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Abstract
Describing matrix–fracture interaction is one of the most important factors for modeling natural fractured reservoirs. A 
common approach for simulation of naturally fractured reservoirs is dual-porosity modeling where the degree of communi-
cation between the low-permeability medium (matrix) and high-permeability medium (fracture) is usually determined by a 
transfer function. Most of the proposed matrix–fracture functions depend on the geometry of the matrix and fractures that 
are lumped to a factor called shape factor. Unfortunately, there is no unique solution for calculating the shape factor even for 
symmetric cases. Conducting fine-scale modeling is a tool for calculating the shape factor and validating the current solutions 
in the literature. In this study, the shape factor is calculated based on the numerical simulation of fine-grid simulations for 
single-phase flow using finite element method. To the best of the author’s knowledge, this is the first study to calculate the 
shape factors for multidimensional irregular bodies in a systematic approach. Several models were used, and shape factors 
were calculated for both transient and pseudo-steady-state (PSS) cases, although in some cases they were not clarified and 
assumptions were not clear. The boundary condition dependency of the shape factor was also investigated, and the obtained 
results were compared with the results of other studies. Results show that some of the most popular formulas cannot capture 
the exact physics of matrix–fracture interaction. The obtained results also show that both PSS and transient approaches for 
describing matrix–fracture transfer lead to constant shape factors that are not unique and depend on the fracture pressure 
(boundary condition) and how it changes with time.

Keywords Fractured reservoirs · Shape factor · Matrix–fracture boundary conditions · Computational fluid dynamic (CFD)

1 Introduction

The most relevant feature in a dual-porosity model is the 
flow between the matrix and the fracture. Mathematically, it 
is described using a transfer term. This transfer term is influ-
enced by the shape of the matrix block, flow regime [e.g., 
pseudo-steady state (PSS) or transient], depletion scheme 
of fracture pressure and physical recovery mechanism (e.g., 

convection or diffusion). These factors, especially the shapes 
of the matrix and fracture blocks, are lumped in a value that 
is called the shape factor. The continuities of pressures have 
always played a significant rule in well testing. Calculating 
diffusive leakage rate of brine in the case of various double-
porosity parameters (Dejam et al. 2013; Dejam and Has-
sanzadeh 2018) and analyzing hydraulically fractured wells 
using semi-analytical solution (Dejam et al. 2018) are good 
evidence for this statement. However, despite decade-long 
research, it is not clear how the shape factor can be calcu-
lated. Even for the simplest geometry (rectangular cuboid 
matrix blocks), many different formulas have been proposed 
in the literature. The simplified schematic of the dual-poros-
ity model and the transfer function is shown in Fig. 1.

The foundation of the dual-porosity model was laid down 
by Barenblatt et al. (1960) and Warren and Root (1963). 
They used a geometrical approach to derive the shape factors 
for one, two and three sets of orthogonal fractures. War-
ren and Root (1963) proposed an analytic solution for the 
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single-phase radial flow in a naturally fractured reservoir 
and introduced the dual-porosity concept in fluid flow mod-
eling. They ultimately used the results in well testing and 
gave the following definition of the shape factor for cubic 
matrix blocks:

Here n is the set of normal fractures and l is the character-
istic length. It should be understood here that derivation of 
the shape factor which is described by Warren and Root 
(1963) in Eq. (1) is based on the assumption of the exist-
ing PSS flow in the matrix and does not utilize the pressure 
diffusion equation governing fluid flow within the matrix 
block. Therefore, the defined shape factor is not completely 
rigorous and is based on the PSS assumption. Kazemi et al. 
(1976) extended the formulation of Warren and Root (1963) 
for multiphase flow and numerically solved the dual-porosity 
system in three dimensions. They solved fluid flow in a frac-
tured system numerically and gave the following definition 
for the shape factor:

where Lmx, Lmy and Lmz are the block lengths along the x, y 
and z direction, respectively.

Peaceman (1976) evaluated gas and oil transfer between 
the fracture and rock matrix. They obtained a shape factor 
of 12/L2, 14.23/L2 and 16.53/L2 for one-, two- and three-
dimensional cubic matrix blocks and concluded that values 
of shape factors do not increase much with an increase in 
the number of normal sets of fractures. Thomas et al. (1983) 
presented an expression for the shape factor using another 
version of a fully implicit three-dimensional, multiphase 
naturally fractured simulator based on the dual-porosity 
approach that was validated by multiphase flow numerical 
simulations. They multiplied the matrix phase relative per-
meability values by the fracture phase saturations to include 
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the effect of block coverage and developed a 3D, three-phase 
model for the shape factor by simulating the flow of fluids in 
a naturally fractured reservoir.

Ueda et al. (1989) used Kazemi’s model to calculate 
the shape factor and compared their results with fine-grid 
simulation results. They believed that Kazemi’s shape fac-
tor values for one- and two-dimensional matrix blocks are 
not suitable and need to be adjusted by a factor of 2 and 3, 
respectively. Coats (1989) solved the diffusivity equation to 
give a shape factor of 12/L2, 28.45/L2 and 49.58/L2 for one-, 
two- and three-dimensional cubic matrix block, respectively, 
for single-phase flow based on the PSS assumption.

