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Abstract
This paper addresses the scheduling and inventory management of a straight pipeline system connecting a single refinery to 
multiple distribution centers. By increasing the number of batches and time periods, maintaining the model resolution by 
using linear programming-based methods and commercial solvers would be very time-consuming. In this paper, we make 
an attempt to utilize the problem structure and develop a decomposition-based algorithm capable of finding near-optimal 
solutions for large instances in a reasonable time. The algorithm starts with a relaxed version of the model and adds a family 
of cuts on the fly, so that a near-optimal solution is obtained within a few iterations. The idea behind the cut generation is 
based on the knowledge of the underlying problem structure. Computational experiments on a real-world data case and some 
randomly generated instances confirm the efficiency of the proposed algorithm in terms of the solution quality and time.

Keywords  Multi-product oil pipeline · Batch sequencing · Decomposition-based algorithm · Combinatorial cuts · Heuristic 
method

1  Introduction

Planning the transmission of oil products is a challenging 
problem in the oil industry. It is done by different modes 
including trucks, trains, vessels and pipelines; among them, 
pipelines have a great role in long-distance oil transporta-
tion because they are reliable and cheap, have little effect 
on traffic and environment, and provide the possibility of 
transferring large volumes.

In a pipeline system, oil products are produced at the 
refinery and injected at appropriate pumping rates into the 
pipeline in the form of batches, and then, these are dis-
charged at distribution centers (DCs). Since there is no sepa-
rator between consecutive batches, a small fraction of each 
batch will be mixed with the previous one and the result-
ing mixture is called an interface. A schedule is required 
to describe the product type of batches, their volume, and 

the beginning and ending times of each injection and dis-
charging. The schedule should be feasible in the sense that 
daily demands of DCs are satisfied with no delay, pumping 
rate and storage capacity limits in the refinery and DCs are 
respected, forbidden sequences are avoided, etc. Addition-
ally, the schedule should be optimal in the sense that the 
number of interactions between consecutive batches and 
the cost of energy consumed by different pumping rates is 
minimized. Achieving an optimal or even a feasible sched-
ule is a difficult task in practice. Thus, using mathematical 
approaches instead of experimental methods is inevitable. In 
the last two decades, this problem has attracted the attention 
of many researchers from different viewpoints, and often, it 
is formulated as mixed-integer programming (MIP) models 
and solved using exact or heuristic algorithms. A broad over-
view on the related literature has been presented by Magatão 
et al. (2015) and Kirschstein (2018).

Straight pipelines are the simplest systems connecting a 
single refinery to a single DC (Bai and Rubin 2009; MirHas-
sani and BeheshtiAsl 2013; Relvas et al. 2013; Moradi and 
MirHassani 2015; Zhang et al. 2016), a single refinery to 
multiple DCs (Rejowski and Pinto 2004; MirHassani et al. 
2011; Cafaro et al. 2015) or multiple refineries to multiple 
DCs (Cafaro and Cerdá 2009; MirHassani et al. 2013). Pipe-
line systems with a tree structure are more complex than 
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straight pipelines (MirHassani and Ghorbanalizadeh 2008; 
MirHassani and Fani Jahromi 2011; Mostafaei et al. 2015). 
In some studies, additional conditions such as dual-purpose 
points (Mostafaei et al. 2016) and reversible flow (Cafaro 
and Cerda 2014) have also been considered. Pipeline sched-
uling under demand uncertainty is another important topic, 
recently addressed by Moradi and MirHassani (2016).

Research on pipeline scheduling problems has led to dif-
ferent mathematical models, in which variables correspond-
ing to injection and discharging times as well as volume and 
product type of batches play important roles. In addition, dif-
ferent heuristic methods have been proposed to tackle with 
this problem. In the heuristic method presented by Relvas 
et al. (2009), first a proper sequence of products is deter-
mined, and then, a feasible schedule is obtained by fixing the 
sequence into the model. MirHassani et al. (2011) proposed 
an algorithm that provides high-quality solutions for sched-
uling a system with one refinery and multiple DCs. At each 
iteration of their algorithm, the product type of some batches 
is fixed; then, it is continued to reach the final sequence. The 
heuristic method addressed by MirHassani and BeheshtiAsl 
(2013) is efficient for straight systems connecting a single 
refinery to a single DC. It first determines the sequence 
of products and effectively manages the inventory level 
of storage tanks by tracing the location of batches inside 
the pipeline. Fabro et al. (2014) proposed a new model to 
cope with heating constraints and sharing of tanks, and pre-
sented a decomposition-based heuristic to solve the problem. 
Magatão et al. (2011) combined constraint logic program-
ming and mixed-integer linear programming (MILP) to for-
mulate a variant of the pipeline scheduling problem.

On the one hand, the size of mathematical models pro-
posed for pipeline scheduling problems becomes very large 
by increasing the number of batches and time periods, and 
linear programming (LP) relaxation-based methods such as 
branch and bound as well as commercial solvers would be 
inefficient to solve moderate- and large-sized instances of 
the problem in a reasonable time. On the other hand, the 
gap between the solution obtained by heuristic methods and 
the optimal solution typically increases by the number of 
days (MirHassani et al. 2011). Thus, providing an efficient 
method and facilitating the process to reach a near-optimal 
solution are useful and necessary. For this purpose, we make 
an attempt to use the advantage of decomposition-based 
algorithms.

A decomposition-based algorithm splits the original 
model into a master problem (MP) and a subproblem (SP) 
which are solved iteratively until a given optimality condi-
tion is observed. The advantage of such algorithms is that 
the MP and SP may be solved efficiently, whereas there may 
not exist an algorithm capable of tackling the whole problem 
at once. Benders’ algorithm (Benders 1962) is a well-known 
decomposition-based method widely used to efficiently solve 

different complex problems. In this approach, the variables 
obtained by the MP are fixed to the SP, and the SP is solved 
for remaining variables. If the solution obtained by the MP 
is infeasible or non-optimal, feasibility or optimality cuts are 
generated and added to the MP. This process is repeated, and 
as a result of the addition of these cuts, the search space of 
the MP is gradually narrowed down as the algorithm pro-
ceeds, and the optimal solution is found within a finite num-
ber of iterations. For a recent overview on different appli-
cations and improvements of the Benders’ decomposition 
algorithm, see Rahmaniani et al. (2017) and Beheshti Asl 
and MirHassani (2018).

Feasibility and optimality cuts of Benders’ algorithm are 
generated with respect to the dual solution of the SP, and 
hence, the convexity of the SP is a necessary condition for 
the applicability of Benders’ algorithm. However, if the SP 
is an MILP model, conventional Benders’ decomposition is 
not applicable. In this situation, the combinatorial Benders’ 
decomposition method may be beneficial. In this method, 
instead of Benders’ cuts, which are generated based on the 
dual solution of the SP, combinatorial cuts (which are gener-
ated logically based on dominant logical rules of the prob-
lem) are utilized (Codato and Fischetti 2006). Combinatorial 
Benders’ decomposition has been extensively used by many 
researchers. Maravelias (2006) utilized this method to tackle 
the problem of scheduling batch processes, where the main 
model was decomposed into an MP consisting of assignment 
decisions and SP corresponding to sequencing decisions. 
Hooker (2007), by using logic-based Benders’ decomposi-
tion, combined mixed-integer linear programming and con-
straint logic programming to solve an important class of 
planning and scheduling problems. Bai and Rubin (2009) 
and Chen et  al. (2012) utilized combinatorial Benders’ 
decomposition algorithms to tackle the quayside operation 
problem and minimum tollbooth problem, respectively. Ver-
stichel et al. (2015) and Akpinar et al. (2017) applied this 
approach to solve the lock scheduling problem and assembly 
line balancing problem, respectively. Recently, Hooshmand 
and MirHassani (2018) have utilized combinatorial cuts to 
develop an efficient decomposition-based algorithm for a 
bi-level programming problem.

