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Abstract
Full tensor magnetic gradient measurements are available nowadays. These are essential for determining magnetization 
parameters in deep layers. Using full or partial tensor magnetic gradient measurements to determine the subsurface proper-
ties, e.g., magnetic susceptibility, is an inverse problem. Inversion using total magnetic intensity data is a traditional way. 
Because of difficulty in obtaining the practical full tensor magnetic gradient data, the corresponding inversion results are 
not so widely reported. With the development of superconducting quantum interference devices (SQUIDs), we can acquire 
the full tensor magnetic gradient data through field measurements. In this paper, we study the inverse problem of retrieving 
magnetic susceptibility with the field data using our designed low-temperature SQUIDs. The solving methodology based on 
sparse regularization and an alternating directions method of multipliers is established. Numerical and field data experiments 
are performed to show the feasibility of our algorithm.

Keywords Full tensor magnetic gradient · Susceptibility · Sparse regularization

1 Introduction

Using magnetic measurements for geophysical exploration 
is a widely chosen technique. Three kinds of data can be 
applied: total magnetic intensity (TMI) data, three-compo-
nents field data and full tensor magnetic gradient data. Most 

of the time, people are likely to use the TMI data and the 
three-components data because of easy acquisition (Zhdanov 
et al. 2012b). In recent years, measuring the full tensor mag-
netic gradient data has been realized through either high-
temperature SQUIDs or low-temperature SQUIDs. For the 
former technique, we refer to Schmidt et al. (2004), Zhdanov 
et al. (2012a, b) and Schiffler et al. (2014) for details.

In China, our research teams at the Chinese Academy 
of Sciences have designed a low-temperature SQUIDs 
system and successively carried out airborne field work in 
2016–2018. This system can measure 9 components of the 
magnetic gradient field. Compared to the traditional total-
field measurements, gradient measurements can provide 
valuable additional information, especially for undersam-
pled fields, e.g., all information about the target including 
three components, gradient tensor components as well as 
total magnetic intensity can be measured; wide ranges of 
new types of processed data are available and high resolution 
of near-surface features can be achieved. As a result, truly 
quantitative analysis becomes a reality. For more detailed 
discussions of the advantages of using full tensor magnetic 
gradient field data over the traditional TMI data, we refer 
to (Christensen and Rajagopalan 2000; Schmidt and Clark 
2000; Heath et al. 2003; Zhdanov et al. 2012a, b) for details.
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Using magnetic data to invert physical parameters (e.g., 
position, orientation and magnetic susceptibility) is the main 
scientific problem (Portniaguine and Zhdanov 1999). Wang 
and Hansen (1990) developed a magnetic inversion method, 
named as CompuDept, which can deal with a large amount 
of airborne magnetic data and realize three-dimensional 
inversion (Wang and Hansen 1990), Pignatelli et al. (2006) 
used the depth weighting function as a constraint to the solu-
tion and employed a Levenberg–Marquardt (L–M) method 
to solve the linear inverse problem to get the solution with 
depth resolution. Due to the difficulty of acquiring field 
measured full tensor magnetic gradient data, most of the 
results in the literature are based on the TMI data.

According to the potential theory, the measurement 
points of the magnetic fields can be described by integral 
equations of the first kind. This means that the observed 
data are far less than the desired susceptibility. Therefore, 
magnetic inverse problems are ill-posed (Lukyanenko et al. 
2011). Meanwhile, non-uniqueness of the solution is a main 
problem. To reduce the ill-posedness and enhance stability, 
choosing suitable norms to restrict the solution space of the 
model is crucial. Since the airborne magnetic measurements 
usually lack depth resolution, people usually consider two 
ways: One is using Tarantola’s statistical theory (Tarantola 
2005), which assumes that the data and the model are both 
uncertain and they obey Gaussian distributions, then con-
structs the norm residual function and solves a maximum 
likelihood estimate; another is using the Tikhonov regulari-
zation theory (Portniaguine and Zhdanov 2002; Zhdanov 
2002; Wang et al. 2016; Ji et al. 2017). In Wang et al. (2008), 
the authors proved that the two forms are equivalent under 
the appropriate conditions.

