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Abstract
Equivalent staggered-grid (ESG) as a new family of schemes has been utilized in seismic modeling, imaging, and inversion. 
Traditionally, the Taylor series expansion is often applied to calculate finite-difference (FD) coefficients on spatial deriva-
tives, but the simulation results suffer serious numerical dispersion on a large frequency zone. We develop an optimized 
equivalent staggered-grid (OESG) FD method that can simultaneously suppress temporal and spatial dispersion for solving 
the second-order system of the 3D elastic wave equation. On the one hand, we consider the coupling relations between wave 
speeds and spatial derivatives in the elastic wave equation and give three sets of FD coefficients with respect to the P-wave, 
S-wave, and converted-wave (C-wave) terms. On the other hand, a novel plane wave solution for the 3D elastic wave equation 
is derived from the matrix decomposition method to construct the time–space dispersion relations. FD coefficients of the 
OESG method can be acquired by solving the new dispersion equations based on the Newton iteration method. Finally, we 
construct a new objective function to analyze P-wave, S-wave, and C-wave dispersion concerning frequencies. The disper-
sion analyses show that the presented method produces less modeling errors than the traditional ESG method. The synthetic 
examples demonstrate the effectiveness and superiority of the presented method.

Keywords 3D elastic wave equation · Optimized equivalent staggered-grid · Numerical dispersion · Newton iteration 
method · Plane wave solution

1 Introduction

Numerical modeling for elastic wave propagation is a power-
ful tool in seismic data processing and interpretation (Duan 
et al. 2013). The numerical modeling has extensive appli-
cations in 2D seismic exploration, but it suffers inherent 
weaknesses and certain limitations for complex media. In 
recent years, seismic explorations have gradually shifted to 
areas with complex geological conditions, such as regions 
with mountains, deserts, faulted basins (Yang et al. 2015). 
As a result, 3D numerical modeling has attracted growing 
attention for high-precision seismic exploration. 3D wave 

equations can comprehensively describe seismic wavefield 
characteristics and propagation laws, and provide the theo-
retical basis for the acquisition, processing, interpretation 
(Xia et al. 2004). In addition, the elastic wavefield carries 
rich information related to the earth media, which means that 
it may provide more underground geological and structural 
information (Yong et al. 2016; Yang et al. 2018). Therefore, 
the high-precision simulation of the 3D elastic waveform 
plays a pivotal role in seismic exploration technologies.

Many numerical methods have been developed to solve 
wave equations, including the finite-difference (FD) meth-
ods, pseudo-spectral methods (Reshef et al. 1988), finite 
element methods (Marfurt 1984), spectral element methods 
(Zhu et al. 2011), etc. FD methods are generally popular in 
seismic numerical modeling because of their small compu-
tational cost and easy implementation (Alford et al. 1974; 
Dablain 1986; Etgen 2007; Moczo et al. 2007), while they 
suffer the inherent numerical dispersion because we have 
to approximate the differential operators with the truncated 
difference operators. In addition, there will lead to strong 
dispersion artifacts for modeling high-frequency wave 
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propagations with large spatial spacing (Holberg 1987; 
Zhang and Yao 2012, 2013). Numerical dispersion is an 
inevitable problem in FD methods, which directly affects the 
accuracy of the wavefield simulation. To reduce the numeri-
cal dispersion, we can adopt a finer mesh or a lower wavelet 
frequency, but a thinner grid means high computational cost, 
reducing computing efficiency and increasing the storage 
burden on the computer. Optimizing FD coefficients is an 
effective approach to suppress numerical dispersion without 
increasing the computational cost and memory storage.

So far, various methods of optimizing FD coefficients 
have been developed, which can be mainly divided into two 
categories: Taylor expansion methods (Jastram and Behle 
1993; Finkelstein and Kastner 2007; Liu and Sen 2009), 
optimization-based methods (Chen et al. 2010; Liu and Sen 
2011; Wang et al. 2014). The first category consumes a 
lower computational cost than the other one for solving the 
dispersion equations, and it usually provides high accuracy 
on a small frequency zone (Ren and Liu 2015). The sec-
ond category acquires FD coefficients by minimizing phase 
velocity errors, which possesses a broad effective frequency 
band but sacrifices computational efficiency and still has the 
potential of not convergence (Liu 2013). In addition, FD 
coefficients can be optimized by truncating window func-
tions. The conventional window functions mainly include 
Hanning windows (Zhou and Greenhalgh 1992), Gauss win-
dows (Igel et al. 1995) and modified binomial windows (Chu 
and Stoffa 2012). Recently, several new truncation windows 
have gradually been developed, such as a Chebyshev’s auto-
convolution window (Wang et al. 2015) and a truncation 
window based on the least-squares algorithm (Ren et al. 
2018). These methods based on truncated windows can 
partially suppress numerical dispersion.

The staggered-grid (SG) scheme introduced by Yee 
(1966) is an alternative approach to solve the elastic wave 
equation. Virieux (1986) applies this scheme with second-
order accuracy in both time and space to solve the P-SV 
wave equation in heterogenous media. Levander (1988) 
develops a fourth-order accuracy in space and second-order 
accuracy in time FD scheme based on the staggered-grid 
scheme. Afterward, some optimized FD methods based on 
the staggered-grid scheme are gradually applied to solve the 
elastic wave equation (Ma and Zhu 2003; Kosloff et al. 2010; 
Yang et al. 2014). The SG scheme is often applied to solve 
first-order velocity–stress equations, which is not conducive 
to memory storage because of the existence of intermedi-
ate variables. Bartolo et al. (2012) develop an equivalent 
SG scheme (ESG) to solve the second-order system of the 
acoustic equation, obtaining the same level of accuracy and 
stability as the conventional SG scheme. Based on previous 
methods, we construct an optimized equivalent staggered-
grid scheme (OESG) to improve the accuracy of elastic wave 
simulation. Different from the acoustic wave equation, the 

spatial derivatives are coupled with the velocity terms in the 
elastic wave equation, which affects the weight distribution 
of the grid points when the spatial derivatives are approxi-
mated with the truncated difference operators. In this paper, 
we take P-wave, S-wave, and C-wave into account and obtain 
the optimized FD coefficients of 3D elastic wave modeling.

