
Vol.:(0123456789)1 3

Petroleum Science 
https://doi.org/10.1007/s12182-019-00370-8

ORIGINAL PAPER

Deep resistivity “turnover” effect at oil generation “peak” 
in the Woodford Shale, Anadarko Basin, USA

Ting Wang1,2,4,5 · Jacobi David3

Received: 1 September 2018 
© The Author(s) 2019

Abstract
The Devonian Woodford Shale in the Anadarko Basin is a highly organic, hydrocarbon source rock. Accurate values of vit-
rinite reflectance (Ro) present in the Woodford Shale penetrated by 52 control wells were measured directly. These vitrinite 
reflectance values, when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells, 
display a rarely reported finding that deep resistivity readings decrease as Ro increases when Ro is greater than 0.90%. This 
phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within 
source rocks are more electrically conductive than aliphatic compounds. And aromatic and resin fractions were generated 
more than aliphatic fraction when source rock maturity further increases beyond oil peak. The finding of the relationship 
between deep resistivity and Ro may re-investigate the previously found linear relationship between source rock formation 
and aid to unconventional play exploration.
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1  Introduction

 In a lot of early-stage unconventional shale play explora-
tions, several key geochemical parameters, including organic 
richness (TOC) and thermal maturity, are need to be known 
to evaluate potential unconventional shale play (Comer 
2005; Jarvie 2011). This study focuses on hydrocarbon 
source rock thermal maturity, which is scaled by vitrinite 
reflectance (Ro) in practice. It is particularly significant to 

map those potential shale play targets’ organic matter ther-
mal maturity in 3-D geological framework if to target at 
shale oil, because the most appropriate maturity range of 
many successful shale oil plays is centered on 0.90% Ro 
based on the successful cases of shale oil plays in North 
America (Comer 2005; Slatt et al. 2009a; Jarvie 2011). The 
reason behind these successful experiences would be source 
beds’ maturity control hydrocarbon phase and mobility. In 
other words, organic maturity drives the success of shale oil 
play to some extent. But in most cases, cost of the analysis 
and insufficient well cuttings or cores generally restrict the 
interpretation of a basin’s maturity to the contouring of a 
relatively small number of vitrinite reflectance values over a 
large area. Another successful experience from the shale oil 
“boom” in North America is that the economically profitable 
shale oil “target” is usually the “old” source rock beds of the 
conventional petroleum systems (Loucks and Ruppel 2007; 
Singh 2008; Comer 2008; Slatt et al. 2009a, b). The Wood-
ford Shale of Late Devonian to Early Mississippian age is a 
typical resource play target of these types of shale plays. It 
has not only proven to be an excellent source rock, charging 
the conventional reservoirs in Kansas and Oklahoma (Comer 
and Hinch 1987; Burruss and Hatch 1989; Philp et al. 1989; 
Jones and Philp 1990; Comer 1991b; Wang 1993; Wang and 
Philp 1997), but also become a frontier for unconventional 
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Table 1   Well list and the corresponding middle Woodford member average measured Ro value used in this study