In this paper, we concentrate on the problem of schedul-
ing and inventory management of a straight pipeline system 
connecting a single refinery to multiple DCs, referred to as 
the long-term multi-product pipeline scheduling problem 
(LMPSP). In this regard, we consider the model proposed 
by MirHassani et al. (2011) as a base. Since directly solv-
ing moderate- and large-sized instances of the problem is 
not possible in a reasonable time, developing an efficient 
method is important. Motivated by combinatorial Bend-
ers’ decomposition algorithms, in this paper, we present a 
decomposition-based heuristic method to efficiently solve 
the LMPSP. The algorithm starts with a relaxed version of 
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the model and adds a family of combinatorial cuts on the fly, 
so that a near-optimal solution is obtained within a few itera-
tions. The idea behind our cut generation is novel and it is 
based on the knowledge of the underlying problem structure.

The rest of this paper is organized as follows. Section 2 
provides a detailed description as well as the formulation of 
the LMPSP. Section 3 describes a decomposition-based heu-
ristic algorithm to solve the problem. The efficiency of the 
proposed approach is investigated in Sect. 4. Finally, Sect. 5 
draws conclusions and offers directions for future research.

2 � Mathematical formulation

2.1 � Problem description

A straight pipeline connecting a refinery to a specific set 
of DCs is given. Different oil products are produced at the 
refinery and transmitted to DCs through the pipeline. The 
pipeline is always full, and the only way to discharge a vol-
ume of a product (at one or more DCs) is to inject the same 
quantity into the pipeline from the refinery. Each product is 
injected into the pipeline in the form of several batches with 
a large volume. Various batches are pumped from the refin-
ery into the pipeline back to back, without any separator, and 
the same quantity is discharged at one or more DCs. During 
an injection, a small fraction of the incoming batch will be 
mixed with the previous one, making a mixture, namely the 
interface or contamination volume. In each DC, there are 
some tanks and each product is stored in its own tank.

The planning horizon is divided in days, and the demand 
of each DC for each product on each day is a deterministic 
parameter. At the beginning of the planning horizon, the 
pipeline is full with a given set of batches referred to as old 
batches. Additionally, the term “new batches” refers to the 
batches injected during the planning horizon. The product 
type and volume of each old batch are assumed to be known.

The following assumptions are made:

A1 Consecutive batches cannot contain the same product.
A2 Consecutive injection of some pairs of products is 
forbidden.
A3 Contamination volume between every pair of batches 
is a known constant, regardless of product type and batch 
volume.
A4 To prevent more contamination in the pipeline, the 
volume of contamination is never discharged at interme-
diate DCs and will remain in the pipeline until reaching 
the last DC.
A5 Depending on the product type, the volume of each 
batch is limited to a specific interval.
A6 During the injection of a batch, two different pump-
ing rates (i.e., minimum and maximum pumping rates) 

are available. It should be decided how much of a batch 
volume is injected at the minimum pumping rate and how 
much is injected at the maximum pumping rate.
A7 During the injection of a new batch, discharging pri-
ority is with the batches that are placed at the entrance of 
DCs farther away from the refinery. In other words, the 
rule “farthest DC first served” is applied.
A8 The level of inventory of each product at each DC is 
limited to a specific interval.
A9 Daily demand of each product at each DC must be met 
before the end of the day.
A10 The capacity of production in the refinery is unlim-
ited.
A11 A batch may be discharged at multiple DCs.
A12 Pumping costs are equal regardless of the product 
being pumped.

Injection decisions (including the sequence of products 
that should be injected into the pipeline, volume, injection 
time and pumping rate of each batch) as well as discharg-
ing decisions (including volume and delivering time of 
discharged lots at each DC) should be made so that daily 
demands at DCs of each product are supplied on time and 
operational restrictions are satisfied. Two types of costs 
are considered here: the cost of interfaces between batches 
and costs associated with minimum and maximum pump-
ing rates. Decisions should be made so that the total cost is 
minimized. As mentioned earlier, we refer to this problem 
as the LMPSP.

2.2 � Mathematical model

In this section, the problem is formulated as an MILP model 
inspired by MirHassani et al. (2011).

2.2.1 � Notations

Let � = {1, 2,… , I} (indexed by i) be the set of batches and 
assume that the elements of � are sorted in ascending order, 
according to which i < i′ implies that the batch i is injected 
earlier than the batch i′. The set � is divided into two subsets: 
The first one, denoted by �old , contains the batches that had 
already been injected into the pipeline, and the second one, 
denoted by �new , includes the batches that may be injected 
within the planning horizon. Additionally, let ℕ = {1,… ,N} 
(indexed by n, n′) be an ordered set of DCs sorted in ascend-
ing order in their distance to the refinery. Other notations are 
summarized in Table 1.

Remark 1  Regarding the parameter BDi, it is worth mention-
ing that the upper volumetric distance of the batch i indicates 
the volumetric distance from the refinery to the right bound-
ary of the batch i. However, the lower volumetric distance 



	 Petroleum Science

1 3

of the batch i means the volumetric distance from the refin-
ery to the left boundary of the batch i. See Fig. 1 for more 
illustration.

Remark 2  A specific batch i may be discharged at a given nth 
DC during the injection of multiple new batches. However, 

the volumetric fraction of the batch i which is delivered to 
the nth DC is said to be available to satisfy demands just at 
the time the delivery of the batch i to the nth DC is quite 
terminated (i.e., after this time, the remaining amount of 
batch i (if any) is not delivered to nth DC).

Decision variables are defined in Table 2.

2.2.2 � Mathematical model

With respect to the notations, introduced in the previous 
subsection, the problem is formulated as the following MILP 
model.

Table 1   Sets, indices and parameters

� = {1,… , I} = �old ∪ �new Set of batches indexed by i, i′
�old A subset of � indicating the set of old batches
�new A subset of � indicating the set of new batches

Note that except for the indices i, i′, we may refer to elements of �new by indices j, j′ as well
NEW1 The first element of the set �new with respect to the predefined order on �new

ℙ Set of oil products indexed by p, p′
T Number of days in the planning horizon
� = {1, 2,… ,T} Set of days, indexed by t, t′
N Number of DCs along the pipeline
ℕ = {1,… ,N} Set of DCs along the pipeline indexed by n, n′
𝛿i,p Binary parameter that is 1 if the old batch i ∈ �old contains the product p and 0 otherwise
INITp,n Initial inventory level of the product p at the nth DC
BDi Upper volumetric distance of the old batch i ∈ �old from the refinery at the beginning of the planning horizon (see 

Remark 1)
REMi Remaining volume of old batch i ∈ �old inside the pipeline at the beginning of the planning horizon
FORp, p′ Binary parameter indicating whether the injection of the product p immediately after the product p′ is forbidden 

(= 1) or not (= 0). Note that since consecutive batches cannot contain the same product, we set FORp,p = 1 for 
every p ∈ ℙ

DCDn Volumetric distance of the nth DC from the refinery
Ht Total hours from the beginning of the planning horizon to the end of the day t
HMAX Total hours from the beginning to the end of the planning horizon (note that HMAX = HT)
DEMp,t,n Demand of the nth DC from the product p on the day t
WASTE Contaminated volume of each batch due to the interface

PUMP Maximum pumping rate

PUMP Minimum pumping rate

VOLp An upper bound on the volume of a batch containing the product p

VOL A lower bound on the volume of a batch

DEL An upper bound on the volume delivered from a batch to a DC

DEL A lower bound on the volume delivered from a batch to a DC

INVp,n
An upper bound on the level of inventory of the product p at the nth DC

INV
p,n

A lower bound on the level of inventory of the product p at the nth DC
c1 The cost of each interface
c2 The cost of pumping a volumetric unit at the minimum pumping rate
c3 The cost of pumping a volumetric unit at the maximum pumping rate
�p A lower bound on the number of required batches of the product p in any feasible solution of the problem (see 

Remark 4)

Fig. 1   Illustration of upper and lower volumetric distances
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LMPSP:

(1)minz = c1

∑
i∈𝕀

∑
p∈ℙ

�i,p + c2

∑
j∈𝕀new

xMIN
j

+ c3

∑
j∈𝕀new

xMAX
j

(2)𝛿i,p = 𝛿i,p ∀i ∈ 𝕀
old, p ∈ ℙ

(3)
∑
p∈ℙ

�j,p ≤ 1 ∀j ∈ 𝕀
new

(4)
∑
p∈ℙ

𝛿j+1,p ≤
∑
p∈ℙ

𝛿j,p ∀j ∈ 𝕀
new, j < I

(5)�j,p + �j−1,p� ≤ 1 ∀j ∈ 𝕀
new, p, p� ∈ ℙ ∶ FORp,p� = 1

(6)VOL
∑
p∈ℙ

�j,p ≤ xV
j
≤

∑
p∈ℙ

(
�j,pVOLp

)
∀j ∈ 𝕀

new

(7)xV
j
= xMIN

j
+ xMAX

j
∀j ∈ �

new

(8)xV
j
=

∑
i∈𝕀∶i≤j

∑
n∈ℕ

uD
i,j,n

∀j ∈ 𝕀
new

(9)yD
i,j
= yD

i+1,j
+ yR

i,j
∀i ∈ �, j ∈ �

new ∶ i < j

(10)

yD
i,NEW1

= BDi + xV
NEW1

−
∑

i�∈𝕀∶i�≥i

∑
n∈ℕ

uD
i�,NEW1,n

∀i ∈ 𝕀
old

(11)
yD
i,j
= yD

i,j−1
+ xV

j
−

�
i�∈𝕀∶i�≥i

�
n∈ℕ

uD
i� ,j,n

∀i ∈ 𝕀, j ∈ 𝕀
new ∶ i⟨j and j⟩NEW1

(12)yD
j,j
= xV

j
−
∑
n∈ℕ

uD
j,j,n

∀j ∈ 𝕀
new

(13)yR
j,j
= yD

j,j
∀j ∈ �

new

(14)yR
i,NEW1

= REMi −
∑
n∈ℕ

uD
i,NEW1,n

∀i ∈ 𝕀
old

(15)

yR
i,j
= yR

i,j−1
−
∑
n∈ℕ

uD
i,j,n

∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j > i and j > NEW1

(16)
∑
n∈ℕ

∑
i∈𝕀∶i≤j

�i,j,n ≥
∑
p∈ℙ

�j,p ∀j ∈ 𝕀
new

(17)
∑
n∈ℕ

uD
i,NEW1,n

≤ REMi ∀i ∈ 𝕀
old

(18)

∑
n∈ℕ

uD
i,j,n

≤ yR
i,j−1

∀i ∈ 𝕀, j ∈ 𝕀
new, j > i and j > NEW1

(19)

∑
n∈ℕ∶n<N

uD
i,NEW1,n

≤ REMi −

(
WASTE

∑
p∈ℙ

𝛿i,p

)
∀i ∈ 𝕀 ∶ i ≤ NEW1

Table 2   Decision variables

�i,p Binary variable that is 1 if the batch i contains the product p, otherwise 0 (∀i ∈ 𝕀, p ∈ ℙ)

�i,j,n Binary variable that is 1 if a portion of the batch i is delivered to the nth DC during the injection of the batch j, otherwise 0 
(∀i ∈ 𝕀, j ∈ 𝕀new ∶ j ≥ i,∀p ∈ ℙ)

�i,t,n Binary variable equals 1 if the batch i is available at the nth DC before the end of the day t, otherwise 0 (∀i ∈ 𝕀, t ∈ 𝕋 , n ∈ ℕ) . See 
Remark 2

xV
j

Volume of the batch j injected to the pipeline (∀j ∈ �new)

xMIN

j
Volume of the batch j that is injected at the minimum pumping rate (∀j ∈ �new)

xMAX

j
Volume of the batch j injected at the maximum pumping rate (∀j ∈ �new)

xL
j

Duration of the injection of the batch j expressed in hours (∀j ∈ �new)

xH
j

The time point at which the injection of the batch j is completed (∀j ∈ �new)

yD
i,j

Upper volumetric distance of the batch i from the refinery at the time xH
j

 (∀i ∈ �, j ∈ �new ∶ j ≥ i)

yR
i,j

Remaining volume of the batch i inside the pipeline at the time xH
j

 (∀i ∈ �, j ∈ �new ∶ j ≥ i)

uD
i,j,n

The volume of the batch i discharged at the nth DC during the injection of the batch j(∀i ∈ 𝕀, j ∈ 𝕀new ∶ j ≥ i,∀n ∈ ℕ)

uL
i,j,n

Discharging duration of the batch i at the nth DC during the injection of the batch j(∀i ∈ 𝕀, j ∈ 𝕀new ∶ j ≥ i,∀n ∈ ℕ)

wi,p,t,n Volumetric fraction of the batch i which contains the product p and is available at the nth DC on the day t(∀i ∈ 𝕀, p ∈ ℙ, t ∈ 𝕋 , n ∈ ℕ) . 
See Remark 2 for more information on the concept of availability

�i,n The time point at which the batch i is available at the nth DC (∀i ∈ 𝕀, n ∈ ℕ) . See Remark 2 for more information on the concept of avail-
ability
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(20)

∑
n∈ℕ∶n<N

uD
i,j,n

≤ yR
i,j−1

−

(
WASTE

∑
p∈ℙ

𝛿i,p

)
∀i ∈ 𝕀, j ∈ 𝕀

newj ≥ i and j > NEW1

(21)
DEL�i,j,n ≤ uD

i,j,n
≤ DEL�i,j,n ∀i ∈ 𝕀, j ∈ 𝕀

new, j ≥ i, ∀n ∈ ℕ

(22)
yD
i,j
−

(
WASTE

∑
p∈ℙ

𝛿i,p

)
≥ 𝛾i,j,nDCDn ∀i ∈ 𝕀, j ∈ 𝕀

new ∶ j ≥ i, ∀n ∈ ℕ ∶ n < N

(23)yD
i,j
≥ �i,j,NDCDN ∀i ∈ �, j ∈ �

new ∶ j ≥ i

(24)

yD
i+1,j−1

+
∑

i�∈𝕀∶i�≤i

∑
n�∈ℕ∶n�≥n

uD
i�,j,n�

≤ DCDn + DCDN

(
1 − 𝛾i,j,n

)

∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j > i, ∀n ∈ ℕ

(25)xL
j
=

xMIN
j

PUMP
+

xMAX
j

PUMP
∀j ∈ �

new

(26)xL
j
=
∑
n∈ℕ

∑
i∈𝕀∶i≤j

uL
i,j,n

∀j ∈ 𝕀
new

(27)

uD
i,j,n

PUMP
≤ uL

i,j,n
≤

uD
i,j,n

PUMP
, ∀i ∈ 𝕀, j ∈ 𝕀

new ∶ j ≥ i, ∀n ∈ ℕ

(28)xH
j
= xH

j−1
+ xL

j
∀j ∈ �

new

(29)xH
j
≤ HMAX ∀j ∈ �

new

(30)

�i,n ≥ xH
j
− xL

j
+

∑
i�∈𝕀∶i�≤i

∑
n�∈ℕ∶n�≥n

uL
i�,j,n�

− HMAX

(
1 − �i,j,n

)

∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j ≥ i, ∀n ∈ ℕ

(31)

𝜃i,n ≤ xH
j
− xL

j
+

∑
i�∈𝕀∶i�≤i

∑
n�∈ℕ∶n�≥n

uL
i�,j,n�

+ HMAX

∑
j�∈𝕀new∶j�>j

𝛾i,j�,n

∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j ≥ i,∀n ∈ ℕ

(32)
Ht

(
1 − �i,t,n

)
≤ �i,n ≤ Ht + HMAX

(
1 − �i,t,n

)
∀i ∈ 𝕀, t ∈ 𝕋 , n ∈ ℕ

(33)𝜂i,t,n ≤ 𝜂i,t+1,n ∀i ∈ 𝕀, t ∈ 𝕋 ∶ t < T , ∀n ∈ ℕ

(34)

INV
p,n

≤ INITp,n +
∑
i∈𝕀

wi,p,t,n −
∑

t�∈𝕋∶t�≤t

DEMp,t�,n ≤ INVp,n

∀t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

Objective function (1) minimizes the cost of interfaces 
between the batches and the cost associated with pumping 
rates. Constraint set (2) expresses the product type of the old 
batches. Constraint set (3) ensures that each batch contains 
at most one product. Constraint set (4) indicates that if a 
batch is empty, all of its subsequent batches should be empty 
as well. Constraint set (5) prohibits the consecutive injection 
of the products p and p′ if FORp,p� = 1 . Constraint set (6) 
indicates that the volume of an empty batch is zero and the 
volume of a non-empty batch containing the product p is 
limited to the interval 