We start by deriving the plane wave solutions of the 3D 
elastic wave equation to construct the dispersion relation-
ships. Then we give three sets of FD coefficients to make up 
the OESG scheme. Moreover, the Newton iteration method 
is used to solve the new dispersion equations by minimizing 
the relative phase velocity error in the time–space domain. 
Finally, we analyze the dispersion characteristics and give 
several results of numerical modeling, proving the validity 
and superiority of the presented method.

2  Methodology

2.1  The OESG scheme for the 3D elastic wave 
equation

The first-order velocity–stress elastic wave equation is popular 
in seismic forward modeling, but there are nine variables (three 
particle velocities and six stresses) propagated in 3D cases, 
increasing the storage demands (Li et al. 2018). Therefore, we 
will adopt the second-order elastic wave equation to simulate 
in this study. In the 3D Cartesian coordinate system, the sec-
ond-order elastic wave equation with constant P- and S-wave 
speed in the isotropic media can be approximately expressed as

where u, v, w are the particle displacement vectors in x-, 
y- and z-direction, respectively. t is the travel time. α and β 
denote P-wave and S-wave speeds, respectively, where we 
have α2 = (λ +2 μ)/ρ, β2 = μ/ρ. λ and μ are the Lamé param-
eters, and ρ is the medium density. Note that Eq. 1 is derived 
from the constant velocity media, where the model param-
eters λ, μ, ρ are assumed to be constant. To extend the new 
method from homogeneous model to heterogeneous model, 
we need to assume the local constant velocity, which is rea-
sonable according to the numerical results of a two-layer 
model with large velocity variations given by Liu (2014). 
Hence, Eq. 1 can also handle heterogeneous models with 
this assumption.

We set three sets of FD coefficients with respect to wave 
speeds and write out the OESG scheme of Eq. 1 as
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where (u, v,w)n
i,j,k

 are displacement components at discrete 
positions (x, y, z) = (ih, jh, kh) in discrete times t = n∆t. h and 
∆t denote spatial and temporal sampling intervals, respec-
tively. M represents half of the spatial operator lengths. i, j, k 
are discrete points on different directions, and a, b, c are the 
FD coefficients associated with P-wave, S-wave and C-wave 
terms, respectively. We also display the 3D OESG stencil to 
help understand, as shown in Fig. 1.

2.2  Plane wave solution of the 3D elastic wave 
equation

Applying the spatial Fourier transform to Eq. 1, we have
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where (û, v̂, ŵ)(k, t) denote displacement components in 
the wavenumber domain, and k = (kx, ky, kz) = (kcosθcosϕ, 
kcosθsinϕ, ksinθ) denotes the wavenumber vector. θ and ϕ 
are the dip angle and azimuth angle, respectively. In a matrix 
form, Eq. 3 can be written in the following form, as

where L is the second-order derivative of displacement com-
ponents, as
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𝜕2 û(k, t)

𝜕t2
= −

[
𝛼2k2

x
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T denotes the transpose symbol. A is the coefficients 
matrix with

It turns out that the matrix A is a real symmetric 
matrix, concluding that there exists an orthogonal matrix 
P that makes A = P � P−1. Eigenvalues of the matrix A is 
λ1 = − α2k2, λ2 = λ3 = − β2k2. According to the theory of linear 
algebra, we can derive the orthogonal matrix P, as
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Therefore, Eq. 4 can be rewritten as

For the above equations, we can easily find the general 
solution of Eq. 4, as

where (û, v̂, ŵ)(k, 0) denote the initial values of displacement 
components. Finally, we can acquire the plane wave solu-
tion of the 3D elastic wave by writing Eq. 9 as an expression 
form of Eq. 10.

2.3  Solving FD coefficients based on the time–space 
dispersion relations with Newton’s method

With the spatial Fourier transform on both sides of 
Eqs. 2a–2c, then substituting Eq. 10 and simplifying, we 
obtain three dispersion relations, as
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Fig. 1  The 3D OESG stencil. h is a mesh spacing. x, y, z denote the 
grid coordinates. In the figure above, all grid points, half grid points 
and surfaces should be corresponding components, which are not 
shown here for easy observation
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Detailed derivations can be found in “Appendix 1”. Equa-
tions 11a and 11b have the same forms, only with different 
wave speeds. Therefore, we can compute FD coefficients 
associated with the P- and S-wave speeds by solving Eq. 11a. 
Equation 11a cannot be solved directly because of its nonlin-
earity. Therefore, we need to construct the objective function 
based on the L2 norm theory, as

where

and ke denotes the effective wavenumber range. r is the CFL 
(Courant–Friedrichs–Lewy) number, which can be repre-
sented as r = α∆t/h. We adopt the iterative format of New-
ton’s method to solve Eq. 11a, as
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where a represents FD coefficients, and k is the number of 
iterations. We can acquire the Hessian matrix H and gradient 
vector g of the objective function by taking first-order and 
second-order derivatives of Eq. 12. Details of the deriva-
tions are shown in “Appendix 2”. As a result, we can get 
the FD coefficients a and b by Eq. 13. To accelerate the 
convergence, the initial iteration values should be set as the 
conventional SG FD coefficients, and the error limit is set to 
1% as the termination condition (Yong et al. 2017). Due to 
the fast convergence speed of Newton’s method, it usually 
takes only a few iterations to get a satisfactory result.

As for solving Eq.  11c, there is a trouble that the 
denominator could be zero if we just divide it by 
 sin2(0.5αk∆t) − sin2(0.5βk∆t), resulting in non-convergence 
of the algorithm. Thus, we choose to break this term down 
into two terms by matching the terms of α and β, as

(14)

F(c) =
1
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}
,
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where

Similarly, the detailed derivations of first-order and sec-
ond-order derivatives for Eq. 11c are contained in “Appen-
dix 2”. Therefore, we can also get the FD coefficients c by 
Eq. 13.