Code Well name API X, m Y, m M-WF Ave. Ro 
(measured)a, %

1 DUGGER 1-18 35039203660000 466,289.69 3,939,717.99 4.89
2 GREEN 1-3 35009205660000 424,834.4 3,914,727.14 4.05
3 ROBINSON 1-1 35009204260000 456,480.73 3,904,043.43 3.88
4 BOWERS C-1 42211600490000 402,238.36 3,949,712.11 3.40
5 HEFLEY 1-A-90 42211200810000 388,452.15 3,949,280.99 3.29
6 MATHERS RANCH #5 42211300880000 389,109.86 3,974,217.27 3.10
7 REED J R 1-31 42483300850000 392,937.09 3,928,998.14 3.03
8 ALPHA JONES 1 35009202930000 450,419.8 3,901,664.78 2.61
9 SWITZER G 2 35129211580000 459,264.25 3,963,606.24 2.59
10 MCKAY 1 35129207530000 458,034.69 3,974,614.56 2.48
11 BOBWHITE UNIT 1 35149200230000 509,682.52 3,891,207.08 2.03
12 WILBUR HAYES 1-27 35039200550000 530,293.56 3,926,352.74 2.00
13 FRIEDA 1-25 35011215000000 541,836.05 3,936,910.96 1.89
14 MILDRED DAVIDSON 1 42483300110000 401,833.11 3,912,643.98 1.87
15 GRAHAM 19 1 35051210280000 593,914.87 3,842,447.95 1.86
16 CUPP B-3 35009207790000 412,756.15 3,910,031.39 1.82
17 TROY SMITH H 1 35015000070000 561,593.39 3,922,308.75 1.61
18 MIAMI CATTLE 1 42211000730000 363,698.8 3,949,950.12 1.56
19 HOWLING WOMAN 1-12 35011218550000 552,106.29 3,941,530.07 1.55
20 RICHARDSON 8-1 35051208490000 584,150.22 3,912,312.29 1.46
21 ESCO HANAN 1-26 35045208760000 443,925.79 4,004,367.29 1.42
22 SABINE 1 35043211020000 483,650.64 3,980,957.11 1.36
23 WARD 1-28 35017222670000 566,576.87 3,946,683.04 1.32
24 HORN A 1 42483000770000 375,625.74 3,936,521.56 1.27
25 KRUGER 1-6 35039209200000 515,058.03 3,953,027.81 1.26
26 SCHAFER 1 35051212000000 595,874.42 3,896,528.49 1.16
27 SCHREINER 1-2 35011222620000 549,065.54 3,980,894.68 1.15
28 HECKES 1 35017222740000 584,154.31 3,932,574.46 1.14
29 HUSSEY-REYNOLDS 1-11 35137236510000 618,992.72 3,835,213.29 1.07
30 WALTERS 1-13 35043211320000 522,781.05 3,997,015.1 1.05
31 IRENE BURGESS 1-20 35043211330000 497,336.56 3,995,278.88 1.02
32 REHL 2-12 35011217420000 541,127.93 3,998,667.14 0.94
33 DUPIRE 1 35051216490000 616,288.79 3,856,072.06 0.90
34 WILSON 18-1 35153205550000 446,292.61 4,046,201.03 0.89
35 MAINKA-RING UNIT 1 35051001160000 621,276.85 3,865,023.67 0.88
36 MATLI/A/1 35011215010000 565,591.38 3,969,972.59 0.88
37 GOOD 1 35051212140000 617,738.55 3,872,937.07 0.83
38 GARRETT 2 35073215970000 586,250.2 3,976,611.71 0.78
39 SHIELDS 1-1 35049226840000 629,994.4 3,856,318.28 0.75
40 HILL 1-1 35051216710000 610,899.44 3,905,364.44 0.73
41 ROETZEL UNIT B 1 35011300360000 570,492.89 3,997,481.35 0.71
42 EUGENE 1-24 35073227420000 579,705.94 3,996,340.26 0.66
43 CRAIG 1-7 35087213770000 631,980.75 3,874,546.48 0.64
44 BANE/B/2 35093219230000 519,753.85 4,031,325.7 0.63
45 ST-HENNESSY-UN-102 1 35073204290000 594,157.57 3,988,949.36 0.58
46 DOANE 1-22 35093219870000 575,750.29 4,025,211.95 0.56
47 WEST EDMOND SWD 1-24 35017239980000 619,344.37 3,947,880.21 0.55
48 DANNEHL 2-16 35017204490000 604,439.66 3,940,609.93 0.54
49 HENDERSON 1 35017203740000 612,935.55 3,923,838.96 0.53
50 BLOYD 2 35151201560000 515,644.06 4,073,437.34 0.52
51 RUTH 1 35073209590000 616,741.23 3,962,759.77 0.37
52 ROBBERSON 10-1 35017202280000 617,432.82 3,913,731.22 0.32
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resource play exploration and production (Cardott 2014; 
Kvale and Bynum 2014). The unconventional Woodford 
resource play in Oklahoma encompasses four regions, 
namely Anadarko-Woodford, Arkoma-Woodford, Nemaha-
Woodford and Southern Oklahoma-Woodford, and has been 
estimated to contain 0.24 × 1012 ft3 (6.8 × 109 m3) of natural 
gas and 70 × 109 bbl (11 × 109 ton) of oil, in place and poten-
tially producible, on the basis of mass balance calculations, 
indicating a huge potential as an unconventional hydrocar-
bon production target (Comer 2005). In general, well con-
trol is better than seismic data control in terms of vertical 
formation resolution. Therefore, to predict key geochemical 
parameters, especially organic richness and maturity, from 
wireline logs is of practical significance from the perspective 
of unconventional shale play exploration. In other words, it 
is necessary to revisit “old” well logs to assess several key 
geochemical parameters based on the “old” well logs.

