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Abstract
Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface 
faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy 
of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate 
the throw and damage zone width of five strike-slip faults affecting Ordovician carbonates of the Tarim intracraton basin, 
NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m 
in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two 
orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage 
zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw 
scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the 
Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size 
faults, which involve multiple faulting stages.
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1  Introduction

Faults usually exhibit narrow, highly deformed cores and 
wider damage zones (e.g., Kim et al. 2004; Agosta et al. 
2012). Damage zone widths can vary from tens of meters to 
kilometers, significantly influencing the mechanical behav-
ior and fluid flow properties of faulted rocks (Caine et al. 
1996; Aydin 2000; Peacock 2002; Kim et al. 2004; Torabi 
and Berg 2011; Pei et al. 2015; Choi et al. 2016). Therefore, 

scaling of damage zone width with fault displacement (or 
length) is crucial for understanding and predicting mechani-
cal, hydraulic and seismological properties of faults. In the 
last few decades, the study of well-exposed fault outcrops 
found a disparity of relationships between damage zone 
width and displacement: linear (Shipton and Cowie 2001; 
Choi et al. 2016), logarithmic (Fossen and Hesthammer 
2000) and power-law (Faulkner et al. 2011; Torabi and Berg 
2011). Also, scaling of damage zone width and displacement 
has been found to be generally large, scattering over two 
to four orders of magnitude (e.g., Torabi and Berg 2011). 
These differences could be related to a variety of factors 
that can influence the width of damage zones such as, the 
nature of the protolith, depth of faulting, effect of diagen-
esis and deformation mechanisms (e.g., Faulkner et al. 2011; 
Laubach et al. 2014; Choi et al. 2016). Recent advances in 
acquisition and processing of seismic reflection data and the 
availability of extensive, high quality 3D seismic surveys 
have allowed the study of the geometry of large faults in the 
subsurface, which is usually not possible from the investiga-
tion of outcrops only (e.g., Liu et al. 2011; Hale 2013; Wu 
et al. 2016; Iacopini et al. 2016; Botter et al. 2016; Torabi 
et al. 2017). Nonetheless, research on fault damage zones in 
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carbonate rocks based on seismic reflection data is scarce 
(Iacopini et al. 2016; Wu et al. 2019).

In recent years, significant hydrocarbon exploration effort 
in China has been focused toward carbonate reservoirs, par-
ticularly those found in the Tarim Basin (e.g., Du 2010). The 
basin has attracted much attention for its significance as a 
new exploration frontier and for the study of Early Paleo-
zoic carbonate reservoirs that are rare in the world (e.g., 
Pang et al. 2010; Li et al. 2010; Zhu et al. 2014). In the 
basin, considerable hydrocarbon accumulations are struc-
turally trapped along prominent fault zones (Du 2010; Wu 
et al. 2012, 2016; Lan et al. 2015). Despite the recognition 
that these fault zones are important pathways for hydrocar-
bon migration (e.g., Lü et al. 2008; Wu et al. 2012, 2016; 
Lan et al. 2015), exploration and production targeting these 
structures have been proved to be challenging (Pang et al. 
2010; Du 2010).

In this research, core data, high-resolution seismic data 
together with the implementation of seismic attributes were 
used to characterize a number of fault damage zones asso-
ciated with strike-slip faults in the Tarim Basin. Vertical 
displacement (throw) in Ordovician carbonate along five 
fault zones was measured. Furthermore, the scaling rela-
tionship of carbonate fault damage zone widths with throw 

was investigated. Finally, a model for the growth of damage 
zones in carbonate rocks is proposed.

2 � Geological setting

With an area of ~ 560,000 km2, the Tarim Basin is the largest 
petroliferous basin in northwest China (Fig. 1). The basin 
is floored by Archean-Early Neoproterozoic crystalline 
basement that is covered by a thick, Late Neoproterozoic-
Quaternary sediments affected by polyphase tectonism: (1) 
supercontinent assembly and breakup in Late Neoprotero-
zoic, (2) opening and closure of the Tethys and the Paleo-
Asian Ocean during the Paleozoic and Mesozoic and (3) 
the Indo-Asian collision in the Cenozoic (Jia 1997; Li et al. 
2010; Wu et al. 2016 and references therein). This complex 
history is recorded in the basin by the occurrence of a series 
of subbasins divided by structural highs (see ‘uplifts’ and 
‘depressions’ in Fig. 1a).

