Throughout the Neocomian—Aptian aged 
Gadvan Formation (Fig. 1c) encompasses marl or shale, 
argillaceous limestone, and limestone successions (James 
and Wynd 1965) with an argillaceous—siliciclastic interval 
in SW Iran as the lateral equivalent of the lower Zubair For-
mation of S Iraq (Fig. 1c; e.g., Jassim et al. 2006; Ghazban 
2007). The Barremain to Early Aptian aged clastic and del-
taic Zubair Formation, as the most prolific reservoir in S Iraq 
(Fig. 1d; Al-Rawi 1981; Jassim et al. 2006), covers most of 
the Mesopotamian Basin (Powers et al. 1966; Buday 1980). 
Toward the Zagros region, it is replaced by the Gadvan marl 
or shaly limestone (prodelta and open marine depositional 
settings; Fig. 2; Ali and Nasser 1989; Al-Ameri and Batten 
1997; Sadooni and Aqrawi 2000; Bayet-Goll et al. 2016) 
with several delta-front sand partings (Fig. 2).

During the (Early) Cretaceous, the Arabian Plate was 
in an equatorial position (Fig. 1a, b; Al-Fares et al. 1998). 
Due to the central African transtension, the Arabian Plate 
was uplifted and tilted to the east and provided a sediment 
source and transport energy to allow the eastward shedding 
of large volumes of quartz-rich sediments such as the Zubair 
delta system (Fig. 2a, c; Al-Fares et al. 1998). Such clastic 
systems (e.g., Ratawi, Zubair, Burgan and Wara) were able 
to prograde in the face of significant eustatic sea level rise 
(Fig. 1c; Haq et al. 1988; Sharland et al. 2001). The source 
of these clastic deltas in central Arabia could be the plu-
tonic igneous rocks of the Arabian Shield (Fig. 1d; Zeigler 
2001), but the Zubair sand isolith map in the central and 
S Iraq suggests influx of clastic sediments from the NW 
in central Iraq and probably from the SW in S Iraq due to 
uplift of the Arabian-Nubian Craton (Fig. 1d; Ghazban 
2007). They extended to WSW Iran across the border of 
the Mesopotamian basin and Zagros region, known as the 
Garau Basin (Fig. 1b). These siliciclastics are composed of 
monocrystalline and (fluid) inclusion-rich quartz grains and 

other detrital fragments such as zircon, rutile and tourmaline 
(Fig. 3; Table 1; e.g., Folk 1968; Dana 1985; Pettijohn et al. 
1987; Gribble and Hall 1995).

The ternary discrimination diagrams for provenance of 
sandstones (Fig. 4a, b; Dickinson and Suczek 1979; Dickin-
son 1985) and also paleogeographic maps of the studied area 
(Fig. 1a, b; Jassim et al. 2006; Aqrawi et al. 2010) indicate 
a continental interior depositional setting (Fig. 4c; Pettijohn 
et al. 1987). However, abraded and/or remaining quartz over-
growth cement around the analyzed quartz grains, confirms 
recycled sandstone (as follows).

3 � Materials and methods

This study was based on available data from the lower Cre-
taceous Gadvan Formation in two wells from SW Iran. This 
included petrophysical well logs (Spectral Gamma Ray, 
Sonic and Caliper), core, and well cuttings. Moreover, due 
to the importance of the Gadvan Formation’s sandstones, 
our special focus was on its only sandy part. About 16 whole 
core samples from the sandy interval of Gadvan with 20 
to 30 cm sample spacing were selected for geological and 
petrophysical (porosity and permeability) investigations and 
measurements. These were detailed petrographic analysis of 
prepared thin sections (half stained with Alizarin Red-S and 
impregnated with blue dyed epoxy resin) and microscopic 
images of both sandy and shaly intervals of the Gadvan For-
mation. This led to the identification of petrofacies (PFs), 
diagenetic processes and products, pore types, and reservoir 
properties. It must be noted that there were 10 core and 90 
cutting samples from the Gadvan Formation’s shale.