In recent years, retrieval of magnetization parameters 
using full tensor magnetic gradient measurements has 
attracted attention. However, there is still a lack of nons-
mooth/sparse regularizing and fast optimizing inversion 
results using full tensor magnetic gradient data. In this study, 
we will report our recent work using the low-temperature 
SQUID system designed by our team. Our new contributions 
are: (1) In data acquisition, we have designed a low-temper-
ature SQUID system, which is used to measure 9 compo-
nents of the full tensor magnetic gradient field, and we have 
carried out successful airborne field work in 2016; (2) in 
solving methodology, the more suitable method (L1-norm 
regularization) which performs better for resource explo-
ration compared with the conventional smooth inversion 
method is considered, and a weighted alternating direction 
method of multipliers is developed to solve the minimization 
problem; (3) this is the first time magnetic inversion results 
are reported using our new data with our device; it indicates 
from synthetic and field data tests that the inversion using 
full tensor magnetic gradient data can reveal much more 
valuable information than the traditional TMI data. Hence, 

our device may be a proper choice for interested people for 
potential applications.

2  Methodology

2.1  Mathematical model

Taking derivatives of the three magnetic vector components 
Bi ( i = x, y, z ) with respect to the coordinates x, y and z, we 
can express the full tensor magnetic gradient field �tensor as

Components of Eq. (1) satisfy:

The relationship of nine components in Eq. (2) indicates 
that in practical calculations, using only five components of 
Eq. (1) will be sufficient.

Usually, people use the TMI data for interpretation and 
inversion. The magnitude of the TMI �TMI is related by

Apparently, BTMI is a scalar number which does not con-
tain any information about the directionality, whereas for 
the full tensor magnetic gradient field �tensor, due to each 
component of it contains directional information of the mag-
netic field, which can yield a better interpretation than the 
pure TMI data.

By denoting the intensity of magnetization of the medium 
D as �(�) and the magnetic susceptibility as �(�) , we have 
that (Zhdanov 2002; Wang et al. 2011)

where ��(�) denotes the induced magnetic field.
The magnetic field �(��) generated from the medium D is 

related by Zhdanov (1988) and Ji et al. (2017)

where the integral kernel function is taken as the directional 
derivatives of �−��
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where �
�l′

 denotes a directional derivative in the direction of 
magnetization � with � a unit vector such that �0 = ||�0||� . 
Inserting Eqs. (6) into (5), the solution of the magnetic sus-
ceptibility �(�) reduces to solving a Fredholm equation of 
the first kind

Clearly, Eq. (7) can be written in compact operator form 
as

where K denotes an operator which is defined by the kernel 
function k(� − ��) and the right-hand side denotes the data 
�̃(��) = ||�0||−1�(��). . It can be proved that the operator K 
is uniform bound and equicontinuous for its approximation 
sequences in finite spaces; hence, K is a compact operator 
(Wang 2007).

2.2  Ill‑posedness

Ill-posed property is an important issue for inversion of the 
first kind operator Eq. (8). The reason lies in that:

 (1). The integral kernel function k(� − ��) may be singular 
since the denominator may be typically small during 
calculation;

 (2). Theoretically, approximation of the magnetic suscep-
tibility �(�) on D requires discretizing the integral (7) 
with an infinite number of variables, which is clearly 
impossible in practice;

 (3). A magnetic survey of a fixed area can only supply a 
finite number of measurements; hence, the magnetic 
data are incomplete;

 (4). Sometimes, missing geological information in the 
survey area leads to difficulty in explanation of the 
inversion results.

Faced with these difficulties, we have to resort to some 
kind of regularization strategy to find a reasonable solution 
(model). To be a sufficiently good solution to the problem, 
the model should be geologically reasonable and fit the data.

3  Sparse regularization

Solving Eqs. (7) or (8) requires discretization. Currently, there 
are two approaches to compute the magnetic gradient tensor 
analytically (Holstein et al. 2007; Ren et al. 2017). In addition, 
there are many ways to perform the discretization, e.g., col-
location, interpolation, projection, different quadrature rules 
(e.g., Gaussian quadrature technique) and the closed-form 
solutions. Suppose the model beneath the Earth surface is 

(7)�(��) =
|||�

0|||∫ ∫ ∫D

k(� − �
�)�(�)dV .

