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a b s t r a c t

In this study, a novel safety integrity level (SIL) determination methodology of safety instrumented
systems (SISs) with parameter uncertainty is proposed by combining multistage dynamic Bayesian
networks (DBNs) and Monte Carlo simulation. A multistage DBN model for SIL determination with
multiple redundant cells is established. The models of function inspection test interval and function
inspection test stages are alternately connected to form the multistage DBNs. The redundant cells can
have different M out of N voting system architectures. An automatic modeling of conditional probability
between nodes is developed. The SIL determination of SISs with parameter uncertainty is constructed by
using the multistage DBNs and Monte Carlo simulation. A high-pressure SIS in the export of oil well-
platform is adopted to demonstrate the application of the proposed approach. The SIL and availability of
the SIS and its subsystems are obtained. The influence of single subsystem on the SIL and availability of
the SIS is studied. The influence of single redundant element on the SIL and availability of the subsystem
is analyzed. A user-friendly SIL determination software with parameter uncertainty is developed on
MATLAB graphical user interface.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In accordance with IEC 61508 and IEC 61511, a safety instru-
mented system (SIS) is composed of a sensor subsystem, a
controller subsystem and an actuator subsystem. It can achieve one
or more safety instrumented functions. Safety integrity level (SIL)
refers to the possibility that SISs can perform the safety instrument
function as required under specified conditions and within a
specified time. SIL is a performance index required by SISs. In the
SIL determination of SISs, many uncertain factors are usually
introduced. The uncertain factors for SIL determination are those
that cause the final result to be biased during SIL determination.
The uncertain factors for SIL determination can be classified into
three categories: model, artificial, and parameter uncertainties.
Model uncertainty refers to the incompleteness of the model and
the limitation of the method to build the model. Model uncertainty
is introduced when the model is built and calculated. Artificial
uncertainty refers to the uncertainty caused by policies, operating
y Elsevier B.V. on behalf of KeAi Co
procedures, and operators' execution ability. It is difficult to theo-
rize, but its influence cannot be ignored. Parameter uncertainty is
mainly due to the lack of historical failure data or the uncertainty
caused by the interaction of multiple uncertain parameters
(Kanjilal and Manohar, 2020; Martin et al., 2019; Wang and Qiu,
2012; Xu et al., 2012; Jin et al., 2012). For SISs with short life cycle
and minimal failure parameters, the average of failure probability
on demand (PFDavg) of the system can be obtained through precise
calculation if uncertain problems are disregarded. The results may
differ from those that consider the effects of uncertainty. However,
they are at the same discrete level, that is, the same SIL level. For
SISs with long life cycle and large failure parameters, small uncer-
tainty causes the PFDavg of the system to fluctuate greatly. PFDavg

exceeds the original discrete interval, that is, wrong SIL determi-
nation result is obtained. This condition seriously affects the staff's
design and application of the SIS and causes great potential risks to
production activities. The operating cycle of SISs used in the process
industry is long. Considering the fixed cost, equipment with high
cost and extremely low failure parameters are not adopted. The
deviation of determination results can be reduced, and the accuracy
of SIL determination results can be improved through the analysis
of uncertain factors with important influence (Wang et al., 2017;
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Nomenclature

Acronyms
SIL Safety Integrity Level
SISs Safety Instrumented Systems
SIF Safety Instrumentation Functions
DBNs Dynamic Bayesian Networks
BNs Bayesian Networks
MooN M out of N voting system
NS normal state
SD safety detected failure state
SU safety undetected failure state
SS safety failure state
DD dangerous detected failure state
DU dangerous undetected failure state
SPLCIC safety programmable logic controller
LMVs lower main shut-off electromagnetic valve
UMVs upper main shut-off electromagnetic valve
WVs wing electromagnetic valve
LMV lower main shut-off ball valve
UMV upper main shut-off ball valve
WV wing ball valve
PT pressure transmitter
IMP impulse line
SPLCIC safety programmable logic controller analog input

channel
SPLCIP safety programmable logic controller analog input

processing
SPLCMP safety programmable logic controller main

processing
SPLCOP safety programmable logic controller digital output

processing
SPLCOC safety programmable logic controller digital output
EV electromagnetic valve
BV ball valve

Notion and definition
PFD failure probability on demand
PFS probability of failing safely
PFDavg average of failure probability on demand

PFSavg average of safe failure probability
Dt self-diagnosis interval
TI test interval
TS system running time
TST function inspection test time
IF channel independent failure nodes
CF common cause failure nodes
CN channel state nodes
U cell state nodes
S system state nodes
u common cause failure weight
nS number of channels with security failure
nD number of channels with dangerous failure
nSD number of channels with security detected failure
nSU number of channels with security undetected failure
nDD number of channels with dangerous detected failure
nDU number of channels with dangerous detected failure
MTTR mean time to repair
MTSR mean time to system restoration
CD hazard failure diagnostic coverage
mTR repair rate
mSR system restoration rate
lT total failure rate
lSDN detected independent safety failure rate
lSUN undetected independent safety failure rate
lDDN detected independent dangerous failure rate
lDUN undetected independent dangerous failure rate
lSDC detected common cause safety failure rate
lSUC undetected common cause safety failure rate
lDDC detected common cause dangerous failure rate
lDUC undetected common cause dangerous failure rate
ε test coverage rate
mSD maintenance rate of safety detected failure
mSU maintenance rate of safety undetected failure
mDD maintenance rate of dangerous detected failure
mDU maintenance rate of dangerous undetected failure
gSD degradation rate of safety detected failure
gSU degradation rate of safety undetected failure
gDD degradation rate of dangerous detected failure
gDU degradation rate of dangerous undetected failure
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Freeman, 2012; Ulmeanu, 2012). Therefore, determining the SIL of
SISs with uncertainty is valuable.

