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Abstract
Full-waveform inversion (FWI) is a powerful tool to reconstruct subsurface geophysical parameters with high resolution. As 
3D surveys become widely implemented, corresponding 3D processing techniques are required to solve complex geologi-
cal cases, while a large amount of computation is the most challenging problem. We propose an adaptive variable-grid 3D 
FWI on graphics processing unit devices to improve computational efficiency without losing accuracy. The irregular-grid 
discretization strategy is based on a dispersion relation, and the grid size adapts to depth, velocity, and frequency auto-
matically. According to the transformed grid coordinates, we derive a modified acoustic wave equation and apply it to full 
wavefield simulation. The 3D variable-grid modeling is conducted on several 3D models to validate its feasibility, accuracy 
and efficiency. Then we apply the proposed modeling method to full-waveform inversion for source and residual wavefield 
propagation. It is demonstrated that the adaptive variable-grid FWI is capable of decreasing computing time and memory 
requirements. From the inversion results of the 3D SEG/EAGE overthrust model, our method retains inversion accuracy 
when recovering both thrust and channels.

Keywords  3D full-waveform inversion · Adaptive variable grid · Finite-difference modeling

1  Introduction

A high-resolution velocity model is key to migration meth-
ods and reservoir estimation. Traveltime tomography has 
been widely used in velocity model reconstruction, but it 
is based on the high-frequency assumption and has low 
resolution. Thanks to the considerable progress of compu-
tation ability, FWI has become a potential method to reveal 
detailed information by iteratively updating subsurface 
model parameters, the misfit between observed data and 
synthetic data minimized using a gradient-based method 
(Virieux and Operto 2009). Tarantola (1984) proposed the 
adjoint state method to estimate the gradient of misfit by a 
zero-lag correlation between the source wavefield and the 
residual wavefield, which avoids explicitly calculating the 

Jacobi matrix. Bunks et al. (1995) developed a multi-scale 
inversion strategy. Over the past decade, a lot of research has 
been conducted to solve FWI problems, such as the “cycle 
skipping” problem (Shin and Cha 2008; Van Leeuwen and 
Mulder 2010; Ma and Hale 2013; Métivier et al. 2016) and 
expensive computational costs (Ben-Hadj-Ali et al. 2011).

The needs of 3D seismic techniques have been increas-
ing recently as more 3D wide-azimuth surveys have been 
carried out; however, the processing demands prohibitive 
computation costs. Ben-Hadj-Ali et al. (2008) and Sirgue 
et al. (2008) developed 3D FWI and provided prelimi-
nary insights on the feasibility and advance of 3D FWI 
in the time domain and frequency domain, respectively, 
based on some synthetic tests. Further 3D tests on field 
data sets were presented (Plessix and Perkins 2010; 
Warner et al. 2013; Raknes et al. 2015). In order to reduce 
computation, the simultaneous-shot technique provides 
a trade-off between computational efficiency and imag-
ing quality, introducing cross-talk noises (Ben-Hadj-Ali 
et al. 2011). Vigh and Starr (2008) studied 3D prestack 
plane-wave FWI that reduced the amount of computation. 
Since the Compute Unified Device Architecture (CUDA) 
programming language was employed in computational 
science, graphics processing units (GPUs) have been 
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widely applied to 3D data in exploration geophysics. It 
is presented that GPU runtimes are roughly one-tenth to 
one-twentieth of corresponding multi-core CPU-based 
implementations (Weiss and Shragge 2013). For exam-
ple, 3D Laplace-domain full-waveform inversion on a 
single GPU card was verified to be accurate when used 
to invert a long-wavelength velocity model, and the peak 
speedup of GPU parallelization is 24.6 times (Shin et al. 
2014). Liu et al. (2015) achieved a good acceleration ratio 
up to 19.5 using 3D simplified hybrid-domain FWI on 
GPU. The time-domain FWI is less memory-demanding 
but time-consuming; hence, intensive computation time 
still remains a distinct weakness of 3D time-domain FWI 
(Jiang and Zhu 2018). When tens of iterations and hun-
dreds of shots are performed to characterize subsurface 
velocity structures, an efficient wavefield numerical mod-
eling algorithm is the core of accelerating time-domain 
FWI (Vigh and Starr 2008).