 The endeavor to look for a relationship between wireline 
logs and geochemical parameters if any and apply that rela-
tionship to predict geochemical parameters without meas-
uring core data but simply based on wireline logs has been 
years (Meissner 1978; Smagala et al. 1984; Zhao et al. 2007; 
Passey et al. 2010). Meissner (1978) noticed that the Bakken 
Shale in the mature areas of the Williston Basin had much 
higher resistivity than in the immature areas. This was also 
noticed by Goff (1983) working with the Kimmeridge Clay 
in the northern North Sea of the UK. Meyer and Neder-
lof (1986) to some extent combined the observations of the 
above researchers by producing density versus resistivity 
(and sonic versus resistivity) cross-plots in order to sepa-
rate source rocks from non-source rocks on a global scale. 
Smagala et al. (1984) found a linear relationship between 
resistivity and Ro that allowed the mapping of organic matu-
ration levels over a large part of the marine siliciclastic basin 
through the use of a large number of available electric logs. 
Passey et al. (2010) reported that in some shale-gas reser-
voirs that are at very high maturities (Ro > 3), the overall 
rock resistivity can be 1–2 orders of magnitude less than that 
is observed in the same formation at lower thermal maturi-
ties (Ro between 1 and 3) perhaps because the carbon in the 
organic matter is recrystallizing to a precursor of mineral 
graphite, which is electrically conductive. The work reported 
hereby was a “by-product” of the research which initially 
aims to derive quantitative relationships between wireline 
logs and geochemical parameters if any and to develop a 
scheme for calculation of source rock richness and matu-
rity from wireline logs which can be applied on a “global” 
basis. Here, we display a rarely reported finding that deep 

resistivity readings decrease as Ro increases when Ro is over 
0.90%. The new findings on the relationship between deep 
resistivity and Ro may re-investigate the previously found 
linear relationship between resistivity and Ro of source rock 
formation.

2 � Data sets and methodology

2.1 � Geological settings of study area and data sets

The Woodford Shale of Late Devonian to Early Mississip-
pian age is an organic-rich black shale widely distributed 
over the southern Midcontinent from the Iowa Basin in 
Kansas to the Permian Basin in West Texas (Comer and 
Hinch 1987; Comer 1991b). It was found to be distributed 
in most of Oklahoma, including the Anadarko Basin, the 
Anadarko Shelf, Cherokee Platform and the Arkoma Basin. 
In the early Paleozoic time, three major tectonic/depositional 
provinces existed in Oklahoma: the Oklahoma Basin, the 
southern Oklahoma Aulacogen and the Ouachita Trough. 
The Oklahoma Basin, initially formed during the continental 
breakup in the Late Precambrian (Miall 2008), was a shelf-
like area that received widespread and thick shallow-marine 
carbonates interbedded with thin marine shale and sand-
stones (Johnson 1989; Northcutt et al. 2001). The southern 
Oklahoma Aulacogen, a west–northwest-trending trough 
derived from one of the failed rifts during the breakup of 
the supercontinent Rodinia (Miall 2008), was the depocenter 
for the Oklahoma Basin and the precursor of the Anadarko 
Basin (Johnson 1989; Northcutt et al. 2001). The Ouachita 
Trough received deep-water sediments deposited along a 
rift located in the southern margin of the North American 
craton (Johnson 1989; Northcutt et al. 2001). From Silu-
rian to Middle Devonian clean-washed skeletal limestone, 
argillaceous and silty carbonates, referred to as the Hunton 
Group in Oklahoma, were deposited in a shallow marine set-
ting (Northcutt et al. 2001). Epeirogenic uplifts interrupted 
deposition, resulting in two regional unconformities. One 
unconformity arose during pre-middle Early Devonian (pre-
Frisco–Sallisaw unconformity) and the second one during 
pre-Late Devonian (pre-Woodford–Chattanooga unconform-
ity; Johnson 1989). In southern Oklahoma, the pre-Wood-
ford–Chattanooga unconformity eroded to the Upper Ordo-
vician, and in northern Oklahoma, the erosion sculpted out 
Upper Cambrian–Lower Ordovician rocks (Kirkland et al. 
1992).