The approximate values of shape factors for cube- and 
strata-shaped matrix blocks at PSS were calculated by de 
Swaan (1990). He found a shape factor of 60/L2 and 15/L2 
for cube and strata shapes, respectively. Kazemi and Gil-
man (1993) updated the earlier dual-porosity simulator 
of Kazemi et al. (1976) by modifying the matrix–fracture 
transfer function that was defined by Kazemi et al. (1976) to 
include fracture relative permeability when fluid is flowing 
from the fracture to the matrix and defined another form for 
the matrix–fracture transfer function. Chang (1993) analyti-
cally derived the shape factor in cylindrical and spherical 
coordinates based on material balance and Darcy flow at 
PSS. The obtained results by him were exactly the values 
obtained by Warren and Roots’s shape factors. Zimmerman 
et al. (1993) developed a new dual-porosity model for sin-
gle-phase fluid flow in fractured porous media. They used 
a nonlinear ordinary differential equation to calculate the 
fracture–matrix interaction term for a wide variety of matrix 
block boundary conditions. Their equation more accurately 
simulates the flux during the early and late periods of the 
interaction than the linear Warren–Root equation. Lim and 
Aziz (1995) suggested that the shape factor depends on the 
geometry and physics of pressure diffusion in the matrix. For 
the general case of an anisotropic, rectangular matrix block, 
they reported the following expression for the shape factor:

where km is the geometric average matrix permeability.
Several other studies in the area of naturally fractured res-

ervoir simulation are devoted to analytically and numerically 
representing an accurate matrix–fracture transfer function 
(Bourbiaux et al. 1999; Coats 1989; Noetinger and Estebenet 
2000; Noetinger and Estébenet 1998; Penuela et al. 2002a, b; 
Quintard and Whitaker 1996; Sarda et al. 2001).

Quintard and Whitaker (1996) also used the volume-
averaging technique to determine the shape factor values 
for 1D, 2D and 3D matrix–fracture transfers in a single-
phase flow. Their results were exactly the values obtained 
by Coats (1989). Bourbiaux et al. (1999) present different 
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Fig. 1  Schematic of the transfer function between the matrix and the 
fracture
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approaches to determine matrix–fracture transfer behavior. 
They used three methods involving either (1) local-scale 
flow computations, (2) the application of upscaling theory 
and (3) implementation of the particle random walk method 
to obtain the best approximate expression of the shape fac-
tor. They obtained the same expression for the shape factor, 
20/a2 based on a PSS formulation of 2D matrix–fracture 
transfers in a single-phase fine-grid simulation where “a” 
is the lateral dimension of the matrix block. Noetinger and 
Estebenet (2000) used the continuous-time random walk 
technique (CTRW) to calculate the shape factor between the 
matrix and the fracture and compared the obtained shape 
factor from this technique with numerical simulation and 
found a good agreement.

An efficient patented solution to tackle the problem of 
simulating matrix–fracture exchanges with a minimum num-
ber of grid blocks is presented by Sarda et al. (2001). They 
developed a numerical method to calculate the matrix–frac-
ture exchange factor from the dual-porosity concept and 
compared their results to other published exchange factor 
expressions. In their approach, matrix blocks of different 
volumes and shapes are associated with each fracture cell 
depending on the local geometry of the surrounding frac-
tures. Their expression for the shape factors is 8/a2, 24/a2 
and 48/a2 for 1D, 2D and 3D parallelepiped matrix blocks 
of lateral dimension a, respectively. A flow equation incor-
porating a time-dependent shape factor for dual-porosity 
modeling of the slab-shaped matrix block is derived in 
other studies (Penuela et al. 2002a, b). They performed a 
compositional simulation to verify the flow equation using 
the shape factor. Their numerical investigation into various 
matrix block sizes showed that shape factor values converge 
to values derived by Lim and Aziz (1995) for one set of 
parallel fractures. They used the analytical solution of the 
average pressure difference and inter-porosity flow rate for 
1D flow to compute flow correction factor. Based on the flow 
correction factor, they obtained the following definition for 
shape factor:

where L is the fracture spacing, Fc is the flow correction 
factor, t is time and σ is the shape factor for the matrix block 
that is surrounded by one set of parallel fractures.

It is showed that the shape factor also depends on the 
way the pressure changes in the fracture. They compared 
several methodologies presented by these and other authors 
(Hassanzadeh and Pooladi-Darvish 2006; Hassanzadeh et al. 
2009). Mora and Wattenbarger (2009) used numerical simu-
lation to obtain a correct shape factor formula for various 
cases. They concluded that some of the most popular for-
mulas do not seem to be correct. Hatiboglu and Babadagli 

(4)� = lim
t→∞

4Fc(t)

