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Abstract: In this paper we discuss the edge-preserving regularization method in the reconstruction 
of physical parameters from geophysical data such as seismic and ground-penetrating radar data. In 
the regularization method a potential function of model parameters and its corresponding functions are 
introduced. This method is stable and able to preserve boundaries, and protect resolution. The effect of 
regularization depends to a great extent on the suitable choice of regularization parameters. The infl uence 
of the edge-preserving parameters on the reconstruction results is investigated and the relationship 
between the regularization parameters and the error of data is described.
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1 Introduction
Geophysical inversion is an important topic in exploration 

geophysics (Shen et al, 2008; Wang et al, 2008; Wei et 
al, 2008; Yang et al, 2008). However, the reconstruction 
result may not be stable. The purpose of regularization is to 
overcome the instability in reconstruction caused by data 
perturbation. The key of the application of regularization 
is to construct a regularization operator and to determine 
regularization parameters. A simple and well-known 
regularization method is to suppose the model is globally 
smooth. However, an actual geological model consists of not 
only smooth regions, but also evident boundaries that are 
important characteristics of the model. In the reconstructed 
results of seismic or ground-penetrating radar data, the 
subsurface structure characteristics (such as interfaces, faults 
and discontinuities) and lithology characteristics (such as 
cavities, pinchings and lenticular bodies) are regarded to be 
boundaries. These boundaries need to be preserved in order 
to obtain high-resolution reconstruction images with clear 
background and boundaries. It is difficult to preserve the 
boundaries and avoid excessive smoothing in the effective 
application of the regularization method (Zhang and Yang, 
2003). Conventional smoothing methods cannot overcome 
the conflict of suppressing noise and preserving edges 
(Liu and Zhao, 2000) since the noise and edges are both 
high frequency components in a reconstructed image. The 
conventional smoothing method deals with the noise and 
boundaries equally, i.e., it suppresses and smoothes the high 
frequency components. As a result, the noise is weakened, 

and at the same time the boundaries are blurred. On the other 
hand, if the boundaries are preserved, the ability to resist 
noise is lowered. In practical reconstructions, it is necessary 
to trade off edge preservation and noise suppression. In this 
paper, we used the edge-preserving method to reconstruct the 
subsurface structure.

Kunisch and Zou (1998) pointed out that the success 
and effectiveness of the application of the regularization 
method depends to a great extent on the proper selection of 
regularization parameters and the feasibility of the selection 
principle. It is clear from the published literatures that the 
selection schemes mainly are either prior or posterior (Zou et 
al, 2006). The prior scheme has suffi cient theoretical basis; it 
is simple, but complicated if singularity value decomposition 
is used, and the hypothesis condition is hard to satisfy. As a 
result, it is mainly used in theoretical analysis and instruction. 
The posterior scheme’s theoretical basis is slightly 
insufficient; its computation burden is large by the iterative 
method, but it is convenient and fl exible to use. Therefore, it 
has high practical value.

The prior scheme determines the regularization parameters 
by defi ning the regularization parameters as functions of the 
error of data and by considering the error and structure of data 
under different theoretical hypotheses. The prior scheme has 
its value for theoretical analysis, but it is diffi cult to validate 
the application conditions. Therefore, the prior scheme is 
currently researched mostly by mathematicians, while the 
posterior scheme is studied and applied in practice. Several 
methods of the posterior scheme have been developed (Jin 
and Hou, 1996; Guo et al, 2006; Ding and Jin, 2006; Han and 
Fu, 2005; Zhang et al, 2005), for example, (1) the method 
based on the deviation theory, such as Morozov deviation 
theory, generalized deviation theory, Arcangel principle, and *Corresponding author. email: huizhou@cup.edu.cn
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generalized Arcangel principle, (2) the method based on 
searching, such as one-dimensional searching and genetic 
algorithms, (3) the method based on statistics, such as the 
maximum likelihood method, (4) the graphic method, such 
as L curve and ridge trace method, (5) other methods, such as 
Tikhonov optimal principle and the generalized cross check 
principle. Among these methods, some (e.g., graphic method) 
lack theoretical basis, some (e.g., Tikhonov optimal principle) 
have very limited effect, some (e.g., searching method) have 
very low efficiency, and most are iterative methods. If the 
reconstruction technique is iterative, the computational burden 
is very heavy. In addition, the description of inverse problems 
differs among the methods, and there are various existing 
regularization methods. Unfortunately, there is no general 
and effective method to determine regularization parameters. 
This paper tries to investigate the effect of edge-preserving 
parameters on reconstruction results and the relation between 
the parameters and error of data by theoretical analysis and 
numerical calculation, in order to establish a basis on which 
the edge-preserving parameters can be determined reasonably 
and efficiently. The inversion method used in this paper is 
the forward-backward time-stepping method (Takenaka et al, 
2000; Zhou et al, 2007). 