The largest Ordovician condensate field in China was dis-
covered in recent years in the northern slope of the Central 
Uplift (Du 2010; Zhu et al. 2014). This region covers an 
area of 22,000 km2 in the central part of the Tarim Basin 
(Fig. 1; Wu et al. 2012, 2016) and contains Cambrian–Late 
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Fig. 1   a Tectonic map of the Tarim Basin (after Wu et al. 2016); b map of the fault system affecting the Lower Paleozoic in the Central Uplift of 
the Tarim Basin (after Wu et al. 2016)
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Ordovician carbonates with thicknesses in excess of 2000 m. 
Recently acquired 3D seismic data have revealed that this 
stratigraphic section is affected by numerous strike-slip 
faults (Figs. 1, 2, 3; Wu et al. 2012, 2016; Li et al. 2013; 
Lan et al. 2015). In the survey area, there are five major 
NE-trending strike-slip faults with lengths more than 40 km 

(Figs. 1, 2, 3). Seismic profiles show that faults have nearly 
vertical slip surfaces with a narrow and steep fault zone 
(Fig. 2). Most faults exhibit small splays (Fig. 3) which 
may form positive, negative flower and half flower struc-
tures (Fig. 2). The faults often affect the carbonate rocks of 
Cambrian–Upper Ordovician age, and some extend upward 
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into the Silurian–Devonian, and into the Permian (Fig. 2; 
Wu et al. 2012, 2016; Li et al. 2013; Lan et al. 2015; Neng 
et al. 2018).

A large platform margin to reef-shoal complex devel-
oped in the Late Ordovician along the northern part of the 
study area (Du 2010; Gao and Fan 2015). These carbon-
ates form reservoirs that differ significantly from the high 
matrix porosity carbonates described in other parts of the 
world (Du 2010). Except for a few fracture-caves with high 
porosity and permeability, the reservoirs are tight with low 
matrix porosity (< 5%) and low permeability (< 0.5 mD) and 
marked lateral heterogeneity (Du 2010; Wu et al. 2016). A 
network of dense fractures was found in the fault damage 
zones affecting the Ordovician carbonate (Ding et al. 2012; 
Wu et al. 2016). Except for numerous horizontal stylolites, 
the fractures are mainly high angle and with narrow aperture 
(Wu et al. 2016). Within the fault damage zones, there are 
generally one or two sets of opening-mode fractures. Brec-
cias and cataclastic rocks developed in parts of the fracture 
networks. The majority (> 70%) of the fractures are filled 
with calcite cements, as well as bitumen and argillaceous or 
arenaceous limestones. Some unfilled or residual dissolu-
tion porosity is still preserved along the fractures (Du 2010). 
Previous studies have found that there have been multiple 
stages of fracturing and diagenesis along these fault zones 
(Du 2010; Wu et al. 2016).

3 � Data and methods

More than twenty wells and ~ 1500 km2 of high-resolution, 
3D seismic reflection data were used to investigate fault 
damage zones in this study area (Figs. 1b, 2). This dataset 
allowed detailed fault interpretation (Wu et al. 2012, 2016; 
Li et al. 2013; Lan et al. 2015) and reservoir description of 
the carbonates (Du 2010). Seismic well ties were used to 
calibrate the stratigraphy from the well data to the seismic 
units (Fig. 2). The occurrence of flower structures, abrupt 
changes of the upthrown side and dips allowed identification 
of strike-slip faults (Wu et al. 2012, 2016; Li et al. 2013; Lan 
et al. 2015). The identification was based on the integration 
of vertical seismic profiles with coherence and amplitude 
coherence seismic attributes computed along time slices 
(Fig. 3). Using this technique, five large strike-slip fault 
zones were mapped in the study area (Fig. 1b, 3) (Wu et al. 
2016; Neng et al. 2018).

Time structure maps were implemented to measure fault 
throw and horizontal separation in order to pursue geometric 
and kinematic analysis of faults. Since the breakup point 
between hanging-wall and footwall was hard to identify in 
wide deformation zones and also fault drags could lead to an 
underestimation of displacement (Fig. 4; Kim et al. 2004), 
vertical height differences measured in seismic sections 

were used to characterize throw along faults (Wu et al. 
2016). Thus, we used throw (∆H; vertical height difference) 
between the maximum and minimum depth of the fault as a 
proxy for the vertical displacement (Fig. 4). It was estimated 
that for the faults in the study area, throw may be 10%–40% 
larger than vertical displacement. Considering that vertical 
seismic resolution is in the order of 10 m (Du 2010; Wu 
et al. 2016), fault tips are undetectable in seismic (Picker-
ing et al. 1997). The offset of the structures, stratigraphy 
or microfacies, and seismic attributes in time slices were 
integrated to identify the horizontal separation of the two 
fault planes. The horizontal separation value corresponding 
to throw was interpolated by several horizontal separation 
values of a fault zone. The total displacement along a fault 
zone can be inferred by the vertical and horizontal displace-
ment. Some errors in vertical and horizontal components 
needed correction, but they were relatively small and did 
not affect the displacement.