L2

(2007) studied the effect of several rocks and fluid properties 
such as matrix shape factor, wettability, oil viscosity and 
some other parameters on the rate of capillary imbibition 
and development of residual non-wetting phase saturation, 
experimentally. They used several different core samples 
with different shape factors to evaluate the rate of imbibi-
tion. The effect of the fracture pressure depletion regime 
on the shape factor for single-phase flow of a compressible 
fluid was investigated by Ranjbar et al. (2011). Their inves-
tigations demonstrated that the shape factor is a function 
of the imposed boundary conditions in the fracture and its 
variability with time. They used single-porosity, fine-grid, 
numerical simulations to verify their presented semi-analyt-
ical model for estimating the shape factor. The dependency 
of shape factor on the other parameters such as gas specific 
gravity and temperature is investigated in their study. Saboo-
rian-Jooybari et al. (2012) developed a new time-dependent 
matrix–fracture shape factor to diagnose different states of 
the imbibition process. They obtained an analytical solu-
tion for fluid saturation distribution within a matrix block by 
solving capillary-diffusion equation under different bound-
ary conditions. They used the single-porosity fine-grid 
simulations and the previous experimental data presented 
by other authors to verify their solutions and concluded that 
the shape factor is completely phase sensitive that is the 
important parameter in diagnosing different states of imbibi-
tion process. A time-dependent matrix–fracture shape fac-
tor formulation is analytically derived for two-phase flow 
in a three-dimensional matrix block in the imbibition pro-
cess which considers both capillary and gravity forces on 
matrix–fracture coupling. They verified their results by a 
fine-grid simulation model (Saboorian-Jooybari et al. 2015). 
Wang et al. (2018) developed a time-dependent shape factor 
for single-phase flow by considering the stress sensitivity 
in the matrix system. They performed a fine-grid finite ele-
ment numerical model to validate the accuracy of the new 
analytical model. Their results showed that the stress sen-
sitivity coefficient of permeability has a great influence on 
the stabilized value of the matrix–fracture shape factor for a 
compressible formation.

The results of other methodology in obtaining the shape 
factor by the others are summarized in Table 1, and finally, 
the results of the current study were compared with the 
results of other authors.

In this study, the behavior of the shape factor between 
a matrix and fractures for different boundary conditions of 
fracture pressure for regular and irregular shaped blocks 
under assumptions of PSS and the transient flow regime 
is investigated. As most of the studies in the literature are 
based on single-phase flow, this study focuses on this type 
of flow to compare the observed trend with other studies in 
terms of shape factor calculation. For this purpose, we first 
clarified what we mean by PSS and transient approach. For 
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both cases, several simulations were conducted in several 
sections. At first, the shape factor was calculated for the 
standard shaped blocks (symmetric and regular shapes) for 
a case where the fracture pressure is constant which is nor-
mally used in the literature. Then, some pressure depletion 
schemes were used as the fracture boundary condition on the 
standard shape. Finally, different boundary conditions were 
performed for irregular shapes.

2  Numerical model and methodology

There are a lot of debates on how to calculate shape fac-
tors in the literature. The two most commonly used equa-
tions originate from Warren and Root (1963) and Kazemi 
et al. (1976). In this study, several different shapes for three-
dimensional matrix blocks were considered to calculate the 
shape factor. Different boundary conditions including (1) 
constant fracture pressure, (2) linearly declining fracture 
pressure and (3) exponentially declining fracture pressure 
were used in the models. The finite element method was 
used to generate and simulate all models. The calculated 
shape factors from fine-scale numerical models were com-
pared with the known analytical and numerical values that 
were reported by others.

To simulate matrix–fracture drainage flow, the matrix 
blocks are surrounded by fractures. Then, the pressure 

difference between the matrix and the fracture is assigned 
based on the boundary conditions. Thus, the reservoir fluid 
will flow from the matrix into the fracture. Sufficiently large 
simulation time is selected for simulations until the matrix 
and fracture systems reach pressure equilibration. Finally, 
for all models, the dimensionless shape factors are plotted 
against dimensionless time.

A general numerical technique (finite element method) 
was proposed to calculate the shape factor for any arbitrary 
shape of the matrix block (i.e., non-orthogonal fractures) 
for both transient and PSS considering different boundary 
conditions. Using the finite element method and by defining 
irregular shapes, we were able to implement different pres-
sure trends as boundary conditions. Therefore, linear and 
exponential forms of pressure as a function of time for the 
boundary conditions were implemented for different models.

2.1  Mathematical method

In this study, several standard three-dimensional models for 
the matrix block were constructed to simulate one-, two- and 
three-dimensional flow behavior between a matrix and a frac-
ture and the simulation results were used to obtain the shape 
factors for irregularly shaped matrix blocks. Several differ-
ent boundary conditions (fracture pressure) were performed 
for all mentioned models. In this section, first, we explained 
the governing equation and the corresponding initial and 

Table 1  Summary of the shape factor constants σL2 found in the literature based on the solution of the diffusivity equation with constant fracture 
pressure (updated after Hassanzadeh and Pooladi-Darvish 2006)