[
VOL,VOLp

]
 . Constraint set (7) 

ensures that the volume of each batch is equal to the amount 
of that batch injected at the minimum pumping rate plus that 
injected at the maximum pumping rate. Constraint set (8) 
expresses that when a new batch j with volume xV

j
 is pumped 

into the pipeline, a volume equal to xV
j
 of some lots inside 

the pipeline is discharged.
Injecting any new batch causes the movement of previous 

batches inside the pipeline. Constraint sets (9)–(12) update 
the volumetric distance of the batches inside the pipeline 
when the injection of a new batch j is terminated. Specifi-
cally, as pointed out by MirHassani et al. (2011) constraint 
set (9) indicates that the upper volumetric distance of batch 

(35)wi,p,t,n ≤

∑
j∈𝕀new∶j≥i

uD
i,j,n

∀i ∈ 𝕀, t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

(36)
wi,p,t,n ≥

∑
j∈𝕀new∶j≥i

uD
i,j,n

−M
(
2 − �i,p − �i,t,n

)
∀i ∈ 𝕀, t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

(37)wi,p,t,n ≤ M�i,p ∀i ∈ 𝕀, t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

(38)wi,p,t,n ≤ M�i,t,n ∀i ∈ 𝕀, t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

(39)�i,p ∈ {0, 1} ∀i ∈ 𝕀, p ∈ ℙ

(40)�i,j,n ∈ {0, 1} ∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j ≥ i, ∀p ∈ ℙ

(41)�i,t,n ∈ {0, 1} ∀i ∈ 𝕀, t ∈ 𝕋 , n ∈ ℕ

(42)xV
j
, xMIN

j
, xMAX

j
, xL

j
, xH

j
≥ 0 ∀j ∈ �

new

(43)yD
i,j
, yR

i,j
≥ 0 ∀i ∈ �, j ∈ �

new ∶ j ≥ i

(44)uL
i,j,n

, uD
i,j,n

≥ 0 ∀i ∈ 𝕀, j ∈ 𝕀
new ∶ j ≥ i,∀n ∈ ℕ

(45)qi ≥ 0 ∀i ∈ �

(46)wi,p,t,n ≥ 0 ∀i ∈ 𝕀, p ∈ ℙ, t ∈ 𝕋 , n ∈ ℕ

(47)�i,n ≥ 0 ∀i ∈ 𝕀, n ∈ ℕ
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i at the completion time of pumping the batch j is equal to 
the remaining volume of batch j in the pipeline plus the 
upper volumetric distance of the batch behind it (i.e., the 
batch i + 1 ) at the time xH

j
 . Consider the value of the upper 

volumetric distance of batch i at the completion time of 
injecting batch j − 1 (i.e., yD

i,j−1
 ). After the injection of the 

new batch j, this value is increased at most as much as the 
volume of the new batch j, but during the injecting of batch 
j a portion of batch i and the batches behind it ( i′ ≥ i ) may 
be discharged. Thus, yD

i,j−1
 , after the injection of new batch 

j, is increased as much as xV
j
−
∑

i�∈𝕀∶i�≥i

∑
n∈ℕ u

D
i�,j,n

 . This is 
ensured by constraint sets (10) and (11). For more details, 
see MirHassani et al. (2011). Constraint set (12) indicates 
that when the injection of a new batch j is completed, its 
upper volumetric distance is equal to the volume of the batch 
j minus the portion of its volume discharged during its 
injection.

Constraint set (13) states that at the time xH
j

 , the remain-
ing volume of the batch j in the pipeline equals its volumet-
ric distance. Constraint sets (14) and (15) update the remain-
ing volume of the batches inside the pipeline when a new 
batch is injected. Constraint set (16) indicates that if the 
batch j is not empty, then during its injection, discharging 
occurs at some DCs. Constraint set (17) expresses that dur-
ing the injection of the batch j = NEW1 , the total discharged 
volume of the batch i is at most equal to the remaining vol-
ume of the batch i at the beginning of the planning horizon. 
However, constraint set (18) ensures that during the injection 
of the batch j > NEW1 , the total discharged volume of the 
batch i is at most equal to the remaining volume of the batch 
i at the time xH

j−1
 . Constraint sets (19) and (20) handle the 

interface with respect to Assumption A4 and indicate that 
from the total quantity of any batch i, at least �
WASTE

∑
p∈ℙ �i,p

�
 units are reserved for DC N, where �

WASTE
∑

p∈ℙ �i,p

�
 denotes the contaminated volume of 

batch i. Constraint set (21) ensures that the volume delivered 
from a batch to a DC lies in a specified interval. Constraint 
sets (22) and (23) satisfy Assumption A4 and indicate that 
during the injection of the batch j, if a fraction of the batch 
i is discharged at the nth DC (i.e., �i,j,n = 1 ), then the upper 
volumetric distance of the batch i should be greater than or 
equal to either DCDn +

�
WASTE

∑
p∈ℙ �i,p

�
 (if n < N  ) or 

DCDN (if n = N ). Additionally, at the time xH
j−1

 , the lower 
volumetric distance of the batch i equals yD

i+1,j−1
 . However, 

after injecting the batch j, it increases by the volume of 
batches i′ ≤ i which are discharged during the injection of 
the batch j. Thus, the term yD

i+1,j−1
+
∑

i�∈𝕀∶i�≤i

∑
n�∈ℕ∶n�≥n u

D
i�,j,n�

 
denotes the lower volumetric distance of the batch i at the 
time xH

j
 . Clearly, if this term is greater than DCDn, then the 

batch i cannot be discharged at nth DC. This is ensured by 

constraint set (24). Note that constraint set (24) observes the 
discharging priority rule stated in Assumption A7, as well.

Constraint set (25) calculates the time spent to inject the 
total volume of the batch j into the pipeline, and constraint 
set (26) implies that this time should be equal to the summa-
tion of time spent to discharge the same quantity at DCs 
during the injection of the batch j. Constraint set (27) 
expresses lower and upper bounds on the variable uL

i,j,n
 . Con-

straint set (28) indicates that the injection of the batch j starts 
after the completion of the injection of the batch j − 1 and is 
completed after xL

j
 hours. Additionally, constraint set (29) 

ensures that the injection of all non-empty batches is termi-
nated before HMAX.

Constraint sets (30) and (31) ensure the satisfaction of the 
point addressed in Remark 2. Constraint sets (32) and (33) 
ensure that the binary variable �i,t,n is equal to 1 if and only 
if the batch i is available at the nth DC before the end of the 
day t. To calculate the daily inventory level of the product p 
at each DC, the total discharged volume until the day t is 
added to the initial inventory, and then, the total demand 
until the day t is subtracted. Inventory level should not 
exceed the available storage capacity and it should be more 
than the specified minimum level. This is ensured by con-
straint set (34). The value of the variable wi,p,t,n is determined 
by constraint sets (35)–(38) where M = max

p∈ℙ

(
VOLp

)
 . 

Finally, constraint sets (39)–(47) define the domain of 
variables.

Remark 3  For the ease of modeling, it is assumed that only 
two levels are possible for the pumping rate; however, con-
sidering xMIN∗

j
 and xMAX∗

j
 as the values of variables xMIN

j
 and 

xMAX
j

 in the optimal solution of the model, and with respect 
to constraints (25)–(27), it can be concluded that in real life 
when implementing the optimal solution of the proposed 
model, the actual values of pumping rates used during the 
injection of the batch j can be set on any value in the con-
tinuous range 

[
PUMP,PUMP

]
 provided that the total time 

of injecting batch j is equal to 
xMIN∗
j

PUMP
+

xMAX∗
j

PUMP
 , as demonstrated 

by constraint (25).

Remark 4  It is clear that �p , with the following definition, 
introduces a lower bound on the number of required batches 
of the product p in any feasible solution of the problem 
LMPSP.

(48)

�p =

⎛⎜⎜⎜⎝

∑
t∈𝕋

∑
n∈ℕ DEMp,t,n −

∑
n∈ℕ

�
INITp,n − INV

p,n

�

VOLp

⎞⎟⎟⎟⎠
∀p ∈ ℙ
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Thus, constraint set (49) is a valid inequality for the 
LMPSP, strengthening the LP relaxation bound and hence 
improving the running time of LP relaxation-based methods 
such as branch and bound.