2.4  Numerical dispersion analysis

It can be seen from the above analyses that three kinds of FD 
coefficients are solved separately, indicating that the disper-
sion analyses for them should also be separate. As a result, 

qxy(c) =

[
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cm sin
(
(m − 0.5)kxh

)][ M∑
m=1

cm sin
(
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)]
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[
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cm sin
(
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)][ M∑
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cm sin
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)]

qzx(c) =

[
M∑

m=1

cm sin
(
(m − 0.5)kzh

)][ M∑
m=1

cm sin
(
(m − 0.5)kxh

)]
, r1 =

�Δt

h
, r2 =

�Δt

h
.
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Fig. 2  Dispersion curves of three wave terms with different methods at α = 2000 m/s, β =1154 m/s, h = 15 m, ∆t = 0.5 ms, M = 5. a–c The ESG 
method; d–f The OESG method

using the relation f = kv∕2� , we construct three dispersion 
equations taking the frequency as an independent variable, 
as

(15)
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Fig. 3  Dispersion curves of three wave terms with different methods at α = 4000 m/s, β =2309 m/s, h = 15 m, ∆t = 0.5 ms, M = 5. a–c The ESG 
method; d–f The OESG method
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Fig. 4  Dispersion curves of three wave terms with different methods at α = 4000 m/s, β =2309 m/s, h = 15 m, ∆t = 1 ms, M = 5. a–c The ESG 
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For Eq. 15, it is worth noting that the new independ-
ent variable of the dispersion equations is the frequency f 
instead of kh. Next, based on Eqs. 15, we give several dis-
persion curves in the homogeneous media. The first test is 
a low-speed medium, whose parameters are α = 2000 m/s, 
β =1154 m/s, h = 15 m, ∆t = 0.5 ms, M = 5, shown in Fig. 2. 
Note that all simulation parameters should meet the stability 
condition, whose governing equation will be given below.

Note that the effective frequency range in Fig. 2 is about 
0-38 Hz, which can be calculated by the spatial domain sam-
pling theorem f < β/2 h. Figure 2 shows the dispersion curves 
of three wave terms with the ESG and OESG methods in a 
constant velocity medium. One can see that all the curves in 
Fig. 2 almost lie underneath the ideal one for all frequency 
ranges, indicating that there suffers the spatial dispersion. In 
addition, the dispersion errors of the three wave terms are 
different under the same medium parameters, indicating that 
it is necessary to analyze the three wave terms separately. As 
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can be seen from Fig. 2, the P-wave term suffers the small-
est dispersion errors among the three terms, and the S-wave 
term has the largest errors.

Comparing Fig. 2a with d, we can conclude that the 
OESG method performs fewer errors of P-wave than the 
traditional ESG method, which reveals the advantage of the 
presented method. For the errors of S-wave and C-wave, the 
OESG method also can reduce dispersion errors compared 
with the ESG method in the same frequency range, shown 
in Fig. 2b–c and e–f. Figure 2 also displays the error values 
of three wave terms when f = 30 Hz, θ = ϕ = 0 (See the black 
arrows), providing a piece of evidence for the above conclu-
sions. In addition, the dispersion errors vary with different 
propagation angles. There is a maximal dispersion error on 
the condition of θ = ϕ = 0 and minimal dispersion error on 
the condition of θ = ϕ = π/4, indicating that the propagation 
angles are the factor that affects the numerical dispersion. In 
general, the OESG method can effectively suppress spatial 
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Fig. 5  Dispersion curves of three wave terms with the OESG method at α = 2000 m/s, β =400 m/s, h = 15 m, ∆t = 0.5 ms, M = 5. a P-wave; b 
S-wave; c C-wave
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dispersion and has higher simulation precision than the tra-
ditional ESG method.

To test the presented method’s accuracy in a high-veloc-
ity medium, we increase the P-wave and S-wave speed to 
α = 4000 m/s, β =2309 m/s, shown in Fig. 3. Comparing 
with Fig. 3a–c, d–f shows weaker spatial dispersion of three 
wave terms in the same frequency values, indicating that 
the presented can also effectively reduce spatial dispersion 
compared to the traditional ESG method in high-velocity 
media. Figure 3 also marks the percentage error values at 
some points, providing a piece of evidence for verifying the 
superiority of the OESG method in suppressing spatial dis-
persion. In addition, temporal dispersion occurs in a high-
speed medium even though the time step is small, shown in 
Fig. 3a (see the red box). To further investigate the ability 
of our method to suppress temporal dispersion for the elastic 
wave equation modeling, we move ∆t = 0.5 ms to ∆t = 1 ms, 

and then introduce an optimal method based on least-squares 
(LS) algorithm (Yang et al. 2014). As a result, the three wave 
terms suffer severe temporal dispersion, shown in Fig. 4.

The black arrows in Fig. 4 indicate the temporal disper-
sion errors of the three methods when f = 60 Hz, θ = ϕ = π/4. 
By comparison, we know that the OESG method has the 
minimum temporal dispersion errors among the three meth-
ods. Comparing Fig. 4h–i with b–c, it can be seen that the 
OESG method also effectively suppress spatial dispersion 
compared to the traditional ESG method. In Fig. 4e–f and 
h–i, one can see that the LS method based on spatial domain 
optimization has less spatial dispersive error than the OESG 
method when frequency is high. Note that the OESG method 
based on time–space domain optimization can simultane-
ously suppress spatial and temporal dispersion to attain an 
optimal result, which leads to an average effect between the 
spatial dispersion and temporal dispersion. Therefore, the 
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Fig. 6  Snapshots of displacement components at 0.6 s of different methods with α = 2000 m/s, β =1154 m/s, h = 15 m, ∆t = 0.5 ms, f = 14 Hz. a 
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OESG method is slightly weaker than the LS method in sup-
pressing spatial dispersion, while the LS method performs 
poor in suppressing temporal dispersion.