(8)(K𝜒)(��) = �̃(��),

gridded into N units; for a sufficiently small grid, the magnetic 
susceptibility in each unit can be regarded as a constant, and 
then Eq. (7) reduces to the following system of linear algebraic 
equations

where L is an M × N matrix discretized from the compact 
operator K, m is the vector form of the magnetic suscepti-
bility with length N and d is the observed data with length 
M. The form of the matrix L and the data d can be writ-
ten as: L = [Kxx;Kxy;Kxz;Kyz;Kzz] (each Kij is a matrix) and 
d = [Bxx;Bxy;Bxz;Byz;Bzz] (each Bij is a vector), respectively.

The linear Eq. (9) is ill-conditioned due to the ill-posed-
ness of Eq. (7). In addition, the observation d usually contains 
noise, i.e., d = dtrue + � ⋅ n , where dtrue represents the true full 
tensor magnetic gradient field, n is the noise and δ is the noise 
level. Directly solving Eq. (9) should be avoided; instead, we 
usually solve a regularization problem (Tikhonov et al. 1995; 
Wang 2007)

where �(⋅, ⋅) denotes a measure function defined on the data 
space, �(⋅) denotes a measure function defined on the model 
space and 𝛼 > 0 is the regularization parameter controlling 
the tradeoff between the data fitting and the penalty (con-
straint to the solution).

The anomalies underground are not necessarily smooth. 
Therefore, we establish a sparse constrained regularization 
model which may simulate reality better than the traditional 
smooth regularization model. That is in Eq. (10), we choose 
the two functions � and � ,  respectively, as 
�(Lm, d) =

1

2
‖‖Sd(Lm − d)‖‖ and �(m) = ‖‖Smm‖‖l1 . Unless we 

specified, the norm ‖⋅‖ refers to the l2 norm. Sd and Sm are two 
weighting matrices applied to the data and model, 
respectively.

4  Solution methods

4.1  Choice of the weighting matrices of data 
and model

We choose the weighting matrix of the model Sm as follows 
(Zhdanov 2002; Li and Oldenburg 1996):

where Wm is the prior constraint to the model m and Wz is the 
weighting function applied to the depth of the model. The 
function Wm is in the form

(9)Lm = d,

(10)J�(m) = �2(Lm, d) + ��(m) → min

(11)Sm = WmWz,

(12)Wm = diag

(
1(

m2 + �2
)1∕2

)
,
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where diag(⋅) denotes a diagonal matrix with components 
calculated by plugging each element of the vector m into 
Eq. (12) and 𝜍 > 0 is a constant small number. In our experi-
mental tests, � is chosen as 1.0 × 10−10.

The function Wz is the weighting function on the depth of 
the model, defined by

where � and z0 are two nonnegative constants. The depth 
weighting function can make ∫

V
(w(z)m(x, y, z))2dv be close 

to the minimum. Depth weighting is of great importance 
for magnetic inversion because without it, the resulting sus-
ceptibility distribution will be concentrated at the surface. 
In our calculation, � is chosen as 2 and z0 = 0 . This choice 
is empirical, since the decay in the kernel depends on the 
observation height, size as well as the aspect ratio of cells. 
For our problem, the above chosen values of two parameters 
� and z0 counteract the depth decay very well.

The scale operator Sd is obtained by setting (Zhdanov 2002)

where diag(⋅) again denotes a diagonal matrix with compo-
nents calculated by the squared 2-norm of each row of the 
matrix L. The meaning of Sd lies in reducing the dependence 
of the inversion calculation on the observation, and hence 
ensuring the stability of the algorithm.

4.2  Alternating direction method of multipliers

The operator splitting method is a numerical method of 
computing the solution of the original problem by separat-
ing the original equation into two parts, and using iterations 
to approach the original solution. The alternating direc-
tion method of multipliers is a class of the operator splitting 
method, which is efficient for large-scale computational prob-
lems and has received much more attention in recent years 
[see, e.g., (He et al. 2011; Wen et al. 2012; Wang 2012; Yang 
and Yuan 2013) and references therein]. Let us consider the 
weighted l2–l1 model:

where 𝛼 > 0 is the regularization parameter. It is clear that 
f ∶ ℝ

N
→ ℝ is convex and separable, and using the splitting 

operator form for f, we would have

(13)w(z) =
1

(z + z0)
�∕2

,

(14)Sd = diag

(
1∕

∑
k

(Lik)
2

)