During the process of FWI, forward propagation of the 
source wavefield and backward propagation of the residual 
wavefield occupy the largest portion of operation time. 
Therefore, the numerical simulation algorithm is the key to 
promoting efficiency. The variable-grid technique changes 
grid size in different areas aiming at near-surface low-veloc-
ity zone and complicated small-scale anomalies in deeper 
layers. The advantage of this method is that the improvement 
in efficiency, the reduction of memory requirements and the 
promotion of precision can be achieved simultaneously. 
Irregular spatial grid size was firstly proposed by Moczo 
(1989). Jastram and Behle (1992) modeled on a grid of vary-
ing spacing in depth based on a two-dimensional acoustic 
wave equation. Jastram and Tessmer (1994) developed it into 
elastic cases. Zhu et al. (2007) and Sun et al. (2008) proved 
that the variable-grid method in depth promotes the accuracy 
and efficiency of finite-difference forward modeling, and 
error was evaluated and reduced by changing the difference 
operator. Huang et al. (2015) combined the coordinate trans-
formation for the irregular surface and a mapping staggered-
grid finite-difference forward modeling method using the 
dual-variable-grid size in time and space. Zhang et al. (2018) 
used a discrete fracture model (DFM) to reflect the shape 
and distribution of the fractures in the flow model and to 
simulate reservoir production with different fracture param-
eters. Fan et al. (2015) applied a rotated grid system to the 
transition region for high-order finite-difference modeling 
that is capable of doubling the grid spacing without artificial 
reflections. Fan et al. (2018) further developed a discon-
tinuous-grid finite-difference scheme for frequency-domain 
2D scalar wave modeling. However, the fine-to-coarse spac-
ing ratio of both modeling methods (Fan et al. 2015, 2018) 
is restricted to a power of two. To double the grid size, a 
transition zone in the coarse-grid area is indispensable. The 

modeling algorithms and strategies mentioned above showed 
good performance on models with a shallow low-velocity 
layer and a complex subsurface geological body, such as gas 
clouds and small-scale low-velocity inclusions.

Variable-grid modeling techniques have been used in 
migration and waveform inversion. Ha and Shin (2012) used 
an axis transformation technique to improve the Laplace-
domain FWI efficiency, in which two transformation func-
tions are proposed. Li et al. (2014) applied a dual-varia-
ble-grid forward modeling algorithm with high precision 
and efficiency to reverse time migration, which improves 
the accuracy in fractured reservoirs and irregular surface 
imaging. The dual-variable-grid method in time and space 
was applied to encoding FWI, and a multi-scale strategy 
was realized by reducing the global grid scale and fine grid 
scale (Qu et al. 2015). Frequency-domain FWI based on a 
variable-grid finite-difference method was also implemented 
to prove its feasibility and effectiveness by numerical tests 
(Li et al. 2016). However, a conventional grid discretization 
strategy always finely resamples a specified zone whose edge 
creates artificial reflections because the grid size in this zone 
is several times smaller than the global ones. Such an artifi-
cial error is difficult to remove from the calculated wavefield. 
In addition, all the above attempts are limited to 2D cases 
while the enormous computation cost, the biggest problem 
in 3D FWI, urgently needs to be reduced. Up to the present, 
variable-grid methods have not been used in 3D FWI on 
GPU devices to test their feasibility, efficiency and accuracy.

In this paper, we propose a 3D optimized variable-grid 
FWI on a single GPU card and 3D numerical tests are oper-
ated to verify the validity and efficiency of the method. 
Based on the dispersion relation, grid sizes adapt to local 
velocity and depth, which not only simulates wavefields with 
higher accuracy but also accelerates the calculation during 
the implementation of FWI. With the obvious reduction of 
computing time, the proposed FWI method inverts for the 
velocity model successfully. In the following sections, we 
will firstly review the FWI theory. Then we will introduce 
our grid discretization strategy, deriving a new wave equa-
tion used in adaptive variable-grid FWI. The GPU imple-
mentation workflow of this method is also detailed in the 
next part. After that, 3D numerical test results are shown 
using simple models to demonstrate the efficiency and accu-
racy of the proposed modeling method. In the next part, a 
complex 3D model, the 3D SEG/EAGE overthrust model, 
is used to show that application of this method to FWI is 
feasible. From the inverted results and computing time 
comparison, variable-grid FWI shows higher computational 
efficiency and has better convergence. In the last section, 
conclusions will be presented.
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2 � Theory

2.1 � Adaptive variable‑grid modeling

Time-domain 3D FWI is challenging due to the large amount 
of calculation. Conventional FWI usually uses a fixed regu-
lar grid while modeling the forward wavefield and the back-
ward propagating residual wavefield. In most cases, the fixed 
global grid size is not fine enough in the near-surface low-
velocity zone. Besides, in deeper layers with higher veloc-
ity, the model is oversampled and the calculation cost is 
increased without increasing accuracy. To improve this situ-
ation, we applied adaptive variable-grid modeling to FWI, 
which achieves higher efficiency without losing accuracy. 
In this section, we will focus on presenting the theory and 
strategy of adaptive variable-grid modeling.