Although the exact locations of the boundaries of a 
fault damage zone were not possible to identify because 
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Fig. 4   a Schematic diagram showing a geological model of damage 
zone (after Faulkner et al. 2010; Choi et al. 2016). Red lines indicate 
fractures and dots indicate fault breccias. b Key seismic profile show-
ing the typical chaotic to discontinuous seismic reflection character-
istic of fault damage zones. The dash lines indicate the boundaries of 
damage zones as observed by abrupt changes in the seismic attributes 
as well as highlighted by discontinuous reflections in the profiles (see 
text for further details)
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of seismic resolution limitation, the fault envelope, which 
includes fault core and damage zone (Fig. 4a), has low 
velocity characteristics that reflect the attenuation structure 
of faults (Koch 1992; Wu et al. 2016; Botter et al. 2016; Wan 
et al. 2016; Torabi et al. 2017). For this reason, fault dam-
age zones are seismically characterized by discontinuous 
and low-amplitude reflections (Fig. 4b). In places, damage 
zones are seismically continuous, but can show weak ampli-
tudes and low frequencies. In seismic profiles, the abrupt 
changes in seismic facies across a fault damage zone can 
possibly correspond to the fault envelope (Fig. 4b). This 
facies progressively changes to high-amplitude continuous 
reflections identifying the undeformed host rocks. It may 
be difficult to identify this boundary in low-resolution seis-
mic data. Thus, the distinct disrupted seismic facies seen in 
seismic sections probably correspond to a highly deformed 
inner damage zone and fault core (Fig. 4b; e.g., Botter et al. 
2016; Wu et al. 2019). This implies that estimation of the 
width of damage zones from seismic section is likely smaller 
than the actual width. In addition, the abrupt and gradual 
changes in the boundary between fault envelope and the host 
rocks can be highlighted by seismic attributes (Fig. 3; e.g., 
Iacopini et al. 2016; Botter et al. 2016; Wan et al. 2016). 
Since seismic coherence and amplitude data are sensitive 
to fault damage zones (Wan et al. 2016; Wu et al. 2019), 
these attributes were integrated in this study to map fault 
damage zones (Fig. 3). Furthermore, the fracture density 
of host rocks and damage zones were evaluated from rock 
core samples and formation micro-imaging (FMI) logging 
data (Wu et al. 2016). By comparing these, portions of wells 
located in a damage zone were identified. Since the damage 
zone boundaries are gradual (Mitchell and Faulkner 2009), 
a combination of both interval and cumulative frequency 
methods was useful in defining damage zones and estimating 
their width (Choi et al. 2016; Wu et al. 2019).

The workflow followed in this research was: (1) to map 
the transition boundary between discontinuous, weak reflec-
tion in the fault zone and continuous reflection in the host 
rocks in seismic profiles; (2) to calibrate seismic mapping 

using well data to correct damage zone boundaries from 
cores and FMI logs; and finally (3) to identify the fault enve-
lope width (including the fault core and damage zone) by 
using both vertical seismic sections and seismic attributes 
analysis. It should be noted that the fault damage zone width 
analysis was subject to some uncertainties (around tens of 
meters)—this was considered to be in an acceptable uncer-
tainty range for our statistical analysis.

Following the abovementioned calibration, the damage 
zone width (Wd) and throw (∆H) in seismic profiles along 
the fault zones were measured. The sampling density was 
~ 500 m for the scaling purpose in this research. The meas-
urements were not performed close to the fault tips because 
of the seismic resolution issues. In addition, measuring small 
throw and damage zone width in minor faults was avoided 
because of possible ambiguity of the data in defining both 
throw and damage zone width.