(15)f (m) =
1

2
‖‖Sd(Lm − d)‖‖2 + �

2
‖‖Smm‖‖l1 → min,

(16)
min f1(m) + f2(y),

s.t. Smm − y = 0,

where f1(m) =
1

2
‖‖Sd(Lm − d)‖‖2l2 and f2(y) =

�

2
‖y‖l1 . Using 

the method of multipliers, we form the augmented Lagran-
gian function

Defining u =
1

�
� , Eq. (17) can be reformulated as

The second term of Eq. (18) includes a ‖⋅‖l1 norm; it is 
nondifferentiable at the origin, so a subdifferential calculus 
will be used. Its differential can be achieved using some soft 
thresholding projection operators. In this way, the solution 
of (15) can be resolved by alternating directions:

where SC serves as a proximal operator which projects some 
iteration points onto the feasible set C. Recalling our l2–l1 
minimization model (15), calculating the gradient of the 
objective function in (19) and setting it to be zero, we obtain 
the following explicit formulas of alternating directions as

where Sc(m) is defined as Sc(m) = (m − c)+ − (−m − c)+ , 
c ∈ C and (⋅)+ = max(⋅, 0) , which provides the soft threshold 
to the solution m. Note that the penalty parameter 𝜈 > 0 and 
LTST

d
SdL + �ST

m
Sm are self-adjoint; hence, LTST

d
SdL + �ST

m
Sm 

will be a positive definite matrix and the iteration formulas 
in (20) are validated.

Based on the above discussion, steps of the inversion pro-
cedure can be outlined as follows:

Step 1: Initialization: input the maximal iteration number 
Itermax ; the initial iteration point (m0, y0, �0) , where m0 
and y0 are in their domains of f1 and f2 , respectively, and 
�0 ∈ ℝ

N ; the value of the penalty parameter 𝜈 > 0 ; the 
tolerance 𝜀 > 0 ; the regularization parameter 𝛼 > 0.
Step 2: Do loop until max{‖‖yk+1 − yk

‖‖, ‖‖�k+1 − �k
‖‖} ≤ � 

is satisfied or Itermax is reached.
Step 3: Update iteration points according to the formulas 
(20).

Remark It is easy to see that the two functions f1 and f2 are 
closed and convex, and there exists a saddle point of the 

(17)
L
�(m, y, �) = f1(m) + f2(y) + �T (Smm − y) +

1

2
�‖‖Smm − y‖‖2l2

(18)L
�(m, y, u) = f1(m) + f2(y) +

1

2
�‖‖Smm − y + u‖‖2l2 .

(19)
mk+1 = argminm(f1(m) +

1

2
�‖‖Smm − (yk − uk)

‖‖2l2),
yk+1 = SC(mk+1 + uk),

uk+1 = uk + (mk+1 − yk+1),

(20)

mk+1 = (LTST
d
SdL + �ST

m
Sm)

−1(LTST
d
Sdd + �ST

m
yk − ST

m
�k),

yk+1 = S�∕�(Smmk+1 + �k∕�),

�k+1 = �k + �(Smmk+1 − yk+1),
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function L0 ; hence, the objective function of the iterates 
approaches the optimal value and the residual Smmk − y → 0 
as the iteration k → ∞ . In addition, we note that the alternating 
direction method of multipliers is a first-order method, which 
is slower in convergence than the second-order methods, such 
as Newton’s method, where high accuracy can be attained with 
a large amount of time and high memory storage, whereas 
the alternating direction method of multipliers requires low 
memory storage and is suitable for large-scale computation.

5  Experimental tests

5.1  Sensors for gradient measurements

SQUIDs are the most appropriate sensors for gradient meas-
urements (Foley and Leslie 1998; Foley et al. 1999). With a 

Fig. 1  Full tensor magnetic gradient module
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Fig. 2  Spectrum analysis of the output of the low-temperature envi-
ronment of the SQUID system

Fig. 3  Airborne flight measurements with our low-temperature SQUID: left the device; right: flying with helicopter
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superconducting loop, SQUIDs can detect minute changes 
of flux. Therefore, instead of magnetometers, SQUIDs are 
variometers. Our device is a low-temperature SQUID. The 
low-temperature environment is based on liquid helium. 
Practically, realization of the low-temperature environment 
of the SQUID is performed through a heat isolation Dewar 
filled with liquid helium. In our device, only changes per-
pendicular to the loop are detected, hence they are vector 
sensors. The full tensor magnetic gradient module is shown 
in Fig. 1a and b. Spectrum analysis of the system output is 
displayed in Fig. 2. It is clear that after compensation, our 
measurement system can yield a stable output which is not 
sensitive to noise perturbations.