All depositional and textural properties and also clas-
sifications including depositional components by the use 
of point counting and visual estimation, grain size, round-
ness, sorting, textural maturity and classification schemes 
(Wentworth 1922; Folk 1951, 1968; Powers 1953; McBride 
1963; Folk et al. 1970; Pettijohn et al. 1987; Jerram 2001) 
were applied to facies determination. Petrofacies analysis 
and conceptual depositional model were carried out using 
standard models, petrofacies descriptions, and the published 
studies in the neighboring areas (e.g., Pettijohn et al. 1987; 
Ali and Nasser 1989).

Finally, XRD (bulk and clay), XRF and SEM analyses 
from sandy and shaly lithologies were available for further 
and more detailed diagenetic investigations.

4 � Depositional characteristics

As noted in the geological setting and stratigraphy sec-
tion, this study is based on the recovered core from the 
Gadvan Formation or Zubair delta successions. Available 

Fig. 1   a, b Paleogeographic map and plate tectonic position of the 
Arabian Plate and study area (SW Iran) during the Cretaceous period 
(modified from http://paleo​porta​l.org; Sharland et  al. 2001). c Early 
Cretaceous sequence/stratigraphic diagram of the Arabian Plate and 
Zagros including main sequence stratigraphic surfaces, lithological 
changes and formations (modified from Sharland et al. 2001) d Bar-
remian paleogeography and lithostratigraphy of Iraq, Zubair delta and 
its development directions (arrows) toward Iran, isopach map of the 
Zubair Formation (lateral equivalent of the Gadvan Formation in SW 
Iran) and location of the studied wells (Jassim et  al. 2006; Aqrawi 
et al. 2010). e Location map of the studied wells in SW Iran

◂

http://paleoportal.org
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data and references from adjacent areas (Figs. 1d, 3; James 
and Wynd 1965; Powers et al. 1966; Buday 1980; Al-Rawi 
1981; Ali and Nasser 1989; Al-Ameri and Batten 1997; 
Sadooni and Aqrawi 2000; Ghazban 2007; Jassim et al. 
2006; Bayet-Goll et  al. 2016) along with well cutting 
analysis from the un-cored intervals of the studied wells 
(Fig. 2b) suggest delta front and prodelta depositional set-
tings (Fig. 2c). However, in order to analyze details of the 
sandy cored interval of the Formation, several parameters 
including depositional components (Fig. 3), grain size, 
roundness, sorting, textural maturity and classification 
schemes (Wentworth 1922; Folk 1951, 1968; Powers 1953; 
McBride 1963; Folk et al. 1970; Pettijohn et al. 1987; 
Jerram 2001) were used for facies identification. Based 
on modal analysis and presented classifications of sand-
stones and also argillaceous parts, the studied interval is 

composed of shale and (quartz arenite) sandstone (Fig. 4c; 
Table 1), stared numbers refer to samples that selected for 
more detailed analyses such as XRD, SEM and XRF) and 
three main petrofacies as follows (Fig. 5): 

1.	 PF1: Well sorted fine quartz arenite

This porous (basically intergranular pores) and oil-
stained petrofacies is composed of fine, sub-angular to 
rounded and well sorted quartz grains which show high 
textural maturity (super-mature) as a quartz arenite sand-
stone (Fig. 5a; Table 1). There are rare opaque minerals 
and feldspars and there are not any visible sedimentary 
structures at both macroscopic and microscopic scales 
(Fig. 5b). However, some traces of bioturbation are visible. 
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Fig. 2   a The upper Valanginian–upper Aptian supersequence in Iraq toward Iran including the Zubair Formation and its lateral equivalent Gad-
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van Formation) in SW Iran (Ali and Nasser 1989) along with defined facies in the studied interval
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2.	 PF2: Well sorted very fine quartz arenite

This relatively porous to dense petrofacies is composed of 
very fine to silt sized, sub-angular to rounded and well sorted 
quartz grains which show high textural maturity (super-
mature) and is a quartz arenite sandstone (Fig. 5c; Table 1). 
The volume of opaque minerals and to some extent, feldspar 
is higher than PF1 and also there are thin lamination and bio-
turbation features at a macroscopic scale (Fig. 5d). The stud-
ied samples contain various volumes of carbonate cements 
(Table 1). The facies frequency diagram (Fig. 2c) shows 
that the studied sandy interval is mainly composed of PF2.