3 � Decomposition‑based algorithm

In this section, we make an attempt to take advantage of the 
special properties of the problem and propose an efficient 
decomposition-based heuristic. Our preliminary experiments 
indicate that by fixing the variable �i,p in the LMPSP (i.e., 
determining the sequence of products), we obtain a reduced 
model which can be solved quickly. Therefore, we present 
a decomposition-based heuristic that iteratively solves two 
problems, namely MP and SP. The MP contains the variable 
�i,p and is initially constructed from constraint sets (2)–(5), 
(39) and (49). Let � (indexed by � ) be a set containing itera-
tion indices. During the algorithm, two sets of cuts (51) and 
(52) (which are called feasibility and improvement cuts, 
respectively) are added to MP. Later, we explain the role 
these cuts in more detail, but note that at each iteration of 
the algorithm, either a feasibility cut or an improvement cut 
is generated. Thus, we define an indicator parameter IND

�
 

equal to 1 if at the �th iteration, a feasibility cut is generated, 
and 0 if at the �th iteration, an improvement cut is generated. 
The generated cuts remain in MP until the end of algorithm, 
and at the beginning of the algorithm, MP starts with � = �.

MP:

s.t. (2)–(5), (39) and (49)

Let 𝛿(�) be the sequence obtained by the MP at the �th 
iteration of the algorithm. Once the MP is solved, the feasi-
bility of 𝛿(�) needs to be verified. For this purpose, the cor-
responding subproblem, denoted by SP(𝛿(�)) , is solved. The 
problem SP(𝛿(�)) contains constraints (6)–(47) together with 
constraint set (56), fixing the variable �i,p to 𝛿(�)

i,p
.

SP (𝛿(�)):

(49)
∑
i∈𝕀

�i,p ≥ �p ∀p ∈ ℙ

(50)min c1

∑
i∈𝕀

∑
p∈ℙ

�i,p

(51)

∑
i∈𝕀

(�)

p̄,after

∑
p∈ℙ∶ 𝛿

(�)

i,p
=0

𝛿i,p ≥ 1 ∀� ∈ 𝕃 ∶ IND
�
= 1 (Feasibility cut)

(52)

∑
i∈𝕀new∶i≥j(�)

∑
p∈ℙ∶ 𝛿

(�)

i,p
=0

𝛿i,p ≥ 1 ∀� ∈ 𝕃 ∶ IND
�
= 0 (Improvement cut)

(53)minc2

∑
j∈𝕀new

xMIN
j

+ c3

∑
j∈𝕀new

xMAX
j

+ cM

∑
p∈ℙ,t∈𝕋 ,n∈ℕ

sp,t,n

s.t. (6)–(33), (35)–(47)

Note that the sequence 𝛿(�) obtained by the MP may vio-
late constraint set (34). Therefore, in the SP, we use con-
straint set (54) instead of (34) where sp,t,n is a new non-
negative variable that indicates the shortage volume of the 
product p on the day t at the nth DC and is penalized in the 
objective function by a sufficiently large coefficient, namely 
cM. Due to the existence of the variable sp,t,n in constraint set 
(54), the SP will not be infeasible. However, since demands 
should be satisfied with no delay, if in the optimal solution 
of SP(𝛿(�)) , we have 

∑
p∈ℙ,t∈𝕋 ,n∈ℕ sp,t,n > 0 , then the sequence 

𝛿(�) is considered infeasible and a feasibility cut is added to 
the MP to remove the sequence 𝛿(�) from its feasible region. 
However, if 

∑
p∈ℙ,t∈𝕋 ,n∈ℕ sp,t,n = 0 , the sequence is feasible 

and its optimality should be investigated. In this regard, if 
the total pumping cost is greater than a given threshold, 𝛿(�) 
is considered as a non-optimal sequence and a cut referred 
to as an improvement cut is added to the MP to remove the 
sequence 𝛿(�) from its feasible region. By adding feasibility 
and improvement cuts to the MP, the feasible region of the 
MP is narrowed down, and finally, the best found solution 
is returned. In the next subsections, we describe how the 
feasibility and improvement cuts are derived.

3.1 � Feasibility cut

Timely delivery of products is very important, and the 
capacities of pipelines and storage tanks are usually 
enough to meet the demands. Thus, planners prefer that the 
batches, even if using the high pumping rate, reach DCs 
so that 

∑
p∈ℙ,t∈𝕋 ,n∈ℕ sp,t,n = 0 . In this problem, we assume 

that the system is able to supply the demands without any 
delay (see Assumption A9). Thus, a sequence is infeasible 
if 
∑

p∈ℙ,t∈𝕋 ,n∈ℕ sp,t,n > 0.
The output of the MP defines a sequence of products 

denoted by 𝛿(�) . In the optimal solution of the problem 
SP(𝛿(�)) , if 

∑
p∈ℙ,t∈𝕋 ,n∈ℕ sp,t,n > 0 , we conclude that 𝛿(�) is 

an infeasible sequence to the LMPSP, and a feasibility cut 
should be added to the MP to remove this sequence from its 
feasible region. The general form of this cut is as follows:

(54)

INV
p,n

− sp,t,n ≤ INITp,n +
∑
i∈𝕀

wi,p,t,n −
∑

t�∈𝕋∶t�≤t

DEMp,t�,n ≤ INVp,n

∀t ∈ 𝕋 , p ∈ ℙ, n ∈ ℕ

(55)sp,t,n ≥ 0 ∀p ∈ ℙ, t ∈ 𝕋 , n ∈ ℕ

(56)𝛿i,p = 𝛿
(�)

i,p
∀i ∈ 𝕀, p ∈ ℙ

(57)
∑

i∈𝕀,p∈ℙ∶ 𝛿
(�)

i,p
=0

𝛿i,p +
∑

i∈𝕀,p∈ℙ∶ 𝛿
(�)

i,p
=1

(
1 − 𝛿i,p

)
≥ 1
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where 𝛿(�)
i,p

 denotes the value of the variable �i,p achieved 
from the MP at the �th iteration of the algorithm. The above 
cut is usually poor and can eliminate just one infeasible 
sequence (i.e., the current sequence) per iteration. Since the 
current solution could not be improved by reducing the num-
ber of batches, cut (57) can be replaced by a little stronger 
cut as follows:

Note that the efficiency and speed of the algorithm sig-
nificantly depend on the strength of cuts. Cut (58) is not the 
most effective one and should be strengthened by utilizing 
the underlying problem structure. In this regard, we make an 
attempt to propose an approach to generate a stronger cut.

Suppose that the current sequence 𝛿(�) is infeasible; there-
fore, at least, one DC is faced with shortage of one or more 
products. Assume that the product p̄ is not supplied on time 
(i.e., 

∑
t∈𝕋 ,n∈ℕ sp̄,t,n > 0 ), and let FB(�)

p̄
∈ �new be the index of 

the first batch allocated to the product p̄ in the sequence 𝛿(�) , 
i.e., FB(�)

p̄
= min

{
i ∈ �new ∶ 𝛿

(�)

i,p̄
= 1

}
 . We divide the current 

sequence into the following two subsequences:

where �(�)
p̄,before

 contains the batches injected before the batch 
FB

(�)

p̄
 and �(�)

p̄,after
 contains the other batches. As an example, 

Fig. 2 shows a sequence containing nine batches of four 
products (8 non-empty batches and 1 fictitious batch). 
Assume that this sequence leads to the lack of product P4, 
then the sets �(�)

P4,before
 and �(�)

P4,after
 are determined as follows:

We claim that the feasibility cut can be stated as (51) impos-
ing that the component of at least one batch of the part �(�)

p̄,after
 

(58)
∑

i∈𝕀,p∈ℙ∶ 𝛿
(�)

i,p
=0

𝛿i,p ≥ 1

(59)�
(�)

p̄,before
=
{
i ∈ � ∶ i < FB

(�)

p̄

}
,

(60)�
(�)

p̄,after
=
{
i ∈ � ∶ i ≥ FB

(�)

p̄

}
,

�
(�)

P4,before
= {1, 2, 3, 4},

�
(�)

P4,after
= {5, 6, 7, 8, 9}

should be changed. The following proposition proves the 
validity of this cut.