2 Geophysical inversion method with edge-
preserving regularization

Generally, only one component of vibration or electric 
field is used in exploration (Wang et al, 2007) and thus in 
inversion. We derived the inversion equations for multiple 
components, but the reconstruction example in this paper was 
conducted by using one component. We constructed a cost 
functional Q(p,b) with a regularization term (Takenaka et al, 
2000; 2001):
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M is the number of excitation sources, N is the number of 
receivers for each source, Km(rn

r,t) is a weighting function, 
rn

r is the position vector of the nth receiver, t is time, S is the 
area of reconstruction region, I is the number of parameters 
to be reconstructed,  is the observed data at rn

r 

corresponding to the mth source,  is the calculated 
data for the mth source using the guessed parameter p. For the 
case of seismic inversion,  are pressure or particle 
velocity components, and p are bulk modulus, density and 

absorptive factor. For the case of electromagnetic inversion, 
 are electric or magnetic field components, 

and p consist of permittivity, magnetic permeability and 
conductivity. p is expressed as:

   (4)T
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Q2(p,b) is the gradient of the model parameters. It acts as 
a damping factor to control perturbation of error, and to 
increase the stability of solution. λi and χi are regularization 
parameters. λi is a smoothing parameter used to balance 
the weight of the data and the prior term. χi is a threshold 
parameter used to determine the preserved and smoothed 
gradient values. This parameter plays a key role in edge 
preservation when using Eq. (1) (Charbonnier et al, 1997).

This paper uses the potential function proposed by Geman 
and McClure (1985):
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Substituting Eq. (5) into Eq. (3) gives:
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where, bi is an auxiliary variable introduced in the half-
square regularization method by Geman and Yang (1995). 
The introduction of this variable can simplify the calculation. 
Through derivation, if bi is given by:
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Eq. (3) reaches its minimum.

3 Theoretical analysis
We try to find the rule to determine regularization 

parameters by theoretical analysis and numerical simulation 
tests. The effect of the edge-preserving regularization 
parameters on reconstruction results, and the relation between 
the regularization parameters and the error of data will be 
discussed.

The edge-preserving regularization method used in this 
paper is different from the traditional Tikhonov regularization 
method. In the edge-preserving regularization method, 
the prior weight term relates to not only the regularization 
parameter λ, but also the choice of potential function and the 
regularization parameter χ. From Eq. (3) it is seen that the 
prior term is a function of χ, so it is impossible to determine 
the weight of the prior term only from λ.

Defi ne an auxiliary parameter θ:

1 2i iQ Q  (8)

From Eq. (8) it is known that θ is a function of λ and χ, and 
it plays a role to balance the weight between the data and the 
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prior term. It is clear that the function of θ is similar to that 
of the regularization parameter λ in the traditional Tikhonov 
regularization method. Once χ and θ are determined, λ is 
determined uniquely too. Therefore, we actually determine 
the relationship of the regularization parameter χ and 
auxiliary parameter θ with other factors.

According to the prior analysis and deviation theory, the 
auxiliary parameter θ is a function of the error of observed 
data δ:

f  (9)

The auxiliary parameter θ, which balances the data and 
the prior term, replaces the original regularization parameter λ. 
If the error of data δ is large, θ increases to enlarge the weight 
of the prior term. On the contrary, if δ is small, θ decreases to 
increase the weight of the data term.

There is another advantage to replacing λ  by θ . 
Conventionally λ is assigned a fixed value in the course of 
iteration. However, the difference between the observed and 
guessed data becomes small with iteration, so it is necessary 
to adjust the value of λ in order to keep the functions of the 
data and prior term. If λ is replaced by θ, θ can be assigned a 
fi xed value. Its meaning is that the ratio of the data and prior 
term keeps a fi xed value. As a result, the roles of the data and 
prior term can be balanced. Obviously, it is much easier than 
to adjust λ.