In addition, the P- to S-wave speed ratio (α/β) is also a fac-
tor affecting the numerical dispersion. In some special media 
such as sedimentary basins, α/β is as large as five and even 
larger (Moczo et al. 2010). Based on Fig. 2d–f, we move 
α = 2000 m/s, β = 1143 m/s to α= 2000 m/s, β =400 m/s, 
and obtain corresponding dispersion error curves, shown in 
Fig. 5. The maximum frequency f decreases to about 13 Hz 
according to the spatial domain sampling theorem, which 
means that the FD method suffers the severe numerical 

dispersion using a wavelet with high frequency. The numeri-
cal dispersion can be reduced effectively by shortening mesh 
spacing. Therefore, for the high α/β ratio areas, fine space 
girds are used.

2.5  Stability analysis and boundary conditions

When solving wave equations, it is very important that the 
solution of the discrete difference equation is stable or not. 
There are two main reasons for the instability in the pro-
cess of numerical simulation. On the one hand, FD coeffi-
cients are sensitive to the optimized wavenumber range. FD 
methods will be unstable when the optimized wavenumber 
range is too small. According to the sampling theorem, we 
have kmax= π/h, which is maximal wavenumber. We define 
fmax= 2.5 f0 and take kcon= 2πfmax/vmax (where, kcon< kmax) as 
the wavenumber range to optimize FD coefficients, while the 
iterative process will be unstable when k is too small. In this 
paper, we adopt Yong’s (2017) method to modify the wave-
number range. The new wavenumber ke can be defined as
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Table 1  The relative amplitude errors between different methods and 
the reference method

Methods The ESG 
method with 
M = 5, %

The OESG 
method with 
M = 3, %

The OESG 
method with 
M = 5, %

Relative ampli-
tude errors

4.6097 2.7355 0.8870
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where vph, vreal denote the phase and real velocities, respec-
tively. τ is the relative phase velocity error, and kopt is the opti-
mized wavenumber. We will choose the optimized wavenumber 
range strictly according to Eq. 16 in the following numerical 
examples.

On the other hand, improper calculation parameters 
will also lead to the instability of algorithms. At present, 
the Fourier analysis and matrix analysis are mainly used to 

(16)
𝜏
(
kopt

)
=

vph

vreal
− 1 > −0.005

ke = max
(
kcon, kopt

)
,

qualitatively and quantitatively study stability conditions for 
different elastic wave equations. We derive the stability condi-
tion of the presented method by the matrix analysis method, as

The detailed derivation process is included in “Appen-
dix 3”. Subsequent algorithm tests show that the presented 
method has almost the same stability as the traditional ESG 
method. Besides, we adopt absorption boundary conditions, 
whose attenuation function can be written as (Cerjan et al. 
1985)

where npd is the thickness of the absorption layer, and i 
denotes spatial coordinates.

(17)max

⎛⎜⎜⎝
�maxΔt

�∑M

m=1
��am��2

Δx2
+

∑M

m=1
��bm��2

Δy2
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m=1
��bm��2

Δz2
, �maxΔt

��M

m=1
��cm��2

�
1

Δx2
+

1

Δy2
+

1

Δz2

�⎞⎟⎟⎠
≤ 1.

(18)G = exp
{
−
[
0.015(npd − i)

]2}
,
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Table 2  The list of FD coefficients with M = 5, h = 15 m, ∆t = 0.5 ms 
for the two-layer model

V, m/s 1 2 3 4 5

2000
 a 1.23416 − 0.10636 0.02233 − 0.00457 5.82837e−04
 b 1.23425 − 0.10639 0.02233 − 0.00457 5.82698e−04
 c 1.22349 − 0.09868 0.01848 − 0.00333 3.85441e−04

2500
 a 1.23408 − 0.10634 0.02234 − 0.00457 5.82954e−04
 b 1.23422 − 0.10638 0.02233 − 0.00457 5.82737e−04
 c 1.22345 − 0.09867 0.01849 − 0.00334 3.86855e−04
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3  Numerical examples

In this section, we test some models, including several 
homogeneous models, the two-layer model and the salt-
dome model in the 3D case. The main objective of these 
simulations is to prove the validity and superiority of the 
OESG method compared with the traditional methods. In 
these examples, we will use a Ricker wavelet source that is 
simultaneously added to three displacement components. In 
addition, we consider the previously mentioned absorbing 
boundary condition and give npd =30 in all the simulations. 
Finally, for the 3D elastic wave equation, there are three dis-
placement components. Here, we can draw our conclusions 
by analyzing one of the three components.
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Table 3  The list of FD coefficients with M = 5, h = 15 m, ∆t = 0.5 ms 
for the salt-dome model

V, m/s 1 2 3 4 5

1500
 a 1.23382 − 0.10626 0.02234 − 0.00457 5.83360e−04
 b 1.23413 − 0.10635 0.02233 − 0.00456 5.82873e−04
 c 1.22330 − 0.09862 0.01850 − 0.00335 3.91767e−04

1505
 a 1.23381 − 0.10626 0.02235 − 0.00457 5.83365e−04
 b 1.23414 − 0.10635 0.02234 − 0.00457 5.82874e−04
 c 1.22330 − 0.09863 0.01850 − 0.00335 3.91826e−04

…
3000
 a 1.23240 − 0.10586 0.02240 − 0.00458 5.85535e−04
 b 1.23366 − 0.10622 0.02235 − 0.00457 5.82874e−04
 c 1.22250 − 0.09841 0.01857 − 0.00342 4.18314e−04

3005
 a 1.23240 − 0.10586 0.02240 − 0.00458 5.85544e−04
 b 1.23366 − 0.10622 0.02235 − 0.00457 5.83607e−04
 c 1.22250 − 0.09841 0.01857 − 0.00342 4.18432e−04

…
4000
 a 1.23093 − 0.10544 0.02245 − 0.00459 5.87757e−04
 b 1.23317 − 0.10608 0.02237 − 0.00457 5.84357e−04
 c 1.22166 − 0.09818 0.01865 − 0.00350 4.45882e−04