3.	 PF3: Shale

Microscopically, this facies is barren and composed of 
a clayey matrix and dispersed silt sized quartz grains and 
phytoclasts (Fig. 5e, g). There is some evidence of organic 
matter among the matrix (Fig. 5e, g). It is visible as fissile 
and non-fissile shale at core scale (Fig. 5f, h).

According to all available data and evidence, the sandy 
petrofacies are related to a distributary channel (PF1), 
and distributary mouth bar (PF2) parts of the Zubair delta 
which were embedded in delta front and prodelta deposits 
(Fig. 2c).

5 � Diagenesis

5.1 � Diagenetic processes and features

In spite of simple facies (well sorted fine to very fine quartz 
arenite) and mineralogical content (quartz dominant) of 
the studied sandstone (quartz arenite; Tables 1, 2; Figs. 3, 
4c), the diagenetic history of this interval is relatively com-
plex as there are several identified diagenetic processes and 
products based on microscopic petrography, XRD (bulk and 
clay), XRF and SEM analyses (Figs. 6, 7; Table 2). Based on 
textural relationships and relative timing of the occurrence 

200 μm 200 μm

500 μm500 μm

200 μm 200 μm500 μm

1 mm

200 μm

Quartz Feldspar (Plg) Chlorite

Calcareous Opaque Phytoclast

TourmalinRutileZircon

Fig. 3   All recognized depositional components of the studied sandstone interval
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of diagenetic processes, the recognized diagenetic features 
from the earliest to the latest are as follows:  

5.1.1 � Physical compaction

The evidence of physical compaction is visible as point grain 
to grain contacts which are changed into pressure-solution 
features such as concave–convex and suture contacts and 
finally, stylolites (Fig. 6a).

5.1.2 � Quartz overgrowth cement

This cementation phase is not extensive and only some 
quartz grains are partially covered by a relatively thin layer 
of syntaxial quartz overgrowth (Fig. 6a, b; Table 1). Abraded 
and non-continuous syntaxial quartz overgrowth around the 
quartz grains (Fig. 6a, b) indicates a former quartz cemented 
clastic rock which has been recycled. So this cementation 
phase does not relate to the studied formation and is inher-
ited from a former sedimentary rock or sandstone.

5.1.3 � Dissolution

There are some partially dissolved quartz grains (pores filled 
by blue dyed resin; Fig. 6c–e; vuggy porosity in Table 1) 
that indicate a dissolution phase. Seemingly, there is a close 
relationship between dissolution of quartz grains and calcite 
cementation and replacement (Fig. 6e, f).

5.1.4 � Calcite cementation and replacement

Calcite cement is the most dominant cement type in the 
studied sandstones (Tables 1, 2). It differs from replacement 
in quartz and plagioclase (shows ghost of calcium plagio-
clases’ twinning) grains and intergranular to poikilotopic 
types (Fig. 6f–h). However, they are related to a relatively 
specific cementation phase.

5.1.5 � Chlorite cementation

Hair like chlorite crystals or plates are the main clay content 
of the studied samples (Fig. 6i, j). Moreover, clay mineral 
analysis using XRD and also XRF results show chlorite min-
eralogy (Fig. 7a, b; Table 2). There is a close relationship 
between chlorite crystals (which are visible as batches of 
plates; Figs. 6j, 7b) and other diagenetic features (such as 
calcite cements) which confirms their diagenetic nature.