The 3D time-domain acoustic wave equation with con-
stant density with regular-grid discretization can be written 
as

where v(x) is the velocity, fs(t) is the source, and u is the 
pressure field; x, y, z are the position in the regular-grid 
coordinate.

As shown in Fig. 1a, the spatial sampling intervals dx, 
dy, dz are fixed in the direction of x, y, z. When the near-
surface velocity is low or low-velocity targets exist in the 
deeper zone, such coarse-grid discretization will lead to 
inaccurate forward and backward wavefields due to disper-
sion phenomenon. On the other hand, if we use fixed fine 

(1)
1

v2(�)

�2u

�t2
=

[
�2u

�x2
+

�2u

�y2
+

�2u

�z2

]
+ fs(t)

grids, the large computing and memory storage problem 
will be more severe especially for the implementation of 
FWI. Moreover, conventional variable-grid methods are 
fixed local grid refinement methods, which can only refine 
a specified area. The abrupt change of grid size in the 
transitional zone from fine grid to coarse-grid results in 
artificial reflections.

Here, we use a new grid discretization strategy to resa-
mple velocity models in the z direction, based on disper-
sion relation written as

where λmin denotes the minimum wavelength, vmin repre-
sents the minimum velocity in the model, and fmax represents 
the maximum frequency of the source signal. Usually, the 
maximum frequency of the Ricker wavelet is three times the 
wavelet dominant frequency. So we refine the z-axis using 
the following equation:

where v(z) denotes the velocity in depth z. To ensure disper-
sion never occurs, we use the minimum velocity among all 
grid points in that depth to replace v(z). fd represents the 
dominant frequency of the Ricker wavelet. n is the number 
of grid points per wavelength, which is set as ten in this 
work to ensure the wavefields are adequately resampled. 
The horizontal grid size dx and dy is fixed and equals to the 
regular-grid size, while the vertical grid size dz adapts to the 
local velocity and automatically changes with depth. This is 

(2)�min =
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v(z)

nfd

x

y

z

0

(a)

x

y

z

0

(b)

Fig. 1   Physical coordinate with traditional (a) and adaptive variable-grid discretization strategy (b)
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because the main velocity changing direction is along the 
depth direction, especially for background velocity models.

Using the dispersion relation mentioned above, we can cal-
culate theoretical dz on each grid point according to its local 
velocity. With the theoretical grid intervals obtained, we take 
trial steps from z = 0 to get the first adaptive-grid depth like 
the five blue rectangles in Fig. 2. When the trial step length is 
equal to z (the first red square in Fig. 2), we will get the first 
feasible grid point z1. Then we restart the attempt with a new 
trial step until we get the next square and z2. We repeat the 
process to the maximum depth, and we obtain the depth of 
each optimal grid point zi; in other words, we get the new grid 
discretization with the adaptive variable grid. Note that the 
process of taking trial steps is necessary, because if we simply 
use theoretical dz as grid size and the local velocity is decreas-
ing, it is not fine enough to assure that modeling is dispersion 
free. After that, we smooth zi to prevent spurious reflections. 
In this way, the regular physical coordinate is transformed into 
a new physical coordinate with variable vertical grid intervals.

The resampled physical coordinate is shown in Fig. 1b. 
From this grid discretization graph, we can see that the lateral 
grid size is never changed. The vertical grid size increases 
gradually from shallow layers with low velocity to deep lay-
ers with high velocity. In general cases, the vertical grid size 
at the bottom of velocity models amounts up to several times 
the fine grid size. The new discretization strategy enables the 
grid size to increase gradually according to depth and velocity, 
instead of a violent change in the transitional zone that usually 
amounts to several times the fine grid size. That is the reason 
why our method has higher accuracy than the conventional 
variable-grid method.