4005
 a 1.23092 − 0.10544 0.02245 − 0.00459 5.87769e−04
 b 1.23317 − 0.10608 0.02237 − 0.00457 5.84362e−04
 c 1.22166 − 0.09818 0.01865 − 0.00350 4.46039e−04

…
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3.1  The homogeneous model

The first model is a homogeneous model with lower veloc-
ity (α = 2000 m/s, β =1154 m/s), which is modeled using 
the numerical parameters h = 15 m and ∆t = 0.5 ms in the 
grid dimensions of 200 × 200 × 200. The source whose peak 
frequency is 14 Hz is located at the center of the model. 
Figure 6 displays the snapshots of different sections with the 
ESG and OESG methods. It exhibits a strong spatial disper-
sion for the S-wave term with the ESG method in Fig. 6a. 
We can shrink the sampling intervals or increase the spatial 
FD order to improve the simulation results, but there are all 
sorts of problems such as oversize computational cost and 
the instability of the algorithm. The OESG method based 

on time–space domain optimization can effectively reduce 
numerical dispersion, shown in Fig. 6b.

To further investigate the simulation accuracy of the 
OESG method, we reduce the spatial FD order of the OESG 
method to M = 3, shown in Fig. 6c. It can be seen that Fig. 6c 
performs the similar modeling accuracy to Fig. 6a, which 
suggests that the presented method with the low spatial FD 
order can achieve the accuracy requirement of the traditional 
ESG method with the high spatial FD order.

Besides, we extract single vertical slices of snapshots and 
adopt the reference method (see Fig. 6d) with the minimum 
possible dispersion errors by reducing the mesh step. As 
shown in Fig. 7, the reference method matches well with the 
OESG method with M = 5, but poor with the ESG method 
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with M = 5. Table 1 gives a statistic of relative amplitude 
errors in Fig. 7. From Table 1, we know that the OESG 
method with M = 3 has smaller relative amplitude errors than 
the ESG method with M = 5, which means that forward mod-
eling using the OESG method can save the computational 
cost of FD operator lengths compared to the traditional ESG 
method. The relative amplitude errors can be calculated by

where Ucal, Uref denote the calculated wavefield values and 
reference values along the z-direction, respectively. N is the 
total number of the calculated wavefields.

We continue to test the accuracy of the presented method 
in a high-speed medium. We give the snapshots of the ESG 
and OESG methods, where α = 4000 m/s, β =2309 m/s, 
f = 30 Hz, shown in Fig. 8. Comparing Fig. 8a with b, the 
traditional ESG method suffers severer numerical dispersion 
than the OESG method, indicating that the presented method 
can effectively suppress numerical dispersion in high-speed 
media. In general, the presented method can suppress the 
numerical dispersion in the low- and high-speed media, 
which is also consistent with the above dispersion analyses.

3.2  The two‑layer model

It can be known from the above analyses that the FD coeffi-
cients of the OESG method are calculated in the time–space 
domain and correspond to the wave speed values one to one. 
As a result, the OESG method has higher simulation accu-
racy in the heterogeneous media than the traditional ESG 
method. Therefore, we first test a two-layer model, shown in 
Fig. 9. The gird dimensions are 201 × 201 × 201. The spatial 
and temporal sampling intervals are h = 15 m, ∆t = 0.5 ms. 
The P-wave velocities in the first and second layers are 
2000 m/s and 2500 m/s, respectively. The S-wave speed is 
obtained by the ratio α/β = 1.73. The source whose peak fre-
quency is 14 Hz is located at the location (1500 m, 1500 m, 
1500 m). For the two-layer model in Fig. 9, we give its FD 
coefficients according to P-wave speeds, listed in Table 2.

(19)E =

N∑
n=1

[
Ucal(z) − Uref(z)

]2
/

N∑
n=1

[
Uref(z)

]2

Figure 10 shows the simulation results of different meth-
ods. In Fig. 10, we can observe the reflections, transmissions 
of P-wave, S-wave, and C-wave:

• A, B, and C denote the direct S-wave, the reflected 
S-wave, and the transmitted S-wave, respectively;

• D, E, and F denote the direct P-wave, the reflected P-wave 
and the transmitted P-wave, respectively;

• G and H denote the reflection and transmission for the 
converted SP-wave, respectively;

• I and J denote the reflection and transmission for the con-
verted PS-wave,

which illustrates that the OESG method is effective for 
numerical forward modeling of the heterogeneous medium. 
In addition, comparing Fig. 10b with Fig. 10a, we know 
that the traditional ESG method suffers the severer spatial 
dispersion for the S-wave term than the OESG method (see 
black arrows).

3.3  The 3D salt‑dome model

Next, we consider the 3D salt-dome model whose velocity 
range is 1500 to 4482 m/s, shown in Fig. 11. The model 
dimensions are 225 × 225 × 201. The spatial and temporal 
sampling intervals are h = 15 m, ∆t = 0.5 ms. The S-wave 
speeds are obtained by the ratio α/β = 1.73. The source whose 
peak frequency is 14 Hz is located at the location (1680 m, 
1680 m, 0 m). For the 3D salt-dome model, we need to dis-
cretize the velocity model with a sampling interval. Given a 
sampling interval of 5 m/s, about 600 sets of FD coefficients 
are required, but we can store them in the computer before 
starting numerical simulations. Table 3 lists the partial FD 
coefficients for simulations of the 3D salt-dome model.

Figure 12 shows the snapshots of the 3D salt-dome model at 
0.9 s with different methods. On the one hand, the reflections 
from the salt-dome are distinct and the location of salt-dome 
anomalies in Fig. 11 can be well matched in Fig. 12, proving 
the validity of the OESG method in the heterogeneous media. 
On the other hand, from the black arrows and red boxes in 
Fig. 12a–c, we can see that the traditional ESG method can lead 
to severer numerical dispersion than the OESG and LS methods.