References N = 1 N = 2 N = 3 Approach PSS/Transient

Warren and Root (1963) 12 32 60 Numerical PSS
Kazemi et al. (1976) 4 8 12 Numerical PSS
Peaceman (1976) 12 14.23 16.53 Numerical PSS
Thomas et al. (1983) – – 25 Numerical Transient
Ueda et al. (1989) 8 24 – Numerical PSS
Coats (1989) 12 28.45 49.58 Analytical PSS
de Swaan (1990) 12 – 60 Numerical PSS
Zimmerman et al. (1993) 9.87 19.74 29.61 Numerical PSS
Kazemi and Gilman (1993) 9.87 19.74 29.61 Analytical Transient
Chang (1993) 9.87 19.74 29.61 Numerical PSS
Lim and Aziz (1995) 9.87 19.74 29.61 Analytical Transient
Quintard and Whitaker (1996) 12 28.4 49.6 Averaging Transient
Bourbiaux et al. (1999) – 20 – Numerical PSS
Noetinger and Estebenet (2000) 11.5 27.1 – Random walk technique Transient
Sarda et al. (2001) 8 24 48 Numerical Transient
Penuela et al. (2002a, b) 9.87 – – Numerical Transient
Hassanzadeh and Pooladi-Darvish (2006) 9.87 18.2 25.56 Analytical PSS
Mora and Wattenbarger (2009) 9.87 18.17 25.67 Numerical PSS
Hassanzadeh et al. (2009) (constant rate) 12 25.13 38.9 Analytical PSS
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boundary conditions. The diffusivity equation for the flow in 
the x, y and z Cartesian coordinate is described as:

The model is illustrated in Fig. 2.
The initial pressure is assumed uniform throughout the 

matrix block

where P is the pressure, Kx, Ky, Kz are the permeability in 
the x, y and z directions, µ is the fluid viscosity, ct is the total 
compressibility, � is the porosity, Pf is the fracture pressure, 
Pi is the initial pressure of the matrix block and ∆P0 is the 
difference between the matrix pressure and the fracture pres-
sure at the initial conditions (at t = 0).

The pressure and fluid flow of the matrix block at differ-
ent boundary conditions are:

• For constant fracture pressure,

• For constant fracture pressure followed by exponentially 
declining pressure,

• For constant fracture pressure followed by linearly 
declining pressure,

(5)Kx

�2P

�x2
+ Ky

�2P

�y2
+ Kz

�2P

�z2
= ��ct

�P

�t

(6)P = Pi when t = 0

(7)Pf = Pi − ΔP0 when t = t0

(8)P = Pf at x = 0 and y = 0 and z = 0

(9)Pf =
(
Pi − ΔP0

)
exp (−�t)

(10)Pf =
(
Pi − ΔP0

)
(1 − �t)

where α and β are the decline constants in the exponential 
and linear declining forms, respectively. Three different val-
ues of 0.0001, 0.01 and 1 were considered for the decline 
constant in the exponential form and a value of 0.001 in the 
linear form.

To express the distance, pressure and time in the dimen-
sionless form, the following terms were used:

2.2  Pseudo‑steady‑state (PSS) shape factor

Under the assumptions of a single-phase flow and a PSS 
condition in the matrix, as described by Warren and Root 
(1963), the transfer function between a matrix block and a 
fracture system is proportional to the difference between the 
fracture pressure and the average matrix block pressure as 
given by the following equation:

where τ is the matrix–fracture transfer function; the param-
eter σ has the dimensions of reciprocal of the area and is 
defined as a shape factor that reflects the geometry of the 
matrix elements and controls flow between the two porous 
media; km is the matrix permeability; P̄m is the average 
matrix pressure.

Equation (14) was used by Warren and Root (1963) to 
model the transfer function between the matrix and the frac-
ture in a naturally fractured reservoir.

Assuming that the matrix is depleting under PSS condi-
tions, using the compressibility equation one can write the 
matrix–fracture transfer function τ, that is, related to the 
matrix pressure by the following relationship:

where �m is the matrix porosity and Cm is the total matrix 
compressibility which is equal to the summation of matrix 
rock and fluid compressibility.

According to Warren and Root (1963), assuming PSS 
behavior in the matrix, then by combining Eqs. (14) and 
(15) the following differential equation is obtained:

(11)

Dimensionless distance, xD =
x

a
, yD =

y

b
, zD =

z

c

(12)Dimensionless time, tD =
kt

A��ct

(13)Dimensionless pressure, PD =
Pi − P

Pi − Pf

.

(14)𝜏 = 𝜎
km

𝜇

(
P̄m − Pf

)

(15)𝜏 = −𝜙mCm

(
𝜕P̄m

𝜕t

)

Q(z+dz)

Q(x+dx)
Q(x)

Q(z)

Q(y)

Q(y+dy) x

y

z Fracture 

Fig. 2  A simplified matrix–fracture model for three normal fracture 
sets
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This leads to the definition of the single-phase shape factor:

where ηm is the diffusivity in a matrix block, 
�m = km∕(��Cm).

Equation (17) was used to find the shape factor from the 
numerical simulation by the computational fluid dynamic 
(CFD) simulation. For this purpose, all parameters are 
known in Eq. (17) except the matrix pressure. Using the 
calculated pressure profile in the matrix, one can calculate σ.