The reason why the edge-preserving regularization method 
has the effect to protect the boundaries is the introduction of 
the regularization parameter χ. χ is a threshold value used to 
determine which part of the gradient needs to be protected 
and which part needs to be smoothed. For simplicity, it is 
supposed that a single model parameter is reconstructed in 
this paper. Shown in Fig. 1 is the relation of the potential 
function  with χ and the gradient .

the range of [0, 1]. The gradient located in the left section is 
smoothed and that in the right section is protected.

If χ tends to 0, the length of the left section tends to 0 
too, and the value of the potential function is 1 for all . In 
this case the prior term is of no effect, and the reconstruction 
result is equivalent to the least-square solution. With the 
increase of χ, the length of the left section increases. If χ is 
large enough, the relation between the potential function and 
the gradient of the model  is approximately linear. The 
gradients located in this linear part are smoothed identically. 
In this case the edges are not protected either. As a result, 
χ should be selected to let the gradient of the actual model 
be located (and be protected) in the right section, and to let 
the gradient created by error and noise be located (and be 
smoothed) in the left section.

4 Infl uence of regularization parameters on 
reconstruction results

It is necessary to understand how the regularization 
parameters influence the reconstruction results in order to 
know the relation between the regularization parameters and 
error of data.

Signal to noise ratio (SNR) is defi ned by

 (10)SNR=10log S

N

E
E

where ES and EN is the energy of signal and noise, 
respectively. The noise in this paper is Gaussian.
χ  i s  a  par t icular  parameter  of  edge-preserving 

regularization. The edge-preserving regularization method can 
protect boundaries because of this parameter. The infl uence of 
χ on the reconstruction result is complicated. It is essential to 
learn how it affects the reconstruction result from numerical 
examples.

The reconstruction of permittivity from an electric field 
is illustrated here as a numerical example. In the numerical 
example, the medium is nonmagnetic and only permittivity 
is reconstructed. As shown in Fig. 2(a) there are two buried 
objects with relative permittivity of 4 in a background 
with relative permittivity of 6. The numerals in the x and z 
directions represent grid number. The grid length is 1.2 cm 
in both directions. The temporal interval is 0.02774 ns. The 
excitation pulse is Gaussian, and its highest frequency is 1.0 
GHz. The size of the fi nite-difference time-domain (FDTD) 
simulation region is 161×61nodes, and the duration of the 
data is 369 temporal intervals. The reconstruction region is 
from the 31st to 131st node in the x direction and from the 
7th to 44th node in the z direction. In this example there are 
9 excitation sources and 19 receivers for each source. The 
relative position of a source and its receivers are fi xed for all 
excitations. The gap between the source and the fi rst receiver 
is two grids, the interval of receivers is one grid, and the 
interval of source points is ten grids. In Fig. 2(a) the circles 
on the top of the model indicate the positions of sources. The 
initial guess of permittivity of the reconstruction region is that 
of the background.

From Fig. 1 it is seen that the curve consists of two 
variable sections, one is on the left with a large slope, and 
the other is on the right with a small slope, and χ controls 
the position of the boundary between the two sections. Eq. 
(5) indicates that the potential function is monotonously 
increasing and has a horizontal asymptote. Its value is in 

Fig. 1 Relation of φ with χ and     
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Fig. 2(b) is the reconstructed result after 100 iterations 
from noisy data with SNR=10 dB by using the reconstruction 
method without regularization. Fig. 2(c)-(g) are the 
reconstructed results after 100 iterations from the noisy data 
by using the edge-preserving regularization method when 
θ=0.5, χ=10-7, 0.05, 0.1, 5, 10, respectively. 