Table 1   (continued)
a M-WF: middle Woodford member; M-WF Ave. Ro (measured) % denotes average measured vitrinite reflectance value of the middle Woodford 
member section
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The Woodford Formation in the Anadarko Basin was 
thought to be deposited in a restricted basin developed in 
an epeiric sea within the passive margin (Amsden 1975; 
Wang and Philp 1997; Kim and Philp 2000; Blakey 2008; 
Comer 2008; Haq and Schutter 2008; Miall 2008). On the 
Cherokee Platform, the Woodford Shale was deposited on 
a major regional unconformity developed during the Late 
Devonian (Amsden 1975). It is conformably overlain by 
limestone and shale of Early Mississippian age (Fig. 2). 
The predominant lithology of the Woodford Shale is black 
shale. Other common lithologies include chert, siltstone, 
sandstone, dolostone and light-colored shale (Amsden 
1967; Amsden 1975; Comer 1991b). A typical core from 
the Woodford can contain 30%–50% quartz, 0%–20% cal-
cite/dolomite, 0%–20% pyrite and 10%–50% total clay, 
a variance in mineralogy that occurs on a regional scale 
and within the stratigraphic section. These differences 
can have an effect on the porosity and permeability of the 
interval as they are reported to range from 3% to 9% and 
100 nd–0.001 md, respectively (Comer 1991a, b).

A number of Woodford core samples from 52 wells and 
corresponding wireline logs (GR, SP, resistivity, density, 
etc.) provided by ConocoPhillips were collected for this 
study (well location shown in Fig. 1). Accurate values of 
vitrinite reflectance (Ro) present in the Woodford Shale 
penetrated by 52 control wells were measured directly. The 
specific details concerning analytical techniques are sum-
marized in Sect. 2.2.

2.2 � Analytical Methods

Woodford Shale section was identified and subdivided into 
three informal stratigraphic members: upper, middle and 
lower Woodford members (Amsden 1975; Slatt et al. 2009a) 
from GR, SP, RHOB (density log) and deep resistivity logs 
based on the Woodford electronic log characteristics in the 
study area (Hester et al. 1988, 1990). The middle Woodford 
member rock samples were initially screened by determining 
their total organic carbon (TOC) and Rock-Eval parameters. 
The organic-rich samples were subjected to vitrinite reflec-
tance (Ro) measurements. Measured vitrinite reflectance 
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(Ro) values from all of the Woodford cores were obtained 
from the organic petrographic pellets (either made from a 
whole rock or a kerogen concentrate if it is not easy to look 
for good vitrinite from a whole rock) prepared at the Okla-
homa Geological Survey Organic Petrography Laboratories 
in Norman, Oklahoma, and measured at the University of 
Oklahoma Organic Geochemistry Laboratories by the author 
of this study. Wireline logs were provided by Mr. David 
Jacobi from the Geology & Geophysics & Reservoir Engi-
neering Department of ConocoPhillips Company, Houston. 
Wireline logs were loaded onto Schlumberger Petrel and 
treated to calculate geometric average deep induction log 
(ILD) values for the middle Woodford member (M-WF) for 
each well.

3 � Results and discussion

Figure 2 is a typical well-log cross section showing clearly 
three informal stratigraphic Woodford members which are 
highly correlative and consistent over virtually the entire 

Anadarko Basin. The middle Woodford member has the 
higher TOC values (Miceli 2010; Miceli and Philp 2012; 
Wang 2016; Wang and Philp 2019) than the upper and 
lower Woodford members, resulting in its diagnostic well 
log features including: (1) relatively lower deep ILD resis-
tivity compared with upper and lower members; (2) lower 
bulk density (2.2–2.4 g/cm3); (3) lower SP; (4) shorter 
DT (sonic log) reading; and (5) extremely high GR (over 
300 API) (Hester et al. 1988, 1990). Pristane and phy-
tane (Pr/Ph) and biomarker ratios suggest the establish-
ment of stronger anoxic conditions during deposition of 
the middle Woodford member than the upper Woodford 
member, where the latter may have received an additional 
siliciclastic organic matter input (Miceli and Philp 2012; 
Wang 2016; Wang and Philp 2019). In the Cherokee Plat-
form in the proximity of the Nemaha Uplift, Pr/Ph ratios 
indicate deposition under suboxic to dysoxic conditions 
for the Woodford Shale interval analyzed (Wang 2016; 
Wang and Philp 2019). Based on these previous studies, 
the middle Woodford member was used to represent the 
whole Woodford section in this study.