Proposition 1  Let 𝛿(�) be an infeasible sequence achieved 
from the MP at the �th iteration of the algorithm, and 
assume that by implementing this sequence, the demand of 
product p̄ cannot be satisfied on time. Then, (51) is a valid 
cut, i.e., it removes the infeasible sequence 𝛿(�) but is does 
not eliminate any feasible solution of the LMPSP.

Proof  It is clear that (51) removes 𝛿(�) from the feasible 
region of MP. It is enough to show that other sequences 
removed by (51) are also infeasible to LMPSP. Let �(�) be 
the set of all sequences at which the part �(�)

p̄,after
 remains the 

same as that of 𝛿(�) and only the part �(�)
p̄,before

 changes. In other 
words, �(�) contains all sequences removed by cut (51). We 
show that none of the elements of �(�) is feasible to LMPSP. 
Since the product p̄ is not supplied on time, it can be con-
cluded that either the number of batches containing p̄ is not 
sufficient, or at least one batch of p̄ is injected late. For every 
sequence 𝛿 in the set �(�) , at least one of the following cases 
may occur:Case 1 Compared with 𝛿(�) , in the sequence 𝛿 , 
only the order of the batches of the part �(�)

p̄,before
 is changed, 

but their product type remains unchanged. In this case, it is 
clear that the volume injected before p̄ is not reduced, and 
hence, the product p̄ is not injected earlier. Thus, 𝛿 encoun-
ters a lack of p̄ as well, and hence, it is infeasible to 
LMPSP.Case 2 Compared with 𝛿(�) , in the sequence 𝛿 , the 
product type of at least one batch in the part �(�)

p̄,before
 is 

changed to p̄ . Let i� ∈ �
(�)

p̄,before
 be a batch containing the prod-

uct p′ in the sequence 𝛿(�) . If in the sequence 𝛿 , the product 
type of the batch i′ is changed to p̄ , then 𝛿 encounters a lack 
of the product p′ . This is because of two facts. First, the MP 
minimizes the number of injected batches. Second, for every 
fixed sequence 𝛿(�) , the SP determines the batch volumes so 
that the total delay is minimized.Therefore, it can be con-
cluded that to obtain a feasible solution, the part �(�)

p̄,after
 

should be changed. (Note that if the part �(�)
p̄,after

 is changed, 
the part �(�)

p̄,before
 may change or remain unchanged.) By adding 

cut (51) to the MP, in addition to the current infeasible 
sequence, 𝛿(�) , many other infeasible sequences are also 
omitted; however, this cut does not violate any feasible solu-
tion to the LMPSP. Hence, (51) is a valid feasibility cut.

Feasibility cut (51) not only removes the current infeasi-
ble sequence 𝛿(�) from the MP feasible region, but also may 
eliminate some other solutions to the MP that happen to be 
infeasible to the LMPSP. Thus, (51) is stronger than cuts 
(57) and (58).

As an example, assuming that the sequence depicted in 
Fig. 2 leads to the lack of product P4, the sequence 0 → P3 Fig. 2   Illustration of dividing a sequence based on shortage of prod-

uct P4



	 Petroleum Science

1 3

→ P4 → P3 → P4 → P2 → P3 → P1 → P2 is clearly infeasible, 
but cut (58) is not able to remove it from the MP feasible 
region. However, if the cut 

∑
i∈𝕀,p∈ℙ�i≥5and𝛿(�)

i,p
=0

𝛿i,p ≥ 1 [gener-
ated with respect to (51)] is added to the MP, some infeasible 
sequences such as 0 → P3 → P4 → P3 → P4 → P2 → P3 → P
1 → P2 and 0 → P3 → P4 → P3 → P4 → P2 → P1 → P3 → P2 
are also removed from the MP feasible region.

Remark 5  Assume that the sequence 𝛿(�) obtained by MP 
leads to the shortage of more than one product, and let ℚ 
contain such products. Then, feasibility cut (51) is written 
based on the product p̄ ∈ ℚ whose corresponding set �(�)

p,after
 

has the smallest cardinality, i.e.,

For example, assuming that the sequence depicted in 
Fig. 2 leads to the lack of the products P3 and P4, we have:

Since |||�
(�)

P4,after

||| <
|||�
(�)

P3,after

||| , we set p̄ = P4 , and hence, feasibil-
ity cut (51) is written as 

∑
i∈𝕀,p∈ℙ�i≥5and𝛿(�)

i,p
=0

𝛿i,p ≥ 1.

3.2 � Improvement cut

In order to obtain good quality solutions with minimum 
pumping rate costs, the utilization of improvement cuts is 
necessary. For this purpose, when a feasible solution is 
obtained, it is checked whether or not it satisfies a given fit-
ness condition. If yes, the algorithm is terminated and the 
best solution found so far is returned. Otherwise, an 
improvement cut is generated to remove this solution from 
the feasible region of MP. As a fitness criterion, we define 
elb as an estimated lower bound on the total volume that can 
be injected at the maximum pumping rate. For a given fea-
sible solution, if 

∑
j∈�new x

MAX
j

≤ elb , we say that the fitness 
condition is established and the best solution found so far is 
reported as a near-optimal solution. However, if ∑

j∈�new x
MAX
j

> elb , the fitness condition is not established 
and an improvement cut is generated and added to the MP 
to remove the current solution from the MP feasible region. 
Let j(�) be the first batch injected at the maximum pumping 
rate, i.e., xMAX

j(�)
> 0 and 

∑
j∈�new∶j<j(�) x

MAX
j

= 0 . Our prelimi-
nary experiments indicate that the inequality (52) may treat 
as an improvement cut imposing that the part {i ∈ �|i ≥ j(�)} 
of the current sequence should be changed. As a result of the 
addition of this cut, some sequences are omitted. In all such 
deleted sequences, compared with the current sequence, only 
the part {i ∈ �|i < j(�)} changes; however, the injected vol-
ume before the batch j(�) usually does not decrease. 

(61)p̄ = argmin
p∈ℚ

(|||𝕀
(�)

p,after

|||
)

�
(�)

P3,after
= {4, 5, 6, 7, 8, 9}, �

(�)

P4,after
= {5, 6, 7, 8, 9}

Therefore, typically, the cost of the using maximum pump-
ing rate for eliminated sequences is not less than the best 
observed solution.

Note that the accuracy of estimation of elb is very impor-
tant. If the estimated value for elb is more than the optimal 
value of 

∑
j∈�new x

MAX
j

 , the first sequence that satisfies ∑
j∈�new x

MAX
j

≤ elb is introduced as a near-optimal solution. 
However, if the estimated value for elb is less than the opti-
mal value for 

∑
j∈�new x

MAX
j

 , the algorithm is repeated until 
the MP becomes infeasible. elb can be obtained as follows:

To just ify the above inequali ty,  note that ∑
p∈ℙ,n∈ℕ,t�∈𝕋∶t�≤t DEMp,t�,n −

∑
p∈ℙ,n∈ℕ

�
INITp,n − INV

p,n

�
 

can be interpreted as the total net volume that should be 
injected to the pipeline within the interval 

[
0,Ht

]
 . We denote 

this value by �t . Additionally, let �min
t

 and �max
t

 represent 
the duration of injecting petroleum products by minimum 
and maximum pumping rates within the interval 

[
0,Ht

]
 , 

respectively. Clearly, we have:

By solving the above system, we get

Thus, the total volume injected at the maximum pumping 
rate within the interval 

[
0,Ht

]
 can be estimated as follows:

Accordingly, the result is established. The value of elb 
can be estimated from the historical data, as well. In other 
words, if the demand pattern of the current planning hori-
zon is somewhat similar to that of a given previous plan-
ning horizon, elb can be estimated with respect to the opti-
mal plan of that horizon. However, it is a rare condition in 
practice.