5.1.6 � Dolomite (ankerite) cementation

Ferroan-dolomite or ankerite (Fig. 7b; Table 2) is another 
carbonate cement phase which is basically nucleated on 
previously precipitated calcite cements (Fig. 6k). However, 
SEM micro-images show their tiny rhombs that are grown in 
cavities on the surface of quartz grains (Fig. 6l). These cavi-
ties are possibly due to the corrosive effect of dolomitizing 
or carbonaceous fluids on quartz grains (see next section). 
Moreover, XRD results of shales show some dolomite con-
tent (Fig. 7c).
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5.1.7 � Pyritization

Dispersed pyrite single crystals or patches cover most of the 
diagenetic features such as carbonate cements (Figs. 6m, 7c; 
Table 1). They are recognizable in all studied samples (both 
sandstone and shale).

5.1.8 � Chemical compaction

In the studied sandstones the chemical compaction features 
include tangential, long, concave–convex and suture grain to 
grain contacts (Fig. 6a, n) which finally changed into stylo-
lites and solution seams (Fig. 6o, p) as an effect of progres-
sive compaction. However, stylolites and solution seams are 
more evident in sandstone and shale, respectively.

5.1.9 � Bitumen staining

In general, all stylolites and solution seams are stained with 
bitumen (or dead oil) which sometimes extended toward 
adjacent intergranular pores (Fig. 6p, q).

5.1.10 � Stylolite‑related dolomitization

In some parts of the studied sandstone, there are some con-
centrations of dolomite rhombs around the stylolites and 
solution seams which are termed stylolite-related dolomites 
(Fig. 6r, s) that geochemical data show ferroan-dolomite or 
ankerite (Fig. 7b and Table 2).

5.2 � Diagenetic history

Regarding all recognized diagenetic features and their rela-
tive timing and textural relationships, the reconstructed 
diagenetic sequence of the studied formation is shown in 
Fig. 8. Generally, most diagenetic features are basically 
related to the late diagenesis (Morad et al. 2000; Fig. 8) and 
only physical compaction is from early diagenesis (Fig. 8). 
However, based on the primary mineralogical composition 
of the studied quartz arenite unit (approximately pure quartz) 
and visited diagenetic features, most of diagenetic minerals 
are allogenic and related to a possible external source. Based 
on the available analyses, the most probable source in the 
studied sandy tongue of the Gadvan Formation is its sur-
rounding argillaceous sediments (Gadvan shales and marls; 
Fig. 2). Burial diagenesis of these argillaceous sediments 
(such as clay transformation) could lead to many secondary 
mineralogical phases (Table 1).

6 � Reservoir classification

In order to evaluate reservoir properties of the studied sandy 
interval and defined depositional facies, several geological 
parameters such as facies, diagenesis, visually estimated 
porosity and pore types were integrated with core porop-
erm data (Figs. 9, 10). The poroperm cross-plot shows that 
there is a wide range of poroperm values (porosity: 9%–23%; 
permeability: 0.6–1221 mD; mainly porosity > 15% and per-
meability > 10 mD) with a fair correlation coefficient (0.655; 

Table 2   The results of XRF, XRD (clay and bulk) and SEM analyses of some selected samples from the Gadvan Formation

Analysis Depth, m 2922 2923.55 2924.92 2927.11
XRF SiO2, % – 90.89 70.01 –

Al2O3, % – 0.59 1.79 –
Fe2O3, % – 6.26 4.62 –
CaO, % – 0.44 8.07 –
Na2O, % – 0.08 0.16 –
K2O, % – 0.05 0.1 –
MgO, % – 0.02 2.58 –
TiO2, % – 0.157 0.293 –
MnO, % – 0.048 0.236 –
P2O5, % – 0.012 0.026 –
S, % – 0.132 0.382 –
L.O.I, % – 1.09 11.85 –
Cl, ppm – 952 1096 –