Log type Log full name Range Unit M_WDF characteristics
GR Gamma ray 0 – 450 API Highest (>300)
ILD Induced lateral deep resistivity 2000 – 0.1 Ohm.m Relative lower
SP Spontaneous potential 100 to –135 mV
RHOB Bulk density 2 – 3 g/cm3 2.2 – 2.4
DT Sonic log 32 – 171 µs/ft > 40
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Fig. 2   Woodford Shale stratigraphic subdivision with well logs (U. WF upper Woodford, M. WF middle Woodford, L. WF lower Woodford, 
Miss. Lime Mississippian limestone); the location of A–A′ cross section is shown in Fig. 1
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By cross-plotting sample depth versus corresponding 
vitrinite reflectance (Ro) values, middle Woodford member 
rock samples from the studied wells in the Anadarko Basin 
(Fig. 3) show a very good linear relationship between meas-
ured depth and Ro values (in logarithm scale). This finding is 
consistent with that found on the Niobrara “K” zone organic-
rich calcareous shale by Smagala et al. (1984). Lockridge 
and Scholle (1978) noticed a reduction in porosity with 
increased burial depth for the Niobrara chalks in the Denver 
Basin. Smagala et al. (1984) attributed the co-increases in 
resistivity of the chalk with burial depth to the consequence 
of the porosity reduction with increased overburden accord-
ing to the empirical Archie equation (Archie, 1942). This 
finding is consistent with that the Woodford section in the 
Anadarko Basin was undertaking a “simple” burial history 
without multiple stages of subsiding and uplifting (Ams-
den 1975; Johnson 1989; Hester et al. 1988, 1990; Comer 
1991b, 2005, 2008), which may lead to that both the burial 
depth and vitrinite reflectance “recorded” the thermal stress 
applied on the rock (Pepper and Corvi 1995). In Fig. 4, the 
starting point for the Woodford Shale entering early oil 
window in the Anadarko Basin is around 35 Ω m, which 
is consistent with that reported by Schmoker and Hester 
(1990). The reason may be attributed to that there are many 
uncertainties in terms of relationship between resistivity and 
thermal maturity during the stage in which the source rock 
had not yet entered the oil window (Schmoker and Hester 
1990). By plotting average formation resistivity readings 
of the middle Woodford member (geometric average value 
of ILD log readings of the middle Woodford member used 
in this study) versus average Ro value of the correspond-
ing middle Woodford member, it was shown that forma-
tion resistivity increases as maturity increases before the 

oil generation peak (Ro ~ 0.85%) and decreases as maturity 
further increases beyond the oil generation peak. 

The resistivity of a rock is directly related to those com-
ponents that are electrically conductive. In conventional 
reservoirs, formation water, usually thought to allow for 
ionic conduction, is the primary conductor of electricity. 
Low resistivity is observed when the amount of saline water 
filled in porosity is high—the larger the volume of forma-
tion water, the lower the resistivity of the fluid-filled rock. 
From the perspective of traditional reservoir petrophysics, 
which did not treat too much organic-rich components like 
kerogen, hydrocarbon fluids (oil or gas) are non-conductive, 
and when they are present in sufficient quantities, they dis-
place the amount of formation water, resulting in resistivity 
values higher than the same rock fully filled with electrically 
conductive formation water (Archie 1942). There are many 
variants to the interpretation of resistivity in conventional 
reservoirs (e.g., clay conductivity and shaly sand analysis; 
thin-bed effects due to interbedded shale; Waxman and 
Smits 1968; Worthington 1985; Passey et al. 2006), but 
these are beyond the scope of the current paper. Based on 
previous consideration, a model was proposed to interpret 
the finding in this study. As source rock enters “oil window” 
approaching “oil peak” (Ro less than 0.85%), it is generat-
ing greater amount of aliphatic compounds than aromatic 
and resin fractions. Aliphatic compounds are less conduc-
tive than aromatic and resin fractions since the latter contain 
a larger number of conjugated π-bonds, which allow delo-
calized electrons to flow through the π-bonds. However, as 
source rock maturity further increases beyond oil peak, it 
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is generating a greater amount of aromatics and resins than 
aliphatic compounds, which leads to the decrease in forma-
tion resistivity.