3.3 � Overall framework of the proposed algorithm

Regarding the previous subsections, the main steps of the 
algorithm are summarized as follows:

(62)

elb ≥

[ ∑
p∈ℙ,n∈ℕ,t�∈𝕋∶t�≤t

DEMp,t� ,n −
∑

p∈ℙ,n∈ℕ

(
INITp,n − INV

p,n

)

−HtPUMP

](
PUMP

PUMP − PUMP

)
∀t ∈ 𝕋

{
�min
t

PUMP + �max
t

PUMP = �t

�min
t

+ �max
t

= Ht

�max
t

=
�t − HtPUMP

PUMP − PUMP

�t − HtPUMP

PUMP − PUMP
× PUMP
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Table 3   Minimum/maximum batch sizes and allowed sequences

p Min batch size VOL , vu Max batch size VOLp , vu Allowed/forbidden sequences

P1 P2 P3 P4

P1 500 12,000 × ✓ ✓ ×
P2 500 15,000 ✓ × ✓ ×
P3 500 18,000 ✓ ✓ × ✓
P4 500 22,000 × × ✓ ×

Note that since the sets of batches and products are 
bounded, the total number of sequences is finite; moreover, 
since at each iteration of the proposed algorithm, at least one 
sequence is eliminated, the algorithm terminates within a 
finite number of iterations.

4 � Computational results

In this section, first, the algorithm is evaluated on a real-
world data case. Then, some randomly generated instances 
are considered to further analyze the proposed algorithm in 
terms of the runtime and solution quality. Experiments are 
carried out on a PC with Intel 2 GHz processor and 2 GB 
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RAM. The algorithm is coded in the AIMMS mathematical 
modeling language 3.12 (Bisschop 2012), and optimization 
models are solved using ILOG CPLEX 12.4 solver (ILOG 
2011) included in the AIMMS software.

4.1 � Implementation of the proposed algorithm 
on a real‑world data case

In this section, the proposed algorithm is evaluated on a 
real-world system, partially taken from MirHassani et al. 
(2011). In this system, four oil derivatives are produced 

in a refinery and delivered to three DCs by a direct pipe-
line. General information about this system is given in 
Tables 3 and 4. Moreover, maximum and minimum batch 
sizes and forbidden sequences are presented in Table 3, 
and permissible storage levels for each product are shown 
in Table 4. The minimum and maximum pumping rates 
are equal to 400 and 720 volumetric units (vu) per hour, 
respectively.

The volumetric coordinates of DCs from the refinery are 
4963 vu, 7242 vu and 14,181 vu, respectively. Initial inven-
tory and the total demand of 11 days for each DC and vari-
ous products are summarized in Table 5.

With respect to Eq. (48), the lower bound of the num-
ber of required batches that should be injected is equal to 
αP1 = 1, αP2 = 3, αP3 = 1 and αP4 = 3. Moreover, regarding 
(62), we obtain elb = 0.

In the first iteration of the algorithm, the MP is solved 
with no cut (i.e., � = � and �� = � ) and the sequence 0 → P
2 → P1 → P2 → P3 → P4 → P3 → P4 → P3 → P2 → P3 → P4 
(denoted by 𝛿(1) ) is obtained. The optimal solution of the 
SP(𝛿(1)) indicates that product P1 faces shortage. We have 
�
(1)

P1,after
= {i10, i11, i12} , and accordingly, a feasibility cut is 

generated and added to the MP. Until this moment, we have 
� = {1} and IND1 = 1.

In the second iteration, the MP is solved and the sequence 
0 → P4 → P3 → P2 → P1 → P2 → P3 → P4 → P3 → P2 → P3 

Table 4   Permissible storage level in each DC (vu)

p Level DC

n1 n2 n3

P1 Max 7425 7425 9870
Min 400 400 800

P2 Max 8330 16,970 16,550
Min 800 1000 1200

P3 Max 19,980 23,050 50,215
Min 1800 2000 5000

P4 Max 26,540 23,660 30,968
Min 2500 3900 6200

Table 5   Initial inventory and the total demand

Initial inventory, vu Total demand, vu

n1 n2 n3 n1 n2 n3

P1 500 660 876 1032 1050 1695
P2 2064 1527 2748 5965 6497 24,237
P3 3152 3021 7898 2972 4678 7338
P4 2583 5181 8000 7211 7131 35,392

Table 6   Description of each iteration of the algorithm

Iteration Running time, s Total shortage vol-
ume, vu

Products faced with 
shortage

Total volume injected at 
PUMP , vu

Feasibility Fitness

1 25 2341 P1 – No No
2 25 1540 P1, P4 – No No
3 32 13,699 P1, P2, P4 – No No
4 11 0 – 27,497 Yes No
5 47 205 P1, P2 – No No
6 16 0 – 34,160 Yes No
7 98 20,500 P1, P2, P4 – No No
8 31 32 P1 No No
9 23 0 – 27,497 Yes No
10 17 0 – 0 Yes Yes
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Table 7   Sequences obtained at each iteration of the proposed algorithm

Iteration Sequence Status of sequence

i12 i11 i10 i9 i8 i7 i6 i5 i4 i3 i2 i1

1 0 P2 P1 P2 P3 P4 P3 P4 P3 P2 P3 P4 Infeasible
2 0 P4 P3 P2 P1 P2 P3 P4 P3 P2 P3 P4 Infeasible
3 0 P2 P3 P2 P1 P2 P3 P4 P3 P4 P3 P4 Infeasible
4 0 P4 P3 P4 P3 P2 P3 P2 P1 P2 P3 P4 Feasible
5 0 P2 P3 P4 P3 P2 P1 P2 P3 P4 P3 P4 Infeasible
6 0 P2 P3 P4 P3 P4 P3 P2 P1 P2 P3 P4 Feasible
7 0 P4 P3 P2 P3 P2 P1 P2 P3 P4 P3 P4 Infeasible
8 0 P4 P3 P4 P3 P2 P1 P2 P3 P2 P3 P4 Infeasible
9 0 P4 P3 P2 P3 P4 P3 P2 P1 P2 P3 P4 Feasible
10 P2 P3 P4 P3 P4 P3 P2 P1 P2 P1 P3 P4 Optimal

Fig. 3   Optimal scheduling for the real-world data case



	 Petroleum Science

1 3

→ P4 (denoted by 𝛿(2) ) is obtained. The optimal solution of 
the SP ( ̃𝛿(2) ) implies that the products P1 and P4 face short-
age. Since |||�

(2)

P1,after

||| ≤
|||�
(2)

P4,after

||| , a feasibility cut is generated 
and added to the MP with respect to �(2)

P1,after
 . By this moment, 

we have � = {1, 2} and IND1 = IND2 = 1.
After four iterations, the first feasible sequence 0 → P

4 → P3 → P4 → P3 → P2 → P3 → P2 → P1 → P2 → P3 → 
P4 (denoted by 𝛿(4) ) is obtained. The optimal solution of 
the SP(𝛿(4)) indicates that a volume equal to 27,497 vu 
of batches is injected at the maximum pumping rate and 
batch 3 is the first batch injected at the maximum pumping 
rate). Since this volume is greater than elb , the fitness con-
dition is not established and an improvement cut is gener-
ated over the last ten batches and added to the MP. By this 
moment, we have � = {1, 2, 3, 4} , IND1 = IND2 = IND3 = 1 
and IND4 = 0 . The same process is repeated, and in the 
tenth iteration, the fitness condition is established. Table 6 
summarizes the information in each iteration and indicates 
that the algorithm could find the optimal solution within 
325 s.

The sequence obtained in each iteration is shown in 
Table 7. The feasibility cuts are generated at iterations 1, 2, 
3, 5, 7 and 8. However, the improvement cuts are produced 
at iterations 4, 6 and 9. The sequence P2 → P3 → P4 → P3 
→ P4 → P3 → P2 → P1 → P2 → P1 → P3 → P4 is the optimal 
sequence having a further non-empty batch, compared with 
the previous sequences. The schedule corresponding to the 
optimal sequence is shown in Fig. 3. 

As mentioned earlier, conventional cut (58) omits only 
the current sequence from the MP solution space, while 
improved cut (51) may remove several infeasible sequences, 
in addition to the current sequence. Thus, the number of 
iterations as well as the running time of the algorithm is 
reduced. For example, by using conventional cut (58) 
instead of cuts (51) and (52) in the above instance, the num-
ber of iterations and the running time increase to 26 and 
6226 s, respectively. In addition, if the model LMPSP is 
solved directly by the solver CPLEX, after 2 h, a solution 
is achieved with 54% relative gap. Therefore, as shown in 
Table 8, the performance of the proposed algorithm with 
improved cuts will be much better than that of the conven-
tional cuts and direct method.