2.3  Transient shape factor

The transfer function between a matrix block and a fracture 
system for a more general case can be described by solving 
the following equation:

where Pm is the matrix block pressure and the transfer func-
tion between the matrix and the fracture is proportional to 
the pressure gradient at the matrix block surface as given by 
(Nanba 1991).

where A is the fracture area or the matrix block surface area, 
km is the matrix permeability and Vm is the total matrix 
volume.

Assuming that the matrix is depleting under transient con-
ditions, one can write the matrix–fracture transfer function τ, 
that is, related to the flow rate by the following relationship:

where Qm is the rate of the fluid transfer between the matrix 
and the fracture. Combining Eqs. (19) and (20) leads to the 

(16)𝜎
km

𝜇

(
P̄m − Pf

)
= −𝜙mCm

(
𝜕P̄m

𝜕t

)

(17)𝜎 = −

(
𝜕P̄m

𝜕t

)
1

𝜂m
(
P̄m − Pf

)

(18)∇2Pm =
1

�m

(
�Pm

�t

)

(19)� =
Akm

�Vm

∇Pm

(20)� =
Qm(t)

Vm

definition of the single-phase shape factor under the transient 
assumption:

In Eq. (21), the matrix pressure and the rate of fluid trans-
fer are unknown. Therefore, for calculating the transient 
shape factor, one needs to know the rate (Qm) and pres-
sure (Pm).

The obtained results for the shape factor in this study are 
presented in dimensionless form, which is proportional to 
the shape factor and characteristic length:

where �D is the dimensionless shape factor and L is the char-
acteristic length. For a slab-shaped matrix block, half of the 
matrix block thickness is considered as the characteristic 
length. The characteristic lengths of cylindrical and spheri-
cal matrix blocks are considered to be equal to the block 
radius.

2.4  Mesh independency study

To establish the accuracy of the CFD solution, three dif-
ferent mesh sizes were generated to predict the stabilized 
shape factor to determine how the mesh quality affects 
CFD simulation results. The predicted shape factors for 
one-dimensional flow under PSS for constant fracture 
pressure in a slab-shaped geometry for all three differ-
ent mesh sizes were compared. The relative error was 
used to compare the simulation results for all mesh sizes 
[Eq. (23)].

where Er is the relative error and σExtra fine and σCoarser are the 
stabilized shape factor with the fines mesh (#1) and coarser 
mesh (#2 and #3), respectively. The mesh size, the num-
ber of elements and nodes, the value of the relative error 
and the stabilized shape factor for each grid type are shown 
in Table 2. It can be seen that the relative error between 

(21)𝜎 =
Qm(t)𝜇

A
(
P̄m − Pf

)

(22)�D = �L2

(23)Er =
||�Extra fine − �Coarser

||
�Extra fine

× 100

Table 2  Mesh independency results for the stabilized shape factor

Grid No. Mesh size Number of elements Average growth rate Stabilized shape factor Relative 
error Er, 
%

1 Extra fine 397,005 1.606 4.23 –
2 Fine 32,189 1.626 4.17 1.5
3 Coarse 4733 1.647 5.09 18.2
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two consecutive grids 1 and 2 is low enough and it can be 
neglected, but the relative error between grids 1 and 3 is 
greater. Therefore, the second mesh scheme was selected as 
the main grid for CFD solution to keep the computational 
costs low.

3  Results and discussion

The rate of mass transfer from the matrix to the fracture 
is directly proportional to the shape factor. For modeling 
naturally fractured reservoirs, an accurate value of the shape 
factor is required for both the transient and PSS behavior and 
also the geometry of the matrix–fracture system.

In this section, the finite element simulation was used to 
generate and simulate all models. First, the simulation was 
conducted on regular shapes (i.e., slab, cylindrical, spheri-
cal) and then the work was extended to irregular shaped 
blocks. In all models, the fractured system was composed 
of a rock matrix surrounded by a regular or irregular system 
of fractures. For simple geometries, the numerical-solved 
values are verified with the known analytical and numerical 
values that were proposed by other researchers. This com-
parison was done to validate this numerical simulation. In 
the following, the values of shape factor were obtained for 
regular shapes with different boundary conditions and the 
results were presented in a dimensionless form. In this study, 
different boundary conditions include (1) constant fracture 
pressure, (2) linearly declining pressure and (3) exponen-
tially declining pressure were investigated. The simple 
geometries that were used for fine-scale simulation of regu-
lar bodies are shown in Fig. 3.

In general, there are two models to consider the matrix 
and fracture interaction including PSS and transient trans-
fer. The former model ignores the pressure transient in the 

matrix while the latter model accounts for the pressure tran-
sient in the matrix. In this study, both PSS and transient 
transfer have been evaluated.