By comparing Fig. 2(c) (χ=10-7) and Fig. 2(b), it is known 
that they are almost the same. Since χ is very small, the prior 
term is of no effect, and the reconstructed result is the result of 
the conventional least-square solution. Fig. 2(d) is the result 
for χ=0.05, where the gradients of the model and noise are 
both located in the right gentle section. Since both gradients 
are protected, the reconstructed result is too smooth, and the 
boundaries of the model are out of focus. The result is a little 
far from the actual model. Fig. 2(e) is the result for χ=0.1 
where the left section gets longer and the gradients due to 
the model and due to noise are separated in the left and right 
sections respectively. The gradient due to noise is located in 
the left section, and the gradient due to the model is located 
in the right section. Therefore, the edges of the model are 

protected and most of the noise is suppressed. Only the high 
amplitude noise affects the reconstructed image in the form 
of spots. Fig. 2(f) is the result for χ=5 where the left section 
gets much longer and the gradients due to the model and due 
to noise are both located in the left section. Both gradients are 
weakened and the gradient of the model is more weakened, 
so the noisy spots are more evident. Fig. 2(g) is the result 
after 63 iterations for χ=10 where the left section gets longer 
so that the whole left section is approximately linear. For this 
case both gradients are smoothed and the reconstructed result 
is smooth like Fig. 2(d). With the increase of χ, the protected 
part of gradient gets small, and the reconstructed result is 
close to the initial guess. 

Table 1 illustrates the influence of the regularization 
parameter χ on the reconstructed result. The infl uence of the 
auxiliary parameter θ on the reconstructed result is obvious. 
With the increase of θ, the weight of the prior term gets large, 
and the reconstructed result gets smooth. Conversely, with the 
decrease of θ, the weight of the data term gets large, and the 
infl uence of noise becomes evident.

Table 1 Infl uence of regularization parameter χ on reconstructed result

χ 10-7 0.05 0.1 5 10

Ability to suppress noise Almost none Good Ordinary Ordinary Good

Protection of boundaries Almost none Slight Obvious Slight Slight

Inversion result Infl uenced by noise Too smooth Best Unclear edges,
too many noisy spots Too smooth

From the theoretical analysis and numerical tests, the 
optimal parameters for the edge-preserving regularization 
method are θ=0.3 and χ=0.1. With these parameters the 
reconstructed result is shown in Fig. 2(h). Comparing Fig. 
2(h) with 2(b), it is observed that the influence of noise is 
greatly weakened, and the edges are protected. Fig. 2(h) is 
similar to the reconstruction result shown in Fig. 2(i) from 
noise free data.

The auxiliary parameter θ has a relatively simple effect on 
reconstruction than the regularization parameter χ. As a result, 
in practice θ is roughly determined at fi rst, then  χ is adjusted.

5  R e l a t i o n  b e t w e e n  re g u l a r i z a t i o n 
parameters and error of data

Fig. 3(a) and 3(b) are the reconstructed results after 100 
iterations from noisy data with SNR=20 dB by using the 
reconstruction method without and with edge-preserving 
regularization. Fig. 3(b) is the best result by testing time 
after time, the regularization parameters are θ=0.1 and 
χ=0.08. It is clear that in Fig. 3(b) the infl uence of noise on 
the reconstructed result is weak. However, the reconstructed 
value is not so good, and the edges are not protected quite 

well. From this example it is deduced that the application of 
the edge-preserving regularization is not so meaningful for 
the case of SNR>20 dB.

Fig. 3(c) and 3(d) are the reconstructed results after 100 
iterations from noisy data with SNR=15 dB by using the 
reconstruction method without and with edge-preserving 
regularization. Fig. 3(d) is the best result by testing time after 
time, the regularization parameters are θ=0.2 and χ=0.09. It 
is clear from Fig. 3(c) and 3(d) that the effect of the edge-
preserving regularization is evident. The background of Fig. 
3(d) is less affected by noise and the boundaries are much 
clearer than those of Fig. 3(c).

Fig. 3(e), (f) and (g) are the reconstructed results after 
100 iterations from noisy data with SNR=5 dB by using the 
reconstruction method without and with edge-preserving 
regularization. Fig. 3(f) is the result for the regularization 
parameters θ=0.3 and χ=0.2, and Fig. 3(g) is the result for the 
regularization parameters θ=0.35 and χ=0.15. Fig. 3(f) and 
3(g) are better than Fig. 3(e). It is almost impossible from Fig. 
3(e) to recognize the two objects due to the infl uence of noise. 
With the increase of iterations the image becomes even worse. 
It is noted that with the increase of noise, the conventional 
reconstruction method fails to reconstruct the model. From 
the edge-preserving method, a stable reconstruction result can 
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be obtained. Fig. 3(f) for θ=0.3 and χ=0.2 is more affected 
by noise than Fig. 3(g) for θ=0.35 and χ=0.15. However, 
the boundaries in Fig. 3(f) are protected much better and the 
value of permittivity is more accurate than that in Fig. 3(g).