4.2 � Implementation of the proposed algorithm 
on randomly generated instances

In the previous real-world data case, assume that the ini-
tial inventory and total demands of each DC are given in 
Table 9. For this sample, the pipeline system has to inject 
a fraction of total volume at the maximum pumping rate 
and the parameter elb is calculated as 3155 vu. Moreover, 
the lower bounds of the number of batches that should be 
injected are equal to αP1 = 2, αP2 = 3, αP3 = 2 and αP4 = 4.

For this instance, the proposed algorithm reaches an 
optimal solution by considering 16 batches after 21 itera-
tions and 832 s. As shown in Table 10, the first fifteen 
sequences are infeasible, and the first feasible sequence is 
sequence 16. The volume injected at the maximum pump-
ing rate for this sequence is more than the expected value 
elb , and therefore, the fitness condition is not established. 
However, after five more iterations, the fitness condition is 
established and the best found solution (which is optimal 
as well) is returned.

In this instance, if conventional combinatorial cuts are 
used instead of the proposed feasibility and improvement 
cuts (51) and (52), after 2 h, the algorithm provides a solu-
tion with 23% relative gap. If the parameter elb is considered 
as 5000 vu, a suboptimal solution is obtained at the iteration 
16. However, if the parameter elb is considered less than 
3155 vu (e.g., 2500 vu), the fitness condition is not estab-
lished at the iteration 21; thus, the algorithm continues for 
up to 2 h, and then, sequence 21 (similar to the obtained 
optimal solution for elb = 3155 ) is introduced as the best 
found solution.

To further evaluate the performance of the proposed 
algorithm, a number of random samples are generated, and 
the running time and quality of the obtained solutions are 
compared with previous approaches in the literature. Sev-
eral parameters remain unchanged in the pipeline scheduling 
problem at different time horizons; however, other param-
eters change at every time horizon. For example, the capac-
ity of storage tanks is constant in any time period; neverthe-
less, daily demands and initial inventories change at different 
time horizons. Similar to a previous study (MirHassani et al. 
2011), 100 samples are randomly generated, and the algo-
rithm is applied for each one. In all the cases, the algorithm 
reaches the optimal solution in less than ten minutes. The 

Table 8   Comparing the improved cuts with conventional cuts and direct method

Approach Running time, s Number of iterations Relative gap, %

Proposed algorithm with cuts (51) and (52) 325 10 0
Proposed algorithm with conventional cut (58) 6226 26 0
Direct method (CPLEX) 7200 – 54
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average number of iterations over 100 samples is 13. In addi-
tion, the average and standard deviation of the running time 
are 485 and 96 s, respectively. However, achieving the opti-
mal schedule in a short time is impossible in all previous 

heuristics methods for long-term scheduling. For example, 
the algorithm proposed by MirHassani et al. (2011) spends 
an average of 6236 s to reach a suboptimal solution in 30-day 
planning. The performance of the proposed algorithm with 

Table 9   A random sample for the initial inventory and the total demand

Initial inventory, vu Total demand, vu

n1 n2 n3 n1 n2 n3

P1 538 541 902 3650 3103 6126
P2 1345 1432 3273 7617 8244 31,696
P3 3152 3021 6898 6686 11,929 18,815
P4 3678 4333 7130 12,650 13,803 58,382

Table 10   Sequences obtained in throughout the algorithm for a random instance

Iteration Sequence Status of sequence

i16 i15 i14 i13 i12 i11 i10 i9 i8 i7 i6 i5 i4 i3 i2 i1

1 P2 P3 P4 P3 P4 P3 P4 P3 P1 P2 P1 P3 P1 P2 P3 P4 Infeasible
2 P1 P3 P4 P3 P4 P3 P4 P3 P2 P1 P2 P3 P2 P1 P3 P4 Infeasible
3 P3 P2 P3 P1 P2 P3 P4 P3 P4 P3 P4 P3 P1 P2 P3 P4 Infeasible
4 P1 P2 P3 P1 P3 P2 P3 P4 P3 P2 P3 P4 P3 P4 P3 P4 Infeasible
5 P3 P4 P3 P4 P3 P2 P1 P3 P4 P3 P1 P2 P3 P2 P3 P4 Infeasible
6 P3 P4 P3 P4 P3 P4 P3 P1 P2 P3 P2 P3 P2 P1 P3 P4 Infeasible
7 P3 P4 P3 P4 P3 P2 P3 P1 P2 P3 P4 P3 P2 P1 P3 P4 Infeasible
8 P2 P1 P3 P4 P3 P4 P3 P2 P3 P1 P2 P1 P3 P4 P3 P4 Infeasible
9 P3 P4 P3 P4 P3 P2 P3 P4 P3 P2 P1 P2 P3 P1 P3 P4 Infeasible
10 P4 P3 P4 P3 P4 P3 P4 P3 P1 P2 P1 P2 P1 P2 P3 P4 Infeasible
11 P4 P3 P4 P3 P4 P3 P1 P2 P1 P2 P1 P2 P3 P1 P3 P4 Infeasible
12 P4 P3 P1 P3 P4 P3 P4 P3 P1 P2 P1 P2 P1 P2 P3 P4 Infeasible
13 P4 P3 P2 P3 P4 P3 P1 P2 P1 P2 P1 P2 P3 P4 P3 P4 Infeasible
14 P1 P3 P4 P3 P4 P3 P1 P2 P3 P4 P3 P2 P1 P2 P3 P4 Infeasible
15 P2 P3 P4 P3 P4 P3 P2 P3 P4 P3 P2 P1 P3 P1 P3 P4 Infeasible
16 P4 P3 P2 P1 P2 P3 P4 P3 P4 P3 P4 P3 P2 P1 P3 P4 Feasible
17 P2 P3 P4 P3 P4 P3 P1 P2 P1 P3 P2 P1 P3 P4 P3 P4 Infeasible
18 P1 P3 P4 P3 P4 P3 P2 P3 P4 P3 P2 P3 P2 P1 P3 P4 Infeasible
19 P4 P3 P4 P3 P2 P1 P2 P3 P4 P3 P4 P3 P1 P2 P3 P4 Feasible
20 P3 P4 P3 P2 P3 P4 P3 P4 P3 P2 P3 P2 P1 P2 P3 P4 Infeasible
21 P4 P3 P4 P3 P2 P1 P2 P3 P4 P3 P4 P3 P2 P1 P3 P4 Optimal

Table 11   Comparing the proposed algorithm with other approaches

Approach Average running time, s Average 
gap, %

Proposed algorithm with cuts (51) and (52) 413 0
Proposed algorithm with conventional cut (58) 5878 7
Heuristic algorithm proposed by MirHassani et al. (2011) 6236 16
Direct method (CPLEX) > 7200 87
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improved combinatorial cuts, the algorithm with conven-
tional combinatorial cuts, the heuristic algorithm proposed 
by MirHassani et al. (2011) and the direct method for 15 
samples of random data is presented in Table 11. The results 
show that the proposed decomposition-based algorithm is 
significantly better than the previous methods presented in 
the literature in terms of the solution quality and computa-
tion time.

5 � Conclusions

In this paper, the scheduling and inventory management of a 
straight pipeline system connecting a single refinery to mul-
tiple DCs is addressed. The model proposed by MirHassani 
et al. (2011) is considered as a base, and a novel decompo-
sition-based heuristic method is developed to solve it. The 
idea behind our cut generation method is novel and is based 
on the knowledge of the underlying problem structure. The 
proposed algorithm is tested on a real-world system and 
different randomly generated instances. The results confirm 
that the proposed decomposition-based algorithm is sig-
nificantly better than the previous methods presented in the 
literature in terms of the solution quality and computation 
time.

Timely supply of demands is the priority of planners, 
and adequate resources are usually considered to achieve 
this purpose. In other words, a program without any delay 
is preferred to a plan with less pumping cost. However, in 
rare cases, delay is inevitable and every sequence leads to 
a shortage of some products. In such cases, the system is 
unable to meet demands on time and one or more DCs would 
face a shortage of products. The extension of the proposed 
algorithm to deal with this situation is suggested for future 
work. Additionally, it would be valuable to extend the pro-
posed algorithm to deal with more complex pipeline systems 
with, for example, tree or network structures.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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