3.1  PSS shape factor, standard shaped matrix 
blocks

3.1.1  Constant fracture pressure

In this case, the fracture pressure at the matrix–fracture 
interface is constant and we are dealing with a single block. 
This boundary condition that is normally used in the lit-
erature is performed to validate the standard slab, cylindri-
cal and spherical models. The significant differential pres-
sure between the matrix and the fracture is imposed in the 
system. Pressures are assigned to be 5000 and 3000 psia, 
respectively, for the matrix and the fracture so that the res-
ervoir fluid can flow from the matrix into the fracture till 
the matrix block pressure reaches equilibrium with the sur-
rounding fracture pressure. Figure 4 shows the shape factor 
for different matrix block shapes of the slab (1D flow), cylin-
drical (2D flow) and spherical (3D flow) at constant fracture 
pressure, under the PSS assumption and using Eq. (17).

Figure 4 indicates new stabilized values of 4.17, 9.7 and 
16.17 for the shape factor of different matrix block shapes 
of the slab, cylindrical and spherical, respectively, at large 
dimensionless times and shows that the results are in the 
same range that other researchers reported (i.e., Kazemi et al. 
1976; Peaceman 1976). It is shown that the matrix–fracture 
transfer shape factor depends on the matrix block shape and 
how it changes with time. All of these are derived with an 
assumption of PSS.

Fracture

Matrix

L

Fracture

Rm

Rm

Fracture

Matrix

Matrix

Fig. 3  Schematic representation of the problem for the slab, cylindrical and spherical blocks (Rm is the radius of cylindrical and spherical shaped 
matrix blocks)
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3.1.2  Variable fracture pressure

In this case, we assume that the boundary condition changes 
with time. For this purpose, linear and exponential deple-
tion schemes are investigated. Figure 5 shows the results of 
the shape factor for linearly declining pressure. Figures 5, 6 
and 7 show the results for the exponentially declining pres-
sure scheme with different exponents. It is noted that for 
the exponential form, three different values of 0.0001, 0.01 
and 1 are considered for the decline constant. For the linear 
decline, a value of 0.001 is considered (because β must be 
smaller than 1/t).

Results show that the shape factor depends on the fracture 
pressure and how it changes with time. It is found that the 
linearly declining pressure depletion scheme leads to 4.53, 
11 and 20.2 for the slab, cylindrical and spherical shapes, 
respectively. By comparison of Figs. 4 and 5, it can be seen 
that the matrix–fracture transfer shape factor depends on the 
matrix block shape, the pressure regime in the fracture and 
how it changes with time.

As shown in Figs. 6, 7 and 8, the stabilized shape factor 
indicated a range of 4.18–4.98, 9.74–12.1 and 16.6–22.1 by 
varying the decline exponent for the slab, cylindrical and 
spherical shapes, respectively. As it can be shown, lower 
values of shape factor were obtained for the fast pressure 
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Fig. 4  Dimensionless shape factor versus dimensionless time for different shapes of matrix blocks for constant fracture pressure under the PSS 
assumption
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the PSS assumption
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depletion (when decline exponent α is equal to 0.01 or 1), 
while an upper value of shape factor was obtained for low-
pressure depletion (when decline exponent α is equal to 
0.01).

These figures demonstrate that the presented model can 
reproduce the slightly compressible fluid shape factor with 
acceptable accuracy.

In this section, the behavior of the shape factor for differ-
ent fracture pressure depletion in different shapes of matrix 
blocks (i.e., slab, cylindrical and spherical) is also described.

Figures 9, 10 and 11 show the shape factor for the slab 
(1D flow), cylindrical (2D flow) and spherical (3D flow) 
shapes of the matrix blocks surrounded by fractures in dif-
ferent fracture depletion schemes. The shape factor for a 
constant fracture pressure is also shown in these figures as 

a comparison. As illustrated in these figures for the slab 
shapes, the difference between the stabilized shape factors 
of the different boundary conditions is low. For all shapes, 
the stabilized shape factor for the linearly declining fracture 
pressure is higher than that of the constant fracture pres-
sure. For an exponential decline, the stabilized value of the 
shape factor depends on the decline exponent. The stabi-
lized shape factor for the exponentially declining fracture 
with a decline exponent of 0.0001 is higher than that of the 
other cases. The same behavior has been reported by Chang 
(1993) and Hassanzadeh and Pooladi-Darvish (2006) in the 
case of a slightly compressible fluid. The stabilized values of 
the shape factor under the PSS assumption are summarized 
in Table 3.
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Fig. 6  Dimensionless shape factor versus dimensionless time for different fracture depletion regimes for a slab shaped matrix block (1D flow) 
under the PSS assumption
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Fig. 7  Dimensionless shape factor versus dimensionless time for different fracture depletion regimes for a cylindrical shaped matrix block (2D 
flow) under the PSS assumption
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Fig. 8  Dimensionless shape factor versus dimensionless time for different fracture depletion regimes for a spherical shaped matrix block (3D 
flow) under the PSS assumption
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Fig. 9  Dimensionless shape factor versus dimensionless time for a slab-shaped (1D flow) matrix block subject to different boundary conditions 
under the PSS assumption
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3.2  Transient shape factor, standard shaped matrix 
blocks

A precise value of the shape factor at the transient state is 
essential to consider the performance of the matrix–frac-
ture interaction. To more precisely understand the physics 
of flow behavior, the shape factor was also evaluated using 
the transfer function (Eq. 21).