XRD Bulk Al2Si2O5; SiO2; CaCO3; CaMg(CO3)2; 
FeS2; KAl2Si3AlO10 (OH)2

SiO2 SiO2; Ca(Fe, Mg)(CO3)2 –

Clay Kaolinite; Illite Chlorite Chlorite –
SEM Dominant min-

eralogy
Kaolinite Quartz Quartz; Dolomite; Clay Quartz; Dolomite
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Fig. 9a). The poroperm cross-plot of the identified petrofa-
cies indicates that the highest poroperm values are related 
to PF1, and PF2 has lower and widely varying poroperm 
values (Fig. 9b).

A combination of all depo-diagenetic and petrophysical 
properties led to three main rock types each of which has a 
unique poroperm value and depo-diagenetic characteristics 
as follow (Figs. 9b, c, 10).

1.	 Rock type-1

This rock type has the highest reservoir potential and 
poroperm values (mean porosity: 21.7% and mean perme-
ability: 893.2 mD) and located in the uppermost part of 
the studied interval (Figs. 9b, 10). It is wholly composed 
of PF1 and shows the lowest diagenetic modification such 
as low chemical compaction, weak quartz dissolution (rare 
vugs) and very low cementation (only rare quartz over-
growths) and quartz dissolution (Figs. 9c, 10). The very 
good reservoir quality of this rock type is related to its 
depositional characteristics including grain size (fine sand 
and larger pore size vs. very fine sand and smaller pores) 
and weak development of reservoir quality decreasing dia-
genetic processes (Figs. 9c, 10).

2.	 Rock type-2

This rock type is composed of PF2 and shows fair reser-
voir quality (mean porosity: 18.5% and mean permeability: 
50.5 mD) and concentrated in the middle part of the stud-
ied interval (Figs. 9b, 10). Chemical compaction (stylolite 
development) and bitumen staining are the main diagenetic 
processes and siliceous and carbonate cementations are 
minor. High development of stylolites and finer grain size 
led to lower poroperm values in comparison with Rock 
type-1 (Figs. 9c, 10). So, both depositional and diagenetic 
features decreased the reservoir quality of this rock type.

3.	 Rock type-3

This rock type is composed of PF2 like Rock type-2 
but shows low reservoir quality (mean porosity: 13.5% 

and mean permeability: 2.4 mD; Figs. 9b, 10) and dis-
tributed in several parts of the studied interval (Fig. 10). 
In comparison with other rock types this type shows very 
low permeability but fair porosity which could be due to 
micro-porosity. The main diagenetic characteristics of this 
rock type are high carbonate cementation and replacement, 
and/or chemical compaction (Figs. 9c, 10) and shows high-
est diagenetic modification among the defined rock types 
(Fig. 9b, c).

7 � Discussion

The succession of all diagenetic processes can be subdivided 
into two main stages which are illustrated in Fig. 11. The 
diagenetic processes of Stage-1 are physical compaction, 
quartz dissolution, calcite cementation and replacement, 
and chlorite cementation. Dolomite (ankerite) cementation, 
pyritization, chemical compaction, bitumen staining, and 
stylolite-related dolomitization are the Stage-2 diagenetic 
processes (Fig. 11). There is a close relationship between all 
diagenetic processes that took place in each stage.