To facilitate analysis, we extract some single traces from 
common-shot gathers with a time record of 1.5 s (common-
shot gathers are found in “Appendix 4”) and adopt the refer-
ence method (a)

with the lowest possible dispersion errors by increasing 
the order of the FD scheme, shown in Fig. 13. One can see 
that the OESG method is very close to the reference method 
(See red dashed in Fig. 13), while there is always a mismatch 
between the LS method and the reference method (See green 
dashed in Fig. 13). The blue dashed represents the traditional 
method, which has the biggest amplitude errors among the 

Table 4  The relative amplitude errors between different methods and 
the reference method

Relative ampli-
tude errors

The ESG 
method, %

The LS method, % The OESG 
method, %

(a) 4.5048 2.7854 0.3438
(b) 3.2745 1.3888 0.3976
(c) 0.9739 0.0998 0.0552
(d) 5.5431 3.2111 0.2211
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three methods. Table 4 shows the relative amplitude errors 
of seismograms in Fig.  13. By comparison, the OESG 
method has lower relative amplitude errors than the other 
two methods. From the above analyses, it can be concluded 
that the OESG method is superior to the other two methods 
for 3D elastic waveform modeling in complex med.

4  Discussions

FD methods have always been used to solve partial differ-
ential equations (acoustic wave and elastic wave equations) 
on seismic exploration (Keiiti and Larner 1970; Kindelan 
et al. 1990), but it suffers the dispersion errors because of 
the inherent characteristics of its algorithm. In this paper, 
we adopt the second-order elastic wave equation in terms of 
pressure only, avoiding the first-order derivative variables 
and thus reducing memory requirements. To improve simu-
lation accuracy, we obtain the optimized FD coefficients by 
minimizing the relative phase velocity error.

There are two different points from other optimized meth-
ods. On the one hand, we get new plane wave solutions of the 
3D elastic wave equation, as shown in Eq. 10. On the other 
hand, we consider the coupling between P-wave and S-wave 
when computing the second-order spatial derivatives, and then 
adopt three sets of coefficients with respect to the three sets of 
wave terms shown in Eq. 2. Intending to eliminate the insta-
bility caused by too narrow wavenumber range, we modify 
the optimized wavenumber range, which makes the algorithm 
more robust. In addition, we also derive the stability condition 
of the presented method, concluding that the OESG method 
has almost the same stability as the traditional ESG method.

Naturally, there are some drawbacks to the new method, 
such as the complexity of formula derivations. In this aspect, 
subsequent researchers can choose other iterative methods or 
objective functions to simplify the formula according to the 
requirements. Besides, the computational efficiency of the 
algorithm has not been improved, which limits its promotion 
and application in seismic imaging and inversion. For this 
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problem, we plan to take the work of imaging and inversion 
to further work by GPU’s method.

5  Conclusions

The OESG method for the 3D elastic wave equation is 
developed to simultaneously suppress temporal and spatial 
dispersion. Different from the traditional FD methods, the 
OESG method possesses the new plane wave solution that 
is more appropriate to construct the time–space dispersion 
relationships. As a result, we obtain FD coefficients using 
the Newton iteration method based on new time–space dis-
persion equations. In addition, we also modify the wavenum-
ber range and objective function, obtaining more satisfactory 
results. With a local constant velocity assumption, we simu-
late the propagation of elastic waves in the 3D homogeneous 
and heterogeneous media using the OESG method.

The presented method’s advantages mainly include three 
aspects. Firstly, the presented method has a lower spatial 
dispersion error than the traditional ESG method. Numeri-
cal examples show that the OESG method with M = 3 can 
achieve the simulation accuracy of the traditional ESG 
method with M = 5, which is conducive to save the amount 
of computation. Secondly, compared with the LS method, 
the presented method performs well in suppressing temporal 
dispersion, while it is slightly weaker than the LS method 
in suppressing spatial dispersion. However, the presented 
method has smaller relative amplitude errors than the LS 
method in 3D salt-dome model, shown in Table 4, indicat-
ing that the OESG method is superior to the LS method in 
complex media. Thirdly, FD coefficients of the presented 
method are calculated from medium velocities, meaning that 

it is more accurate to heterogeneous media than the LS and 
traditional ESG methods whose FD coefficients are the con-
stant. Numerical examples prove that the presented method 
is superior to the LS and traditional ESG methods.
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Appendix 1: The derivation of dispersion 
relations

With the temporal Fourier transform of the left-hand side 
for Eqs. 2a–2c, then substituting Eq. 10 and simplifying, 
we have

(20a)
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ŵ(k, t)

+

[
2kzkx

k2
((cos (𝛼kΔt) − 1) − (cos (𝛽kΔt) − 1))

]
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Similarly, taking spatial Fourier transform of the right-
hand side of Eqs. 2a–2c, we have
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û(k, t)

FT

�
M�
l=1

M�
m=1

bmbl

��
u0
0,m+l−1,0

− u0
0,−m+l,0

�
−
�
u0
0,m−l,0

− u0
0,−m−l+1,0

�
+
�
u0
0,0,m+l−1

− u0
0,0,−m+l

�
−
�
u0
0,0,m−l

− u0
0,0,−m−l+1

���

= −

⎧⎪⎨⎪⎩

�
M�

m=1

bm sin
�
(m − 0.5)kyh

��2

+

�
M�

m=1

bm sin
�
(m − 0.5)kzh

��2⎫⎪⎬⎪⎭
û(k, t),

(21a)

FT

{
M∑
l=1

M∑
m=1

cmcl

[(
v0
m−1∕2,l−1∕2,0

− v0
−m+1∕2,l−1∕2,0

)
−
(
v0
m−1∕2,−l+1∕2,0

− v0
−m+1∕2,−l+1∕2,0

)