Figure 12 shows the shape factor for different slab, cylin-
drical and spherical shaped matrix blocks at the constant 
fracture pressure for transient flow.

As in the previous section, the values of the shape factor 
for different shapes of matrix blocks under different bound-
ary conditions were evaluated and are presented in Table 4. 
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Fig. 11  Dimensionless shape factor versus dimensionless time for a spherical shaped matrix block (3D flow) subject to different boundary condi-
tions under the PSS assumption

Table 3  Shape factor constants for different geometry matrix blocks 
subject to different boundary conditions under the PSS assumption

Boundary conditions Shape factor constants σL2 under the 
PSS assumption

1D flow (slab) 2D flow 
(cylindri-
cal)

3D flow 
(spherical)

Constant fracture pressure 4.17 9.70 16.70
Exponential, α = 1 4.18 9.74 16.60
Exponential, α = 0.0001 4.98 12.10 22.10
Exponential, α = 0.01 4.22 9.90 17.20
Linear decline β = 0.001 4.53 11.00 20.20
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Fig. 12  Dimensionless shape factor versus dimensionless time for different shapes of matrix blocks for the constant fracture pressure scheme 
under the transient transfer assumption
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Generally, these values are larger compared with shape fac-
tors obtained from the PSS approach.

The above results show that both the transient and PSS 
values of the single-phase shape factor depend on the geom-
etry and how the fracture pressure changes with time.

3.3  Shape factor for 3D irregular shapes 
and three‑dimensional flow

In this section, the work is extended to three-dimensional 
irregular shapes. The shapes were designed as a combination 
of square and triangle where there is no analytical solution to 
calculate the shape factor. Figure 13 shows the 3D irregular 
shapes of the prism- and complex shaped blocks.

The characteristic length of the prism-shaped block is 
obtained as follows:

where a1 to a5 are the vertical distances between the center 
of gravity of the prism and its faces. The characteristic 
length was calculated to be 35.

The characteristic length of the complex shaped block 
was obtained based on its volume and surface. The volume 
and surface of the standard shapes (slab, cylindrical and 
spherical) and the prism shape were used to interpolate the 
characteristic length of the complex shaped matrix block 
because its measurements for complex shapes are not easy 
to calculate as other forms. For this purpose, we introduced 
three-dimensional interpolations as shown in Fig. 14, to 
interpolate the characteristic length of the complex shape.

The four blue lines shown in Fig. 14 are the characteristic 
length of the slab, cylindrical, spherical and prism shapes as 
a function of volume and surface. According to the three-
dimensional interpolation results, the characteristic length 
for the complex shape is estimated to be 34.2 (red line in 
Fig. 14). The dimensionless shape factor is calculated to 
be 11.4 and 10.5 for the prism and complex shapes, respec-
tively, under the PSS assumption (for constant pressure 
case). The obtained shape factor values for the prism and 
complex shaped matrix blocks are shown in Figs. 15 and 16, 

(24)L = 2 ×

√
a1 + a2 + a3 + a4 + a5

5

Table 4  Shape factor constants for different geometry matrix blocks 
subject to different boundary conditions under the transient transfer 
assumption

Boundary conditions Shape factor constants σL2 under the 
transient transfer assumption

1D flow (slab) 2D flow 
(cylindri-
cal)

3D flow 
(spherical)

Constant fracture pressure 10.0 23.3 39.3
Exponential, a = 1 10.0 23.3 39.9
Exponential, a = 0.0001 11.9 28.8 52.5
Exponential, a = 0.01 10.1 23.7 40.9
Linear decline β = 0.001 10.0 23.3 48.2
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Fig. 13  Schematic representation of the problem for the prism and 
complex shaped blocks
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respectively, which are compared with the obtained value at 
a constant pressure scheme for fractures. 

The values of the shape factor for the prism and complex 
shapes of matrix blocks for different boundary conditions 
under the PSS and transient transfer assumptions are pre-
sented in Table 5.

3.4  Shape factor for three‑dimensional flow 
in regular and irregular shaped blocks

In this section, the results of the calculated shape factor for 
different boundary conditions of pressure of the fractures 
are shown. Results are for both regular and irregular shaped 
matrix blocks.

The regular and irregular cases to simulate three-dimen-
sional flow in the matrix block are shown in Fig. 17.

Tables 6 and 7 show stabilized shape factors in three-
dimensional flow of all regular and irregular shaped matrix 
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Fig. 15  Dimensionless shape factor versus dimensionless time for the prism-shaped matrix block subject to different boundary conditions under 
the PSS assumption
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Fig. 16  Dimensionless shape factor versus dimensionless time for the complex shaped matrix block subject to different boundary conditions 
under the PSS assumption

Table 5  Shape factor constants for irregular geometry matrix blocks 
subject to different boundary conditions under the PSS and transient 
transfer assumption

Boundary condition Shape factor constants σL2

Prism shape, 3D 
flow

Complex shape, 
3D flow

PSS Transient PSS Transient

Constant fracture pressure 11.4 26.4 10.5 25.6
Exponential, a = 1 11.5 27.7 11.1 26.1
Exponential, a = 0.0001 17.4 41.4 16.5 38.3
Exponential, a = 0.01 12.6 29.8 12.0 28.1
Linear decline β = 0.001 16.6 38.9 15.6 36.0
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blocks under the PSS and transient transfer assumptions, 
respectively.