Therefore, we have two coordinate systems and their trans-
formation relation can be written as:

(4)

xvg = x

yvg = y

zvg = �(z)

where xvg, yvg, and zvg are the new variable-grid location in 
the transformed coordinate system; φ(z) is the mapping from 
the original depth to the new depth after spatial resampling. 
Compared with a fixed axis transformation function pro-
posed by Ha and Shin (2012), this function φ(z) is capable of 
varying according to different velocity models. The new axis 
transformation function φ(z) is changeable under different 
geological circumstances. Moreover, errors originating from 
large grids in deep layers are also avoided. In this method, 
the coordinate only changes in depth while the lateral grid 
size is fixed. Therefore, the x, y position of grid points is 
identical to the original ones. Here, we will focus on the 
formula derivation in the direction of z.

We can get the first-order and second-order derivatives of 
zvg with respect to the original physical coordinate variables 
z using a finite-difference method:

According to the derivation of inverse functions, we 
derive the derivatives of z, with respect to zvg:

Based on Eq. 1, we derive the acoustic wave equation in 
the new coordinate system. The first-order derivative of the 
replacement is written as:

Also, we can derive the second derivative:
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Fig. 2   Variable-grid discretization strategy to obtain transformed z
vg
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To sum up, we can rewrite Eq. 1 as follows:

Equation 10 is the modified wave equation for variable-
grid modeling. One term added to Eq. 1 increases the com-
putation complexity for one grid point. Nevertheless, this 
small amount of extra calculation can be neglected compared 
with the large reduction of the calculated number of grid 
points. For 3D time-domain acoustic modeling, we adopt an 
8th-order finite-difference operator. For the boundary con-
dition, we applied an absorbing boundary condition sug-
gested by Clayton and Engquist (1977) to minimize artificial 
reflected waves from the edges of the computation domain.

2.2 � Full‑waveform inversion based on GPU 
acceleration

As the most intensive and time-consuming step, full wave-
field simulation is accelerated using the proposed grid dis-
cretization strategy. A GPU device has higher performance 
than CPU devices in accelerating the calculation for the 
data-parallel tasks in that it has several hundred or more 
thread processors (Jiang and Zhu 2018; Yang et al. 2015). 
The large computation cost is a challenging problem of 3D 
full-waveform simulation with the performance of a number 
of shots. Therefore, it is beneficial to apply GPU paralleliza-
tion techniques in the procedural steps. To further increase 
efficiency, we use the CUDA-C language for GPU program-
ming on a workstation with a single GPU card. The GPU 
card used in this paper is the NVIDIA Quadro P5000, which 
has 2560 processors, and 16 GB of GDDR5X memory. It 
uses PCI-E to connect with an Intel Xeon E5-2630 v4 CPU 
running at 2.20-GHz with 256 GB RAM memory. To illus-
trate the performance increase in GPU implementation, we 
test the efficiency of the CUDA-C code and CPU code based 
on several 3D models with different grid numbers (Table 1).
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We parallelize key computation modules of 3D FWI, 
mainly including forward modeling, backward propagating 
residual wavefield, estimating descent direction and search-
ing step length. Each step above is calculated in a GPU kernel 
function. Resampling the velocity model is not as computa-
tionally intensive as the other steps, and hence it is imple-
mented on the CPU, including obtaining φ(z) and calculating 
corresponding derivatives. Moreover, linear interpolation is 
applied to transform the wavefield snapshots and inversion 
results to the original regular-grid coordinate. The inverse 
transformation of the inverted velocity model works at the 
final step rather than after each full wavefield simulation in 
each shot loop. The working flowchart of the variable-grid 
FWI is shown in Fig. 3, in which the calculation modules 
with a gray background are implemented on the GPU.

FWI estimates subsurface model parameters by mini-
mizing the least-squares distance between the synthetic and 
observed data. The L2 norm difference objective function is 
defined as (Tarantola 1984),

where u(xr, t; xs) is synthetic data; u0(xr, t; xs) is observed 
data recorded at time t; xs and xr are the locations of sources 
and receivers; and tmax is the largest calculated time.

FWI is a large-scale nonlinear optimization problem, and 
we generally use a gradient-based local optimization method 
to minimize the objective function and update the model 
parameters iteratively. Starting with an initial model m0, the 
model is updated iteratively as follows:

where mk is the updated model at the kth iteration; αk is the 
step length obtained by parabolic interpolation to minimize 
the objective function in the descent direction dk.