The measurement system configuration consists of three 
parts: (1) aircraft platform, towing, flight pod, (2) ground 
control system and (3) data processing, inversion and inter-
pretation. The airborne flight with our device is shown in 
Fig. 3.

5.2  Data processing

Processing of the data consists of the following steps:

• Pod attitude change correction
• Soft compensation technique for gradient measurements
• Noise suppression
• Gradient data gridding
• Inversion and interpretation

The pod attitude change correction is based on recalcula-
tion of the gradient components with changing of the flight 
attitude change, e.g., deviation angle, pitch angle and roll 
angle. The soft compensation refers to removal of the inter-
ference from the constant field, induction field and eddy field 
related with airplane movement. For noise removal, we use 
a filtering technique to realize this purpose, e.g., Kalman 
filtering. For the data gridding, the Kriging interpolation 
technique is performed (Press et al. 2007). The inversion 
methodology is based on the aforementioned methods, i.e., 
sparse regularization modeling associated with the alternat-
ing direction method of multipliers.

5.3  Theoretical results

We first perform synthetic tests. Assume that there are three 
objects beneath the Earth surface with true magnetic suscep-
tibilities � of 10, 25 and 105, respectively. Theoretical val-
ues of the magnetic field data Bx,By,Bz and Bij, i, j = x, y, z 
are easy to calculate. In Fig. 4, we only plot the 5 independ-
ent magnetic gradient data (Fig. 4a–e) and the TMI data 
(Fig. 4f). Since it is in three dimensions, only slices of the 
true magnetic susceptibility are shown in Fig. 5a–c.
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Fig. 5  Theoretical values: a–c, first to third slices in Y direction of the 
true susceptibility distribution
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Fig. 6  Comparison of the inversion results for noisy data with a 1% noise level: a–c, first to third slices in Y direction of the computed suscepti-
bility using the gradient tensor data; d–f, first to third slices in Y direction of the computed susceptibility using TMI data
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Fig. 7  Error comparisons of the inversion results with theoretical values: a–c, first to third slices in Y direction of the difference of the inversion 
results using gradient tensor data with the true susceptibility; d–f, first to third slices in Y direction of the difference of the inversion results using 
TMI data with the true susceptibility
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5.3.1  Noiseless data

First we consider the ideal case, i.e., the data are noise-
less. To quantify the approximation of the recovered solu-
tion to the true solution, we define the relative error as 
Err = ‖‖mtrue − msim

‖‖2∕‖‖mtrue
‖‖2 , where mtrue denotes the 

true model parameter, msim is its recovery. In our calcula-
tion, the initial iteration point (m0, y0, �0) = (0.1, 0, 0.1) (in 
vector form), the regularization parameter � = 0.1 , the pen-
alty parameter � = 1, � = 1.0 × 10−6 and  Itermax = 10. The 
setting of these parameters is used for all of the following 
simulations. According to our calculations, the Errs for using 
the tensor gradient data and the TMI data are 4.90e−5 and 
0.787634, respectively. It is evident that the solution error of 
the TMI data is bigger than that of the gradient tensor data. 
Therefore, with the simulated full tensor magnetic gradient 
data, our regularization method can obtain more accurate 
results than those from using the TMI data.

5.3.2  Noisy cases

To be practical, we investigate the influence of the noise. A 
random noise with Gaussian distribution was added to the 
simulated data. First, we try to simulate the effect caused 
by a small amount of noise, where the noise level equaling 
0.1% is added to the true data. The Errs for using the tensor 
data and TMI data are 6.574e−3 and 0.830383, respectively. 
For small noise, the inversion results are nearly the same as 
that of the noiseless case. For large noise, e.g., noise level 
equaling 1%, the Errs for using the tensor data and TMI data 
are 2.8165e−2 and 0.975687, respectively. Figure 6 displays 
the inversion results using the noisy full tensor magnetic 
gradient data and the noisy TMI data (noise level equaling 
1%), respectively. Differences of the inversion results with 
the theoretical values using tensor data and TMI data are 
illustrated in Fig. 7a–c and d–f, respectively. It indicates 
from the comparison results that the inversion using the full 
tensor magnetic gradient data possesses better anti-noise 
ability than that of using the TMI data, and hence provides 
the more accurate results than those of the TMI data. A 