In the resistivity versus Ro diagram, the data points in 
the high-maturity area (beyond oil peak when Ro is greater 
than 0.85%) are distinctly clustered into two groups and a 
good negative linear relationship between formation resistiv-
ity and Ro values was displayed in each group (Fig. 4). By 
displaying the samples’ location of three groups onto the 
Anadarko Basin structural province map, the wells of group 
3 samples were shown to be adjacent to the depocenter 
(Fig. 1), where type II marine shale was deposited domi-
nantly. The wells of group 2 samples approach the basin 
flank (Fig. 1), where type III terrestrial organic matter get a 
greater chance to be received. The Late Devonian (385 Ma) 
paleogeography map of the study area (Fig. 5) shows that the 
Woodford Shale was getting started to deposit in the ancient 
Oklahoma basin, which was originally derived from a failed 
rift formed back to Precambrian. During Late Devonian, it 
was a restricted basin within the passive margin (Johnson 
1989; Northcutt et al. 2001; Miall 2008). The Anadarko 
Basin flank, compared to the Anadarko Basin depocenter, 
was more likely to receive fluvial terrestrial organic matters 
from the paleohighs from northeast (Blakey 2013; Blakey 
and Ranney 2018). Further investigating the resistivity ver-
sus Ro diagram (Fig. 4), at the same maturity level, the data 
point of group 3 is less conductive than that of group 2, 

probably attributed to less aromatics/resins generated by 
group 3 type II marine kerogens than group 2 ones which 
contain a greater amount of type III terrestrial kerogens, 
resulting in more structural kerogens (producing a greater 
amount of aromatics/resins). Passey et al. (2010) found a 
similar phenomenon that resistivity decreases as source rock 
becomes mature as well, especially when Ro goes beyond 
3.0%. Passey et al. (2010) proposed an interpretation that 
perhaps the carbon in the organic matter is recrystallizing 
to the mineral graphite, which is electrically conductive. 
However, previous studies indicate that pure mineral graph-
ite is not present in abundance at these thermal maturities. 
Thus, it is likely that a precursor to graphite is forming. It is 
sufficient to state that in extremely high-maturity organic-
rich rocks (Ro > 3), the rock may be much more electrically 
conductive due to other mineral phases being present rather 
than solely formation water, clay and pyrite (as usually con-
sidered) (Passey et al., 2010).

4 � Conclusions

As a famous traditional highly organic-rich hydrocarbon 
source rock, the Devonian Woodford Shale in the Anadarko 
Basin is used to delineate the relationship between wire-
line log responses and thermal maturity. Accurate values 
of vitrinite reflectance (Ro) present in the Woodford Shale 
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Fig. 5   Late Devonian (385 Ma) paleogeography map of North America (the ancient Oklahoma Basin is outlined by purple dots and Oklahoma 
by the red solid line). Modified from Blakey (2013)
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penetrated by 52 control wells were measured directly to 
obtain an average Ro value of the middle Woodford member, 
which is the most organic-rich member of Woodford. The 
geometric average number of ILD log readings of the cor-
responding middle Woodford member was used as its for-
mation resistivity. These vitrinite reflectance values, when 
plotted against borehole resistivity for the middle member 
of the Woodford Shale in the wells, display a rarely reported 
finding that an increase in Ro values (source rock maturity 
scale) is positively related to increased resistivity in Ro range 
of 0.60%–0.90% and decreased resistivity in Ro range of 
0.90%–2.00%. This phenomenon may be attributed to that 
aromatic and resin compounds containing conjugated pi 
bonds generated within source rocks are more electrically 
conductive than aliphatic compounds. And aromatic and 
resin fractions were generated more than aliphatic fraction 
when source rock maturity further increases beyond oil peak. 
The finding of the relationship between deep resistivity and 
Ro may re-investigate the previously found linear relation-
ship between source rock formation and unconventional play 
exploration.
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