4 � Scaling of damage zone

4.1 � Univariate distribution of fault throw 
and damage zone width

Damage zone width and throw were measured along five 
major strike-slip faults at the top of the Ordovician carbon-
ate (Fig. 5). The damage zone width and throw largely vary 
along fault strike, but displayed a positive relationship of 
throw with damage zone width (Fig. 5). When looked indi-
vidually, most throw values were less than 200 m with a 
peak of 40–60 m. Damage zone width showed great vari-
ability with highest value in excess of 3000 m, but most 
were in the range of 100–800 m. Due to seismic resolution 
issues, fault tips and small faults were neglected and hence 
underestimated in this analysis (Fig. 5).

Well data have been used as an identification criterion 
for damage zone width in the seismic profile, and the identi-
fied damage zone width was also calibrated by newly drilled 
wells. The distribution of cumulative fracture frequency 
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from the analysis of core and FMI log data can be used to 
define a damage zone width (Choi et al. 2016; Wu et al. 
2019). This study shows a reduction in fracture frequency 
with distance, likely depending on the size and displacement 
of the associated fault. In addition, more than 90% of the 
wells are deployed in the fault damage zones for high and 
stable production (Wu et al. 2016). Production data indicate 
high production wells are within a range of 800 m from 
the fault core (Wu et al. 2019). This is in agreement with 
high fracture frequency in the damage zones that may have 
enhanced poro-permeability of the carbonate reservoirs (Wu 
et al. 2016). These data together with seismic attributes were 
used to constrain and test the accuracy of the fault damage 
zone width measured in seismic profiles. By comparison, the 
damage zone width measured in seismic profile is consistent 
with the measurement from seismic attributes, fracture and 
production distribution (Wu et al. 2019), which supports the 
validity of the scaling analysis of fault damage zone with 
width presented here.

4.2 � Fault damage zone width scaling with throw

We measured both horizontal and vertical separation for 
the strike-slip faults at the top of the Ordovician carbon-
ate rocks. The total displacement was calculated from these 
values and was correlated with the measured fault throw 
(Fig. 6). There is a large scatter in the data with relatively 
low correlation coefficient, particularly for smaller faults 
(e.g., F4 in Fig. 6). This may be due to the fact that throw 
varies quickly along fault strike, which is not consistent with 
the variation of the interpolated horizontal separation. For 
fault F5, there was much larger horizontal separation than 
the throw values, indicating that the total displacement was 
controlled by horizontal separation. Both fault throw and 
total displacement data showed positive correlation with 

damage zone width (Fig. 7), while the correlation coefficient 
for throw–damage zone width was larger than that of the 
total displacement versus the damage zone width. This sug-
gests that the throw data are more reliable for scaling with 
damage zone width rather than using the total displacement.

The data in this study come from similar lithology, depth 
and deformation histories. All are left lateral faults, except 
for the dextral fault F5. Apart from F4 which is a small-scale 
fault influenced by intersecting a larger structure, all faults 
showed a positive correlation between the damage zone and 
the throw values (Fig. 7). The fault damage zone width var-
ied laterally with throw along the fault strike, although there 
was a general scatter in the data. The data compiled showed 
that the damage zone width (Wd) scales with throw (∆H) 
in a linear relation. When compiling the entire fault throw 
data versus width of damage zone (Fig. 8), in most cases, 
the damage zone (Wd) was considerably larger than its throw 
measurements (∆H). The data compiled also showed that 
the damage zone width (Wd) scaled with throw (∆H) in a 
positive relation with a variation of two orders of magnitude, 
although there is a general scatter in the data (Fig. 8). It 
noted that most of the Wd/∆H values are in the range of 2–15 
with few high anomaly values. Compared with published 
data (Torabi and Berg 2011 and the references therein), the 
throw data cover two orders of magnitude on the plot and 
consistently fits in a power-law trend with damage zone 
width.