+
(
w0
m−1∕2,0,l−1∕2

− w0
−m+1∕2,0,l−1∕2

)
−
(
w0
m−1∕2,0,−l+1∕2

− w0
−m+1∕2,0,−l+1∕2

)]}

= −

[
M∑

m=1

cm sin
(
(m − 0.5)kxh

)][ M∑
m=1

cm sin
(
(m − 0.5)kyh

)]
v̂(k, t)

−

[
M∑

m=1

cm sin
(
(m − 0.5)kxh

)][ M∑
m=1

cm sin
(
(m − 0.5)kzh

)]
ŵ(k, t),

FT

{
M∑
l=1

M∑
m=1

alam

[(
v0
1∕2,m+l−1∕2,0

− v0
1∕2,−m+l+1∕2,0

)
−
(
v0
1∕2,m−l+1∕2,0

− v0
1∕2,−m−l+3∕2,0

)]}

= −

[
M∑

m=1

am sin
(
(m − 0.5)kyh

)]2

v̂(k, t)

FT

�
M�
l=1

M�
m=1

blbm

��
v0
m+l−1∕2,1∕2,0

− v0
−m+l+1∕2,1∕2,0

�
−
�
v0
m−l+1∕2,1∕2,0

− v0
−m−l+3∕2,1∕2,0

�

+
�
v0
1∕2,1∕2,m+l−1

− v0
1∕2,1∕2,−m+l

�
−
�
v0
1∕2,1∕2,m−l

− v0
1∕2,1∕2,−m−l+1

���

= −

⎧⎪⎨⎪⎩

�
M�

m=1

bm sin
�
(m − 0.5)kxh

��2

+

�
M�

m=1

bm sin
�
(m − 0.5)kzh

��2⎫⎪⎬⎪⎭
v̂(k, t),
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Note that the item of 1/2 is eliminated when construct-
ing the dispersion relations. That is to say, we do not need 
to consider this item in the above calculations. Combining 
with Eqs.~20 and 21, we can get the dispersion relations as 
Eqs. 11a–11c.

(21b)

FT

{
M∑
l=1

M∑
m=1

clcm

[(
u0
m,l,0

− u0
−m+1,l,0

)
−
(
u0
m,−l+1,0

− u0
−m+1,−l+1,0

)

+
(
w0
1∕2,m,l−1∕2

− w0
1∕2,−m+1,l−1∕2

)
−
(
w0
1∕2,m,−l+1∕2

− w0
1∕2,−m+1,−l+1∕2

)]}

= −

[
M∑

m=1

cm sin
(
(m − 0.5)kxh

)][ M∑
m=1

cm sin
(
(m − 0.5)kyh

)]
û(k, t)

−

[
M∑

m=1

cm sin
(
(m − 0.5)kyh

)][ M∑
m=1

cm sin
(
(m − 0.5)kzh

)]
ŵ(k, t),

FT

{
M∑
l=1

M∑
m=1

alam

[(
w0
1∕2,0,m+l−1∕2

− w0
1∕2,0,−m+l+1∕2

)
−
(
w0
1∕2,0,m−l+1∕2

− w0
1∕2,0,−m−l+3∕2

)]}

= −

[
M∑

m=1

am sin
(
(m − 0.5)kzh

)]2

ŵ(k, t)

FT

�
M�
l=1

M�
m=1

blbm

��
w0
m+l−1∕2,0,1∕2

− w0
−m+l+1∕2,0,1∕2

�
−
�
w0
m−l+1∕2,0,1∕2

− w0
−m−l+3∕2,0,1∕2

�

+
�
w0
1∕2,m+l−1,1∕2

− w0
1∕2,−m+l,1∕2

�
−
�
w0
1∕2,m−l,1∕2

− w0
1∕2,−m−l+1,1∕2

���

= −

⎧⎪⎨⎪⎩

�
M�

m=1

bm sin
�
(m − 0.5)kxh

��2

+

�
M�

m=1

bm sin
�
(m − 0.5)kyh

��2⎫⎪⎬⎪⎭
ŵ(k, t),

(21c)

FT

{
M∑
l=1

M∑
m=1

clcm

[(
u0
m,0,l

− u0
−m+1,0,l

)
−
(
u0
m,0,−l+1

− u0
−m+1,0,−l+1

)

+
(
v0
1∕2,m−1∕2,l

− v0
1∕2,−m+1∕2,l

)
−
(
v0
1∕2,m−1∕2,−l+1

− v0
1∕2,−m+1∕2,−l+1

)]}

= −

[
M∑

m=1

cm sin
(
(m − 0.5)kzh

)][ M∑
m=1

cm sin
(
(m − 0.5)kxh

)]
û(k, t)

−

[
M∑

m=1

cm sin
(
(m − 0.5)kzh

)][ M∑
m=1

cm sin
(
(m − 0.5)kyh

)]
v̂(k, t),

Appendix 2: The calculation steps 
of Newton’s method

Taking the first-order and second-order derivatives of 
Eq. 12, we have

(22a)

�F(a)

�am
=

ke∑
k=0

�∕4∑
�=0

�∕4∑
�=0

(
r2q(a)

sin2 (0.5�kΔt)
− 1

)(
r2

sin2 (0.5�kΔt)

�q(a)

�am

)
,
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Similarly, taking the first-order and second-order deriva-
tives of Eq. 14, we have

(22b)

�2F(a)

�am�an
=

ke∑
k=0

�∕4∑
�=0

�∕4∑
�=0

(
r2q(a)

sin2 (0.5�kΔt)
− 1

)(
r2

sin2 (0.5�kΔt)

�2q(a)

�am�an

)

+

(
r2

sin2 (0.5�kΔt)

�q(a)

�an

)(
r2

sin2 (0.5�kΔt)

�q(a)

�am

)
.