In practice, the gradient of the objective function E(m) 
with respect to the model parameter is derived through the 
adjoint state method (Plessix 2006; Fichtner and Trampert 
2011). It is formulated as the correlation of the source wave-
field forward propagated from the source with the adjoint 
wavefield back propagated from the residual at the receivers 
(Tarantola 1984), which is expressed as:

where ures is the back propagated residual wavefield, and 
v(x) is velocity.
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Table 1   Computing time and speedup of modeling on GPU

Number of 
grids

100 × 100 × 100 200 × 200 × 200 300 × 300 × 300

Computing time 
on CPU (1 
core), s

127.9 1272.2 4363.0

Computing time 
on GPU, s

1.3 7.7 13.1

Speedup 98.4 165.2 333.1
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In this work, we use a nonlinear conjugate gradient 
method to determine the descent direction. The descent 
direction is defined as:

where βk is a correction coefficient modifying dk into an 
optimal direction, and dk−1 is the descent direction in the 
previous iteration. Here, we use a hybrid scheme combin-
ing the Hestenes–Stiefel method and the Dai–Yuan method 
(Hager and Zhang 2006)

where �HS
k

 is calculated by the Hestenes–Stiefel method, and 
�DY
k

 is estimated by the Dai–Yuan method.

(14)dk =

{
−∇E(m0), k = 0

−∇E(m0) + �kdk−1, k ≥ 1

(15)�k = max(0,min(�HS
k

, �DY
k

))
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Fig. 3   Flowchart of adaptive variable-grid FWI
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In this paper, we use the L2 norm difference objective func-
tion minimized by a nonlinear conjugate gradient method 
based on the theory mentioned above. Based on a local min-
imization algorithm, the traditional FWI has a high risk of 
converging to local minima. To mitigate the “cycle skipping” 
problem caused by L2 norm misfit, a multi-scale strategy is 
applied to lead the updated model to a better result.

3 � 3D numerical examples

3.1 � Accuracy and efficiency tests

To validate the feasibility of the adaptive variable-grid 
algorithm, we designed 3D velocity models. Veloc-
ity changes with depth linearly from 1500 to 3500 m/s 
(Fig. 4). The model covers 3 × 3 km2 laterally and is 3 km 
deep. The original regular-grid size is 10 m in three direc-
tions. We use the regular-grid finite-difference method and 
variable-grid finite-difference method to simulate wave-
fields, respectively. The sketches of both grid discretiza-
tion strategies are shown in Fig. 5. It is shown that the 
grid number at depth decreases from 300 to 150 points, 
one-half of the original grid points. Besides, the velocity 
in deep layers is resampled using coarse grids, while near-
surface layers are resampled using fine grids. The grid size 
increases from shallow layers to deep layers automatically. 
The source is a Ricker wavelet with a dominant frequency 
of 10 Hz. One source is added to the top surface in the 
middle.

We used both grid discretization methods to generate 
wavefields whose snapshot slices in three directions are 
extracted and shown in Fig. 6. The interpolated variable-
grid wavefields are almost identical with regular-grid 
wavefields as can be seen by comparing Fig. 6a and b, c 

and d, e and f. The difference between them is less than 1% 
of the regular-grid wavefields (Fig. 7), which validates that 
the new strategy of adaptive variable-grid discretization is 
accurate and credible.

According to the dispersion relation, the resampling 
interval depends on the velocity of each layer and seis-
mic wavelet maximum frequency. To test the efficiency of 
the variable-grid finite-difference modeling method, we 
created several models with different ranges of velocities 
and record operation time of FWI based on both regular 
and variable-grid strategies. Table 2 presents some impor-
tant modeling parameters. Among the series of tests, we 
treat test 1 as a standard, with 10-Hz dominant frequency, 
velocity ranging from 1500 m/s to 6000 m/s and 10-m 
original grid size. The computing time reduces to 50% 
of the regular-grid method. Therefore, the corresponding 
efficiency of the proposed variable-grid modeling method 
is twice as that of conventional modeling method. Then, 
the Ricker wavelet is set to 5 Hz and 20 Hz in tests 2 and 
3 to find out the influence of the wavelet dominant fre-
quency on efficiency improvement. In addition, the maxi-
mum velocity is changed to 3500 m/s in test 4, resulting in 
a slight decrease in efficiency improvement. The situation 
is similar when the original grid size is increased to 20 m 
in test 5. After several tests with different wavelet domi-
nant frequencies, velocity range and original grid size, it 
is concluded that our adaptive variable-grid FWI displays 
obvious efficiency improvement compared with the con-
ventional modeling method. In Fig. 8, we compare the 
normalized computing time of these tests, which shows 
that the computing time can decrease to less than 60% of 
the conventional method under most geological situations. 
Overall, the efficiency improvement ratio is about two in 
common geological conditions. Meanwhile, the accuracy 
loss is less than 1%, which can be completely tolerated if 
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Fig. 6   Wavefield snapshot slices using regular-grid discretization at a top surface, c x = 1500 m, e y = 1500 m, and using variable-grid discretiza-
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we apply the proposed accelerated modeling method to 
FWI.