5 � Discussion

5.1 � Scaling of damage zone

In the Ordovician carbonate rocks of the study area, all fault 
zones have wider damage zones with respect to their dis-
placement compared to previous studies on fault damage 
zones (e.g., Torabi and Berg 2011; Bastesen et al. 2013; 
Choi et al. 2016). Oil and gas exploitation in the Central 
Uplift has confirmed that there are wide damage zones in 
the faulted Ordovician carbonate which can be up to 3 km 
based on the fracture densities from well data (Wu et al. 
2016; Neng et al. 2018). In addition, analysis of seismic 
attributes also supports wider damage zones in these car-
bonate reservoirs (Fig. 3; Wan et al. 2016). The damage 
zone width has a positive correlation with the throw (Figs. 6, 
7). However, scattering of data indicated that there may be 
multiple stages of damage zone growth, inconsistent with a 
simple linear or power-law correlation (e.g., Torabi and Berg 
2011). Seismic attributes are generally efficient in highlight-
ing fault zones (Iacopini et al. 2016; Botter et al. 2016; Wan 
et al. 2016). In this study, seismic coherence and amplitude 
attributes were crucial to constrain fault damage zones in the 
Ordovician carbonates of the Tarim Basin (Fig. 3; Wu et al. 
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2016; Neng et al. 2018). Well data, together with seismic 
profiles and attributes, were useful in assessing the width of 
the fault envelope and for resolving a potential quantitative 
scaling with displacement (throw). This scaling, however, 
was affected by uncertainty related to the precise defini-
tion of fault damage zone width that can vary by the order 
of tens of meters. Also, both seismic facies definition and 
seismic attributes analysis were affected by sampling bias, 
and identification of fault damage zone boundaries can be 

also affected by seismic data quality and resolution. Precise 
identification of damage zone width from seismic integration 
of more data and further detailed study aimed to improve the 
sensitivity of seismic profiles and seismic attribute analysis 
would be required. This indicates that a simplistic interpreta-
tion that only relies on seismic data can easily hinder a solid 
evaluation of fault damage zones (e.g., Iacopini et al. 2016).

This study showed a positive relationship between dam-
age zone width and throw (Figs. 7, 8). However, plotting 
the current data with previous published data in a log–log 
plot reveals that the dataset has a distinct positive linear 
correlation, which fits well with the power-law relation 
described by Kolyukhin and Torabi (2012). The damage 
zone width and throw ratio (Wd/∆H) is mainly in the range 
of 2–30, and nearly proportionally distributed where the 
damage zone is less than 1000 m in width (Fig. 8). In 
the average displacement/throw versus width plots of the 
five fault zones (Fig. 9a), these show a clear correlation. 
These averaged values may have smoothed out anomalies 
related to the influence of secondary faults and to seismic 
data quality. When outlying values were filtered out, the 
fault throw–width plots also showed an explicit positive 
relationship with scattering of samples less than 2 orders 
of magnitude (Fig. 9b). These indicated that the proxy of 
throw instead of displacement is effective for predicting 
damage zone width in carbonate strike-slip fault zones in 
the subsurface.
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Torabi and Berg (2011) envisaged that due to gaps in 
datasets, medium-to-large-size faults exhibit an increased 
slope in the power-law relation between fault displacement 
and damage zone width. Our study supports the power-law 
relationship for medium to large size faults in carbonate 
rocks. However, the growth of medium-size damage zone 
width does not decrease with the increase in displace-
ment except for F5 (Figs. 7, 8, 9), and even occurred as 
an increase in the damage zone width of some faults. The 
results of this study also differ from the damage zone width 
growth model of Faulkner et al. (2011), which has a dis-
tinct transition zone of slower damage zone growth when 
the displacement is in the range of 10–100 m. Although 
there are differences in the data, our work showed another 
damage zone growth trend in which growth with displace-
ment does not slow down from small-size to medium-size 
faults. Following this, this work supports that there is a 
similar evolutionary process of damage zone width from 
small to medium scale faults. The growth of damage zone 
width keeps pace with displacement in medium size as a 
whole, but each fault in the study area may have a different 
process trajectory.

Due to the different scatter distribution in each fault 
(Fig. 7), the relationship of damage zone width and throw 
could not be simplified as linear or logarithmic correla-
tion. Some of them exhibit both high and low growth with 
throw, or both linear and logarithmic trends. Therefore, 
the scaling of fault damage zone width with displacement 
shows generally a positive correlation between the two 
attributes in the same geological setting. The relation 
could vary for specific faults and its variation depends on 
the variation along the fault strike. Whatever the processes 
of damage zone formation, the scaling relationships pre-
sented here are helpful for predicting geometries of fault 
zones in the Tarim Basin and possibly elsewhere.