The results show that the shape factor is different for reg-
ular and irregular shapes and flow regimes as it is a function 
of time. However, having an idea about the shape and size of 
matrix blocks (i.e., from FMI log, geomechanical study, etc.) 
can help reservoir engineers to estimate a realistic range of 
shape factor. Both transient and PSS models can help us to 
determine the upper and lower limits for shape factor when 
the shape factor is considered as a matching parameter.

4  Comparison with existing models

As it was previously shown, when the results from different 
sources were compared, real differences for � values were 
noticed. The shape factor values calculated under the PSS 
assumption were higher than or equal to those proposed by 
Kazemi et al. (1976), but less than those by Warren and 
Roots (1963), and Coats (1989). For 1D slab flow under the 
transient assumption, the shape factor obtained in this study 
was around 10 for the constant fracture pressure case in 
comparison to 12, 11.5 and 9.87 used by Quintard and Whi-
taker (1996), Noetinger and Estebenet (2000) and Penuela 
et al. (2002a, b), respectively. Figure 18 demonstrates a 
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Fig. 17  Regular and irregular shaped matrix blocks in three-dimensional flow

Table 6  Stabilized shape factors in three-dimensional flow under the PSS assumption

Boundary conditions Shape factor constants σL2 in 3D flow

Cube Cylindrical Spherical Prism Complex

Constant fracture pressure 12.4 13.8 16.7 11.4 10.5
Exponential, α = 1 12.3 13.9 16.6 11.5 11.1
Exponential, α = 0.0001 17.8 19.2 22.1 17.4 16.5
Exponential, α = 0.01 12.9 14.4 17.2 12.6 12.0
Linear decline β = 0.001 15.6 17.2 20.2 16.6 15.6

Table 7  Stabilized shape factors in three-dimensional flow under the transient transfer assumption

Boundary conditions Shape factor constants σL2 in 3D flow

Slab Cylindrical Spherical Prism Complex

Constant fracture pressure 29.9 33.0 39.3 26.4 25.6
Exponential, α = 1 30.0 33.4 39.9 27.7 26.1
Exponential, a = 0.0001 41.8 45.5 52.5 41.4 38.3
Exponential, α = 0.01 30.7 34.1 40.9 29.8 28.1
Linear decline β = 0.001 36.8 40.6 48.2 38.9 36.0
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comparison between the presented shape factor from the 
new numerical model in this study with the existing ones. 
Figures 19 and 20 compare the stabilized values of the shape 
factor from the numerical solution performed in this work 
and other numerical/analytical studies by others for constant 
fracture pressure under the PSS and transient flow regimes.

5  Conclusions

1. In this paper, the value of the shape factor is calculated 
for different geometries and under transient and PSS 
assumptions in a systematic approach. Using fine-scale 
numerical simulation, it has been shown that the matrix–
fracture shape factor for a single-phase flow of slightly 
compressible fluid illustrates a period with a decreasing 
value and then stabilizes to a stable value. This is true 
for both regular and irregular shapes.
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Fig. 19  Comparison of the obtained results for one-, two- and three-
dimensional flow regimes under the PSS assumption for the constant 
fracture pressure with those from other studies (N is the number of 
the fracture sets)
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2. Based on the pressure depletion regime in the fracture, 
the stabilized value of the shape factor varies between 
two limits. The upper limit is obtained for an exponen-
tially declining fracture pressure with a decline exponent 
of 0.0001 which corresponds to a slow pressure deple-
tion regime. The lower limit is derived for the constant 
fracture pressure boundary conditions where depletion 
takes place faster.

3. The shape factor values calculated from PSS pressure 
behavior for the one- and two-dimensional blocks have 
a good agreement with those proposed by Kazemi et al. 
(1976). Reasonable agreement is also found between the 
obtained values for the three-dimensional block and that 
presented by Peaceman (1976).

4. It has also been shown that the depletion time of a matrix 
block is a function of the fracture pressure depletion 
regimes. In the case of constant fracture pressure or 
exponential decline with a large exponent, the block is 
depleted faster than that in the linear decline and the 
exponential decline with a small exponent. The same 
behavior has been reported for a slightly compressible 
fluid by Chang (1993) and Hassanzadeh and Pooladi-
Darvish (2006).

5. The shape factor is estimated and made dimensionless 
with characteristic length, σL2, for irregular shapes 
where there is no analytical solution for them. It is 
shown that dimensionless shape factors for irregular 
shapes are closer to those of the slab case. This solution 
facilitates accurate simulation of oil transfer between the 
matrix and fracture in fractured reservoirs.

Our results reveal that the shape factor is a function of time, 
and its value is different for regular and irregular shapes and 
various boundary conditions. However, the heterogeneity of 
the matrix is not considered in this study and different results 
may be obtained in this case. In addition, conducting the 
same investigations into multiphase flow can be considered 
in future work.
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