Fig. 3(h), (i) and (j) are the reconstructed results after 
100 iterations from noisy data with SNR=0 dB by using the 
reconstruction method without and with edge-preserving 

regularization. Fig. 3(i) is the result for the regularization 
parameters θ=0.4 and χ=0.3, and Fig. 3(j) is the result 
for the regularization parameters θ=0.4 and χ=0.25. The 
phenomena are almost the same as the case of SNR=5 dB, 
but the infl uence of noise is more evident. It is clear that the 
edge-preserving regularization plays a very important role in 
suppressing noise and protecting boundaries.

 Fig. 2 Actual distribution of relative permittivity in the reconstruction region (a). Reconstructed images after 100 iterations from the 
data with SNR=10 dB using non-regularization method (b), using edge-preserving regularization method for θ=0.5, χ=10-7 (c),  θ=0.5, 
χ=0.05 (d),  θ=0.5, χ=0.1 (e),  θ=0.5, χ=5 (f),  θ=0.5, χ=10 (after 63 iterations) (g),  θ=0.3, χ=0.1 (h). Reconstructed image after 100 

iterations from noise free data using non-regularization method (i)
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From the above numerical examples, the relation of 
optimal regularization parameters with SNR are listed in 
Table 2. By fitting, two graphs of θ-SNR and χ-EN/ES are 
plotted in Fig. 4. 

It shows that the relation of θ with SNR and χ with EN/ES
are nearly linear. Consequently it is possible to determine θ 
and χ by SNR. However, this paper does not give a regression 
equation since the regression coefficients of the equation 
are strongly related to the variance of the model, the initial 

guess of the model, the reconstruction method, and the type 
of noise. For example, if the initial model is very close to the 
actual one, θ should be large to emphasize the prior term. If 
the initial model is a little far from the actual one, θ should be 
small to emphasize the data term. If the variance of model is 
large, χ is increased to smooth the noise. However, the model 
variance and the approaching degree of initial guess are not 
estimated as easily as SNR, so the maneuverability is low. 

Fig. 3 Reconstructed image after 100 iterations from the data with SNR=20 dB using non-regularization method 
(a), using edge-preserving regularization method for θ=0.1, χ=0.08 (b); from the data with SNR=15 dB using non-
regularization method (c), using edge-preserving regularization method for θ=0.2, χ=0.09 (d); from the data with 
SNR=5 dB using non-regularization method (e), using edge-preserving regularization method for  θ=0.3, χ=0.2 
(f), θ=0.35, χ=0.15 (g); from the data with SNR=0 dB using non-regularization method (h), using edge-preserving 

regularization method for  θ=0.4, χ=0.3 (i), θ=0.4, χ=0.25 (j)
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6 Conclusions
In this paper the edge-preserving regularization method 

in the reconstruction of physical parameters is discussed. 
This method can provide a stable, edge-protected, and high 
resolution result. By theoretical analysis and numerical 
computation, we find the influence of the regularization 
parameters on the reconstruction results, and the relation 
between the parameters and the error of data. It is found that 
with the increase of the auxiliary parameter θ, the weight of 
the prior term gets large, and the reconstructed result gets 
smooth; with the decrease of θ, the weight of the data term 
gets large, and the influence of noise becomes evident. The 
relation of θ and regularization parameter χ with SNR are 
nearly linear. On this basis, a way to select regularization 
parameters is given to avoid the blindness and randomness in 
the applications.

The edge-preserving regularization method used in this 
paper always protects large gradients and smoothes small 
gradients. It is based on the assumption that larger gradients 
are the result of real boundaries, and small gradients are the 
result of the error of data such as noise. This assumption 
is not tenable for the case of low SNR. As a result, when 
the error of data is large, this regularization method should 
be used carefully. It is better to use other regularization 
methods and compare these results to judge the quality of the 
results. In addition, the rule to determine the regularization 

parameters obtained in this paper is qualitative. Experience 
and understanding of the regularization method are needed. 
As a result, this method needs to be researched further.
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