3.2 � 3D application on the SEG/EAGE overthrust 
model

In this numerical test, a part of the 3D SEG/EAGE overthrust 
model is considered (Fig. 9). Due to limited available com-
puter resources, our application is carried out on a shallow 
left part of the whole overthrust model. It is discretized on a 
280 × 45 × 110 grid with a grid spacing h = 20 m, which cor-
responds to a physical domain of 5.6 km × 0.9 km × 2.2 km. 
The minimum and maximum velocities in this overthrust 
model are 2000 m/s and 5500 m/s, respectively. We use fixed 
spread surface acquisition in which 28 × 5=140 sources are 
modeled every 200 m in both x and y directions. Receivers 
are regularly located each 20 m in the x direction and 40 m 
in the y direction. The acquisition geometry covers most of 
the underground area. A recording time of 2 s is used for the 
modeling. We use a time interval of 0.8 ms, resulting in 2500 
time steps, to satisfy the stability condition.

The starting model for inversion is obtained by smoothing 
the true velocity model with a Gaussian function (Fig. 10). 
Slices of the exact model and initial model at constant 
x = 2.2 km and y = 0.5 km are presented. The constant depth 
slice at z = 1 km is chosen to show the lateral variation of the 
thrusted region as well as a channel complex, to demonstrate 
the horizontal accuracy of the 3D waveform inversion. The 
detailed channel information is removed by smoothing the 
exact model. In order to mitigate the local minima problem, 
the inversion is implemented using a multi-scale strategy, 
starting at the peak frequency of 3.5 Hz and sequentially 
stepping up to 7 Hz and then 15 Hz. For each scale, we 
compute 14 iterations.

The purpose of this experiment is to focus on the accu-
racy and efficiency of the proposed 3D variable-grid full-
waveform inversion (VGFWI) compared with traditional 
full-waveform inversion. For this reason, the same acqui-
sition geometry and workflow are implemented based on 
the regular-grid finite-difference modeling and the proposed 
variable-grid finite-difference modeling, respectively. After 
resampling the velocity model based on Eq. 3, we simulate 
the source wavefield and the residual wavefield using the 
new modified wave Eq. 10.

With a Ricker wavelet of 3.5-Hz dominant frequency, the 
velocity model is resampled to 54 grids in the depth direc-
tion, less than half of the original grid number (Table 3). The 
efficiency is double the traditional FWI with fixed square 
grids. Sequentially, the vertical resampled velocity model 
is decreased to 72 grids in depth, two-thirds of the original 
110 grids, when the peak frequency is 7 Hz. However, as we 
invert for 13-Hz results, the new grid discretization strat-
egy does not help to reduce computing time dramatically 
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to ensure the wavefield is adequately sampled so that dis-
persion never occurs. In Fig. 11, we compared the comput-
ing time of one iteration in particular, which shows that the 
overall computing time is reduced to less than two-thirds of 
the conventional FWI. Generally, the efficiency is almost 
twice that of traditional waveform inversion while updating 
background velocity with a low-dominant-frequency Ricker 
wavelet.