5.2 � Damage zone evolution

Previous studies show that the growth of fault damage zones 
is related to the protolith, depth, deformation mechanism, 
diagenesis and their interactions (Kim et al. 2004; Mitch-
ell and Faulkner 2009; Torabi and Berg 2011; Agosta et al. 
2012; Gudmundsson et al. 2013). In this study, the top Ordo-
vician limestones are buried at depths of 5900–6200 m and 
consist of an uniform slope platform facies of wackstone and 
packstone (Du 2010; Gao and Fan 2015). As a consequence, 
the lithology and burial effects would be negligible for the 
Ordovician carbonates. Irrespective of the complexities of 
fault damage zones, the data presented in this study (Figs. 8, 
9) allow proposing a three-stage evolution for damage zones 
associated with strike-slip fault in the carbonates of the 
Tarim Basin (Fig. 10).
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At fault initiation (Stage I in Fig. 10), there is large scat-
tering of values for damage zone growth with an increase in 
throw, regardless of the sparse data. The divergence of data 
is within ~ 200 m for width and ~ 50 m of throw. During 
this stage, the Wd/∆H ratios vary in a large range, suggest-
ing a lack of relationships between growth of damage zone 
width and throw. This could indicate multiple models of 
fault growth and linkage as well as influence of local stress 
perturbations (Knott 1994; Kim et al. 2004; de Joussineau 
and Aydin 2007; Gudmundsson et al. 2013). Furthermore, 
variability in fault architecture and diagenesis might indicate 
that mechanical properties of the damage zone have caused 
considerable anisotropy along the fault zone (e.g., Laubach 
et al. 2014; Haines et al. 2016; Wu et al. 2019), which may 
also account for the lack of a simple linear or power-law dis-
tribution of the damage zone width and throw in the faults. 
Constrained by limited data and issues related to seismic 
resolution, fault initiation mechanisms need further studies 
to be better elucidated.

In spite of the lack of a distinct boundary for a second 
stage (Stage II in Fig. 10), the data show obvious divergent 
growth trends. Most damage zones keep the similar trend as 
seen in Stage I with larger growth of width with respect to 
throw. This may indicate continuous cumulative processes 
of off-fault damage after fault formation. In this stage, there 
is no variation in the relationship between attribute popula-
tions derived from small- and medium-size faults, whereas 
some of the damage zone widths, particularly in F3 and F2, 
show slower growth to gradual increase as throw increases 
(Fig. 7). The low Wd/∆H ratio of 5 also indicates a decreased 
damage zone growth. On the other hand, other damage zones 
in the second stage, mainly F5, have higher width increase 
(Figs.  7, 8). The damage zone width enlarged to about 
1600 m, but the throw was still ~ 60 m. As a consequence, 
in this stage, there are examples of fault damage zone width 
that show linear and power-law correlation with throw.

In the third stage (Stage III in Fig. 10), the damage 
zone width still increased with throw, but the values show 
less scattering (Figs. 8, 10). The high growth of the dam-
age zone width in the second stage slows down quickly 
with the increase in throw. The break in the scaling of 
damage zone width with displacement can be the result 
of a change of mechanical properties, such as softening, 
or stress localization in fault cores, or both (e.g., Ship-
ton and Cowie 2003; Torabi and Berg 2011; Gudmunds-
son et al. 2013). The slow growth of damage zone width 
with throw in previous stages, however, has a significant 
transition to increase. The mechanical properties harden-
ing by extensive cementation in the fault zones probably 
account for the exceptionally rapid growth of damage zone 
width with throw. Of course, most of the damage zone 
width increased more slowly in the late stage to show the 
gradual growth of damage zone width with displacement. 

Therefore, a convergent trend of damage zone growth with 
displacement is expected in the end to show better correla-
tion (Fig. 10).

6 � Conclusions

Although prediction of subsurface fault damage zones 
is challenging, seismic data provide a powerful tool for 
studying the geometry and mechanism of damage zone 
formation. Based on the data and results from fault dam-
age zones in carbonate rocks of the Tarim Basin, we can 
propose the following main conclusions:

1.	 Calibration of well data and seismic attributes suggests 
that throw is an effective proxy for vertical displacement 
to correlate with damage zone width.

2.	 Throw–damage zone width shows a clear positive cor-
relation, with damage zone width-to-throw ratio mainly 
in the range of 2–15.

3.	 The relationship between fault damage zone width and 
throw is not a simple linear or power-law relation. This 
study provided data for medium to large scale damage 
zone width, which was not addressed in the previous 
literature.

4.	 A three-stage evolution process of damage zone growth 
in carbonates is proposed: (1) an early stage with diver-
gent damage zone width growth with increase in dis-
placement; (2) this is followed by divergent trends with 
high to slow rates of enlargement of damage zone width 
with throw; and (3) a final stage of convergent growth of 
damage zone width growth with displacement.
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