(23a)

�F(c)

�cm
=

1

6

ke∑
k=0

�∕4∑
�=0

�∕4∑
�=0

{(
r2
1
k2qxy(c)

kxky sin
2 (0.5�kΔt)

− 1

)(
r2
1
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cm

)
+

(
r2
2
k2qxy(c)

kxky sin
2 (0.5�kΔt)

− 1

)

(
r2
2
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cm

)
+

(
r2
1
k2qyz(c)

kykz sin
2 (0.5�kΔt)

− 1

)(
r2
1
k2

kykz sin
2 (0.5�kΔt)

�qyz(c)

�cm

)

+

(
r2
2
k2qyz(c)

kzkx sin
2 (0.5�kΔt)

− 1

)(
r2
2
k2

kzkx sin
2 (0.5�kΔt)

�qyz(c)

�cm

)
+

(
r2
1
k2qzx(c)

kzkx sin
2 (0.5�kΔt)

− 1

)

(
r2
1
k2

kzkx sin
2 (0.5�kΔt)

�qzx(c)

�cm

)
+

(
r2
2
k2qzx(c)

kzkx sin
2 (0.5�kΔt)

− 1

)(
r2
2
k2

kzkx sin
2 (0.5�kΔt)

�qzx(c)

�cm

)

(23b)

�2F(c)

�cm�cn
=

ke∑
k=0

�∕4∑
�=0

�∕4∑
�=0

{(
r2
1
k2qxy(c)

kxky sin
2 (0.5�kΔt)

− 1

)(
r2
1
k2

kxky sin
2 (0.5�kΔt)

�2qxy(c)

�cm�cn

)
+

(
r2
1
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cn

)

(
r2
1
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cm

)
+

(
r2
2
k2qxy(c)

kxky sin
2 (0.5�kΔt)

− 1

)(
r2
2
k2

kxky sin
2 (0.5�kΔt)

�2qxy(c)

�cm�cn

)

+

(
r2
2
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cn

)(
r2
2
k2

kxky sin
2 (0.5�kΔt)

�qxy(c)

�cm

)
+

(
r2
1
k2qyz(c)

kykz sin
2 (0.5�kΔt)

− 1

)

(
r2
1
k2

kykz sin
2 (0.5�kΔt)

�2qyz(c)

�cm�cn

)
+

(
r2
1
k2

kykz sin
2 (0.5�kΔt)

�qyz(c)

�cn

)(
r2
1
k2

kykz sin
2 (0.5�kΔt)

�qyz(c)

�cm

)

+

(
r2
2
k2qyz(c)

kykz sin
2 (0.5�kΔt)

− 1

)(
r2
2
k2

kykz sin
2 (0.5�kΔt)

�2qyz(c)

�cm�cn

)
+

(
r2
2
k2

kykz sin
2 (0.5�kΔt)

�qyz(c)

�cn

)

(
r2
2
k2

kykz sin
2 (0.5�kΔt)

�qyz(c)

�cm

)
+

(
r2
1
k2qzx(c)

kzkx sin
2 (0.5�kΔt)

− 1

)(
r2
1
k2

kzkx sin
2 (0.5�kΔt)

�2qzx(c)

�cm�cn

)

+

(
r2
1
k2

kzkx sin
2 (0.5�kΔt)

�qzx(c)

�cn

)(
r2
1
k2

kzkx sin
2 (0.5�kΔt)

�qzx(c)

�cm

)
+

(
r2
2
k2qzx(c)

kzkx sin
2 (0.5�kΔt)

− 1

)

(
r2
2
k2

kzkx sin
2 (0.5�kΔt)

�2qzx(c)

�cm�cn

)
+

(
r2
2
k2qzx(c)

kzkx sin
2 (0.5�kΔt)

− 1

)(
r2
2
k2

kzkx sin
2 (0.5�kΔt)

�2qzx(c)

�cm�cn

)

Appendix 3: The derivation of stability 
conditions

For Eq. 5, we have

(24)L =

(
û1
0,0,0

− 2û0
0,0,0

+ û−1
0,0,0

𝜕t2
,
v̂1
0,0,0

− 2v̂0
0,0,0

+ v̂−1
0,0,0

𝜕t2
,
ŵ1
0,0,0

− 2ŵ0
0,0,0

+ ŵ−1
0,0,0

𝜕t2

)T

.
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Combining Eq. 20, we have

where

we define � = sin(0.5αk∆t), γ = sin(0.5βk∆t). Obviously, the 
matrix B can be written as B = P��P−1 . The eigenvalues of 

(25)
[

4

k2Δt2
B − A

]
U = 0.

(26)

B =

⎡
⎢⎢⎢⎣

�2k2
x
+ �2

�
k2
y
+ k2

z

� �
�2 − �2

�
kxky

�
�2 − �2

�
kxkz�

�2 − �2
�
kxky �2k2

y
+ �2

�
k2
x
+ k2

z

� �
�2 − �2

�
kykz�

�2 − �2
�
kxkz

�
�2 − �2

�
kykz �2k2

z
+ �2

�
k2
x
+ k2

y

�
⎤
⎥⎥⎥⎦
,

So we can get two equations, as

Using the relation −1 ≤ sin2 (0.5𝛼kΔt) ≤ 1, 𝛼 > 𝛽, we 
have

According to Eq. 21, we can easily derive the maximum 
value of k. Finally, we can get stability condition using the 
inequality in Eq. 30, shown in Eq. 31.

Appendix 4: The other results for elastic 
wave numerical modeling

See Fig. 14.

(28)
4

k2Δt2
��
i
− �i = 0.

(29)sin2 (0.5�kΔt) =
(�kΔt)2

4
, sin2 (0.5�kΔt) =

(�kΔt)2

4
.

(30)k <
2

𝛼Δt
.

(31)max

⎛⎜⎜⎝
�maxΔt

�∑M

m=1
��am��2

Δx2
+

∑M

m=1
��bm��2

Δy2
+

∑M

m=1
��bm��2

Δz2
, �maxΔt

��M

m=1
��cm��2

�
1

Δx2
+

1

Δy2
+

1

Δz2

�⎞⎟⎟⎠
≤ 1.

the matrix B are ��
1
= −�2k2, ��

2
= ��

3
= −�2k2. So Eq. 25 

can be transformed into

which means

(27)P
[

4

k2Δt2
�� − �

]
P−1U = 0,
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