The inversion results using three-model scales are shown 
in Figs. 12 and 13, based on conventional FWI and variable-
grid FWI (VGFWI), respectively. As shown in two sets of 
inverted velocity models, the large-scale layered structure 

Table 2   Efficiency comparison between variable-grid and conventional modeling

Test number Original grid size, 
m

Wavelet dominant fre-
quency, Hz

Velocity range, m/s Normalized computing 
time, %

Efficiency 
improvement, 
%

1 10 10 1500–6000 50 200
2 10 5 1500–6000 34 300
3 10 20 1500–6000 59 171
4 10 10 1500–3500 59 171
5 20 10 1500–6000 58 173
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is well characterized using both methods. From the inline 
section at y = 0.5 km, it is observed that high-velocity lay-
ers inverted by VGFWI are obviously closer to true veloc-
ity compared with traditional FWI, which indicates that the 
proposed method converges faster. Depth slices at z = 1 km 
show that variable-grid FWI also retains the accuracy of 
regular-grid FWI when reconstructing the target channel. 
The edges of channels are described with slightly higher 
resolution, and their velocities are retrieved closer to the 
exact model. Then, we extract vertical profiles from the 
shown inline section (y = 0.9 km) at x = 1 km and x = 2.7 km 
(Fig. 14). The inverted curves using VGFWI are nearly iden-
tical with curves using FWI and true curves in the shallow 
region less than 1 km. Some deviations exist at depth due 
to relatively weak illumination and an insufficient number 
of iterations. Still, the whole inversion results of VGFWI 
achieve slightly higher agreement with true velocity than 
conventional FWI.

In general, the proposed adaptive variable-grid FWI is 
capable of introducing higher efficiency for waveform inver-
sion. According to inversion results, such as sections and 
profiles, the accelerated FWI can achieve the same level of 
calculation precision as conventional FWI. If we compare 
inversion results more carefully, VGFWI shows slightly 
better agreement with the true model. Ha and Shin (2012) 
mentioned that the accumulated large-grid error could make 
the inversion using the transformed axis converge to a larger 
value. However, our method can control grid size in deep 
layers with milder z-axis variation according to the disper-
sion relation. Besides, the variable-grid method we proposed 
is free of dispersion. The grid size is sufficient for accurate 
modeling and inversion. That is the reason why the inver-
sion results using the proposed method are not worse than 
conventional FWI. As for the slightly faster convergence 
rate, from our point of view, FWI is an inverse problem with 
nonlinearity and non-uniqueness, which lead to multiple 
solutions. The adaptive-grid velocity model has fewer grids 
especially for deep layers, so the inverse problem has less 
unknown variables mathematically. In this way, the com-
plexity of the inverse problem is actually reduced, which 
makes it easier to converge.

In our method, only the vertical grid size changes because 
the main velocity change direction is with depth under 
common geological circumstances. However, when lateral 
change is dominant, multi-direction variable-grid modeling 
also needs to be developed to further improve efficiency. 
Another alternative development will be to try multiple 
grid time-space dual-variable methods, which will further 
decrease computation and involve multi-scale strategies by 
reducing grid scale through iterations.

Table 3   Efficiency comparison between variable-grid and conventional FWI

Dominant frequency of 
Ricker wavelet, Hz

Grid number, nz Computing time of one 
iteration, s

Percentage of comput-
ing time, %

Efficiency 
improve-
ment, %

Conventional FWI – 110 9242 – –
Variable-grid FWI 3.5 54 4452 48 208

7 72 5651 61 163
13 104 7629 82 121
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4 � Conclusions

Full-waveform inversion in 3D cases is known to be limited 
by the problem of expensive computation when hundreds 
of shots and tens of iterations are required. The process of 
wavefield propagation is the most computationally intensive 
step in the implementation of FWI. To alleviate this prob-
lem, we proposed an adaptive variable-grid finite-difference 
modeling method by deriving a new modified acoustic wave 
equation. This grid discretization strategy is based on a dis-
persion relation, which improves modeling efficiency with-
out losing accuracy. Then we apply this efficient wavefield 
simulation method to 3D full-waveform inversion on GPU 
devices. In this way, 3D FWI is dramatically accelerated 
without precision loss.

We have presented several applications on both simple 
and complex examples to give insight into the feasibility 
of our approach. Some preliminary tests on linear models 
have shown that the modeling method is adequately accu-
rate with an error less than 1%. Moreover, the efficiency is 
increased to about twice that of the regular-grid finite-dif-
ference method under common geological conditions. After 
that, we have shown the 3D applications of variable-grid 
full-waveform inversion on part of the SEG/EAGE over-
thrust model. Owing to the proposed modeling method and 
CUDA-C language programming, the computing time is 
significantly reduced especially for large-scale background 
velocity inversion. In addition, cross sections, depth slices 
and profiles demonstrate that VGFWI is a cost-effective and 
quality-assured approach for 3D acoustic FWI.
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