1.	 Stage-1

After physical compaction (point contacts between quartz 
grains), dissolution of quartz grains, calcite cementation and 
replacement (in quartz and feldspar; Fig. 6c–h), and chlorite 
cementation (Fig. 6i, j) took place contemporaneously which 
could be related to a series of reactions which release H+ and 
Ca2+ ions and CO2 (Fig. 11). Seemingly, calcite cementation 
(and replacement) and quartz dissolution have been bypass-
ing processes to prevent the collapse of the remnant quartz 
grains after partial dissolution (Brenner et al. 1991). The 
dissolution of quartz grains and precipitation of carbonate 
(calcite) cement could be induced by high concentration of 
Ca2+ and H2CO3 in pore water (Fig. 8; Pettijohn et al. 1987), 
and increasing temperature during burial (higher solubility 
of quartz grains; Robinson et al. 1985) which is favorable for 
CaCO3 precipitation (Siever 1959). Moreover, thermal deg-
radation of short chain carboxylic acids in organic sediments 
of prodelta facies (Ali and Nasser 1989; upper and lower 
argillaceous intervals; Fig. 2) is another source for CaCO3 
cementation (Surdam et al. 1989) via dissolution of car-
bonate grains (Fig. 3; Table 1), movement of H+, dissolved 
Ca2+, and CO2 to the neighboring sandstones (Fig. 11; Mil-
liken and Land 1991).

However, there are some partially dissolved and non-
cemented quartz grains which indicate incomplete carbon-
ate cementation and replacement (Fig. 6c, d). Based on the 
chemical equation in Fig. 11, with proceeding burial, the 
reaction of clay minerals such as kaolinite with dolomite 
and quartz grains (Figs. 7c, 5e) in the surrounding shales 

Fig. 6   Main diagenetic features in the lower Cretaceous Gadvan 
sandstones. a Abraded Quartz overgrowth; b SEM photomicrograph 
of quartz overgrowth; c, d partially dissolved quartz grains; e SEM 
image of calcite cement, partially dissolved quartz grains (due to car-
bonate cementation); f calcified quartz grains; g poikilotopic calcite 
cement; h calcified calcium Plg; i chlorite cement; j SEM image of 
chlorite cement; k fine Fe-dolomite (ankerite) rhombs; l SEM pho-
tomicrograph of grown ankerite on quartz grain’s surface; m pyriti-
zation; n pressure—solution and sutured contacts of quartz grains; 
o stylolitization; p solution seam; q bitumen staining; r, s stylolite-
related dolomitization

◂
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(Hasan 2011) can produce (Mg–) chlorite (Figs. 6i, j, 7b; 
Table 2) and also carbonate cements via releasing H+ ions 
and CO2 (Hutcheon et al. 1980; Bjørlykke 1988; Molenaar 
1989). Moreover, generated CO2 can be involved in other 
reactions to produce more calcite cement (Fig. 11).

2.	 Stage-2

The second stage and its processes (Figs. 11, 6k–s) 
show a deeper burial and later diagenesis phase (e.g., 
Taylor 1990; Morad 1998; Hendry et al. 2000; Machel 
2001, 2004). High pressure solution and development of 
stylolites and solution seams (Fig. 6n–p) and high bitumen 
staining (Fig. 6q) along them, indicate the oil window and 
high temperature and pressure conditions (Machel 2004) 
which led to chemical compaction and dissolution of 
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Fig. 8   Proposed diagenetic sequence of the studied interval (Morad 
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early diagenesis and other processes indicate late diagenesis
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quartz grains (Robinson et al. 1985). An Fe2+ source is the 
main parameter in formation of both ankerite and pyrite 
and also S2− for pyrite. Regarding a rare internal source 
for these diagenetic phases (some dispersed phytoclasts), 
at least Fe2+ and S2− ions are related to the neighboring 
argillaceous rocks as bitumen staining along the stylolites 
and seams. Petrographic evidence shows that the main car-
bonate source of ankerite cements has been former calcite 
cements (as replacement in calcite crystals) and some of 
them have been grown as quartz replacement (Fig. 6k, l). 
Under thermobaric regimes, clays (mixed layer and illite; 
Fig. 7c) conversion and thermal degradation of organic 
matter in the open marine argillaceous intervals can pro-
vide needed Mg2+ and Fe2+ for ankerite generation (Taylor 
1990; Brenner et al. 1991). Also, introduction of H2S into 
the pore water before peak migration of hydrocarbon could 
have provided the needed sulfur for the formation of pyrite 
(Robinson et al. 1985; Fig. 6m). Stylolite-related dolomiti-
zation occurred as the final diagenetic product which is 
visible around the stylolites in carbonate cemented zones 
(Fig. 6r, s).