Z,
 m

18

16

14

12

10

8

6

4

2

0

(a)

15 10 10
5 00

20 20

100

90

80

70

60

50

40

30

20

10

0

X, mY, m

Z,
 m

18

16

14

12

10

8

6

4

2

0

(b)

15 10 10
5 00

20 20

100

80

60

40

20

0

X, mY, m

Z,
 m

18

16

14

12

10

8

6

4

2

0

(c)

15 10 10
5 00

20 20

200

180

160

140

120

100

80

60

40

20

0

X, mY, m

Fig. 8  Three-dimensional display of the theoretical anomalies and 
the recovered anomalies for gradient tensor data and TMI data: a true 
objects; b recovery using gradient tensor data; c recovery using TMI 
data

Table 1  Comparison of the inversion results using the full tensor 
magnetic gradient data and the TMI data

Data type Noise level Relative error

TMI data 0.00 0.787634
0.001 0.830383
0.01 0.975687

Full tensor gradient data 0.00 4.90 ×  10−5

0.001 6.574 ×  10−3

0.01 2.8165 ×  10−2
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Fig. 9  Components of the magnetic gradient tensor and the total magnetic intensity measured at the surface
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three-dimensional display of the theoretical anomalies and 
the recovered anomalies for both data is shown in Fig. 8.

To summarize the results of the calculations for the noise-
less data and the noisy data, we list them in Table 1.

5.4  Field data results

Now, we report our inversion results with field data using our 
proposed method. Our airborne magnetic field survey using 
the low-temperature SQUID system is performed in an area 
which consists of paramagnetic and ferromagnetic material; 
a typical test area in North China. The figures (Fig. 9a–e) 
shown in this paper correspond to the independent com-
ponents of the magnetic gradient tensors. Since only five 
components are independent, we only list the data images of 
Bxx,Bxy,Bxz,Byz, and Bzz . The total magnetic intensity (TMI) 
data are shown in Fig. 9f.

We apply our proposed inversion algorithm to the field 
data. The magnetic susceptibility results using the full tensor 

gradient data are shown in Fig. 10a, b, respectively. Depths 
of the anomalies beneath the ground are 200 m and 250 m, 
respectively. Corresponding inversion results using the TMI 
data are shown in Fig. 10c, d, respectively. It is clear from 
comparison of the figures that using the tensor gradient data 
can generate finer distribution about minerals than that of 
TMI data. We have resorted to the geological interpretation 
in this area. The geological information of the survey area 
consists of Cretaceous andesite, Olivine basalt in deep lay-
ers and Neogene basalt in shallow layers. The minerals are 
mainly silver–zinc located at 100–400 m in depth. It reveals 
that our inversion results are in good agreement with the 
survey results of the polymetallic mineral deposits.
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6  Conclusions

Using full tensor magnetic gradient data measured by our 
self-designed low-temperature SQUID system to invert the 
magnetic parameter is first reported in the literature. Our 
airborne field measurements indicate that our device works 
effectively. Comparing the traditional airborne magnetic sur-
vey, we conclude that: (1) all information about geomag-
netic anomalies (e.g., TMI, Bi, Bij) can be obtained using our 
low-temperature SQUID system, while traditional technol-
ogy can only supply TMI and Bi; (2) using the new device, 
we can obtain abundant information of the magnetism with 
low noise, which may yield high-resolution inversion results 
and give us sufficient quantitative analysis; (3) more storage 
memory and procedure of calculations are needed for full 
tensor magnetic gradient data.

For the inverse problem considered in this paper, due 
to ill-posed nature and large data calculations involved for 
tensor magnetic field data, we established a weighted l2–l1 
minimization model and developed a weighted alternating 
direction method of multipliers to solve the minimization 
problem. We first perform synthetic tests using the proposed 
method. Three-dimensional tests indicate that the precision 
of the inversion results of magnetic susceptibility obtained 
using the full tensor magnetic gradient data are better than 
that of using the TMI data. Then, we apply our method to 
the practical data measured using our device. Our inversion 
results reveal that using the full tensor magnetic gradient 
data can distinguish deep stratum anomalies better than 
that of using the TMI data. Therefore, using our device to 
measure full tensor magnetic gradient data for geophysical 
prospecting is very promising for the future.
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