A combination of both geological and petrophysical 
(poroperm) data led to the identification of rock types that 
are appropriate for 2D and 3D reservoir modeling (e.g., 
Lucia 1995; Gomes et al. 2008). In the studied interval, 
the reservoir quality of each rock type is affected by differ-
ent proportions of depositional and diagenetic processes. 
From Rock type-1 to Rock type-3 in a descending order 
of reservoir potential, the proportion of diagenetic altera-
tion (mainly carbonate cementation) is increased (Fig. 10). 
Investigations show that the very good reservoir quality of 
Rock type-1 is only related to depositional characteristics 
(high interparticle porosity) (Figs. 9c, 10). Also, the low 
reservoir quality of Rock type-3 is basically controlled 
by diagenetic alteration (high carbonate cementation and 
replacement) as a probable result of expelling burial fluids 
from the burial diagenesis of the surrounding mudrocks 

(Figs. 8, 9c, 10). The fair reservoir quality of Rock type-2 
is related to both depositional and diagenetic properties 
which are chemical compaction and remained interparticle 
porosity (Figs. 9c, 10).

In general, the studied interval is composed of a thick 
package of PF2 facies (very fine quartz arenite), which due 
to heterogeneous carbonate cementation it is composed of 
two upper and lower cemented units that resulted in alterna-
tive reservoir and non-reservoir units (Rock type-2 and Rock 
type-3; Fig. 10).

8 � Conclusions

1.	 The studied sandy part of the lower Cretaceous Gadvan 
Formation in SW Iran is mainly composed of quartz 
arenite and also two petrofacies which are related to dis-
tributary channels and mouth bars that are embedded in 
prodelta and open marine shales and marls.

2.	 The ternary discrimination diagrams for provenance of 
sandstones of the studied clastic interval indicate a con-
tinental interior depositional setting.

3.	 This relatively depositionally homogenous siliciclastic 
unit has been affected by several (late) diagenetic pro-
cesses. Most of diagenetic features (basically carbon-
ate cementation) are related to the burial diagenesis of 
the surrounding argillaceous successions and expelling 
burial fluids.

4.	 The succession of diagenetic processes is subdivided 
into two main stages. Stage-1 processes are physical 
compaction, quartz overgrowth, quartz dissolution, cal-
cite cementation and replacement, and chlorite cementa-
tion., Stage-2 diagenetic processes are dolomite (anker-
ite) cementation, pyritization, chemical compaction, 
bitumen staining, and stylolite-related dolomitization

5.	 The main diagenetic features of this sandy unit are car-
bonate (calcite and dolomite) cementation and replace-
ment, and chlorite cementation which their constituents 
(such as H+, Ca2+, Mg2+, Fe2+, S2− and CO2) have origi-
nated from clay conversion and thermal degradation and 
maturation of organic matter in the adjacent argillaceous 
intervals.

6.	 An integration of depositional, diagenetic and petrophys-
ical characteristics revealed that this primarily porous, 
homogenous and clean sandstone reservoir has been 
changed into a heterogeneous (alternative reservoir and 
non-reservoir units) and cemented reservoir rock under 
the burial condition and during late diagenesis of the 
adjacent mudrocks.

Fig. 10   Composite depo-diagenetic and reservoir stratigraphic profile 
of the studied sandy interval. The reservoir zones (reservoir quality 
column) are defined based on poroperm values but the rock types are 
recognized using both depo-diagenetic and poroperm characteristics

◂
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Fig. 11   A schematic diagenetic history of the studied sandstone interval. In general, all diagenetic features are related to two main stages. Dur-
ing the first stage a series of processes such as calcite replacement and cementation, feldspar alteration, and dissolution have taken place. Then, 
ankerite cementation, chemical compaction, stylolite-related dolomitization, bitumen staining, and pyritization are final diagenetic features
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