The model and artificial uncertainties are difficult to be
analyzed quantitatively. Thus, parameter uncertainty is the focus
of SIL determination. Many methods are used to address the SIL
determination under parameter uncertainty. Freeman and
Summers (2016) discussed the influence of uncertainty on the
failure probability on demand (PFD) calculation in SISs and pro-
posed a method to deal with the uncertainty of PFD calculation
based on variance contribution analysis method. Sallak et al.
(2008) presented a new confidence method for determining SIL.
This method usesfailure rate and fuzzy probability to evaluate the
PFD and SIL of SIS with uncertainty of failure rate. Piesik et al.
(2016) introduced a new functional safety analysis method that
considers the probabilistic model sensitivity of SISs and the un-
certainty of probabilistic results. Wang et al. (2004) discussed the
influence of data uncertainty on SIL calculation and proposed a
procedure to solve the problem of data uncertainty in SIL deter-
mination of SISs. Chang et al. (2015) developed a new method by
combining Monte Carlo simulation and fuzzy set to solve the
1814
uncertainty problem in SIL determination. The difficulty of SIL
evaluation under parameter uncertainty is mainly the SIL deter-
mination. Many scholars proposed several qualitative (�Sliwi�nski,
2018), semi quantitative, and quantitative methods for SIL deter-
mination, such as reliability block diagram (Ding et al., 2014), fault
tree (Freeman, 2020), Markov graphs (Azizpour and Lundteigen,
2019), layer of protection analysis, and hazardous event severity
matrix. Several of these methods are complex and difficult to
apply, whereas others have important limitations for complex
SISs, including binary variable problems (Soro et al., 2010) and
state space explosion problems (Schlosser, 2020). Markov graphs
are the commonly used method for SIL determination. IEC 61508
gives the solution steps with Markov and specifies the problem.
The main problem with Markov graphs is that the number of
states increases exponentially when the number of components of
the system under study increases. Therefore, building Markov
graphs and performing calculations without drastic approxima-
tions become quickly intractable by hand. Consequently, a quan-
titative comprehensive method is needed for SIL determination.

Bayesian networks (BNs) are widely used in reliability
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assessment, risk analysis, prediction, and fault diagnosis (Cai et al.
2015, 2016, 2017, 2020; Weber et al., 2012; Wang et al., 2010;
Simon et al., 2008). Dynamic BNs (DBNs) are a long-established
extension to BNs. DBNs have an advantage in representing uncer-
tain knowledge in dynamic systems. They can be used to model the
dynamic process of SISs. Recently, DBNs are used in safety risk
analysis. Simon et al. (2019) calculated the availability integrated
test duration and test strategy of SIS by using DBNs. Cai et al.
(2016a,b) proposed a SIL determination method for different
redundant architectures by using DBNs. SIL determination using
DBNs can be quantitative and simple. However, SISs have many
failure and multistage characteristics in the system life cycle. Many
SISs in the process industry have multiple redundant cells. Thus, a
comprehensive DBN model should be created for the SIL
determination.

A novel SIL calculation methodology of SISs is proposed by
combining multistage DBNs and Monte Carlo simulation. This
method is used to address the SIL determination problem of SISs
withmultiple redundant cells under uncertain parameters. The rest
of this paper is organized as follows. Section 2 proposes the SIL
determinationmethodwith parameter uncertainty for SISs. Section
3 uses a high-pressure SIS in the export of oil well platform as an
example to illustrate the proposed method. Section 4 develops a
software package for SIL determination woth parameter uncer-
tainty on MATLAB. Section 5 summarizes this work.

2. SIL determination method with parameter uncertainty

2.1. Structural modeling of the SIL determination model

SISs have the function of self-diagnosis, and SISs conduct self-
diagnosis every Dt time. The failure detected by self-diagnosis of
the system is called the detected failure, otherwise, it is called the
undetected failure. After running TI time, SISs conduct a periodic
function inspection test. The purpose of function inspection test is
to detect dangerous failures of the system that are not detected in
self-diagnosis. As shown in Fig. 1, the system running time TS
contains multiple periodic function inspection test interval stage TI
and function inspection test stage TST. The function inspection test
interval stage and function inspection test stage models can be
represented by two different DBN models. The models of function
Fig. 1. Multistage DBNs fo
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inspection test interval and function inspection test stages are
alternately connected to form the multistage DBNs for the SIL
determination of SISs. In Fig. 1, the solid and dotted lines are the
directed transition lines between time slice. The directed transition
lines in the purple box represent the time-varying law of nodes in
the function inspection test interval stage. The directed transition
lines in the green box represents the time-varying law of nodes in
the function inspection test stage. The solid lines represent the
directed transition line that plays a major role, and the dashed line
represents the directed transition line that plays a supplementary
role. The main difference depends on the degree of influence of
nodes on the next time slice node. A SIS is composed of a sensor
subsystem, a controller subsystem, and an actuator subsystem. A
single subsystem is composed of several redundant cells. The
redundant cells can have differentM out ofN voting system (MooN)
architectures. The common redundant architectures are 1oo1,
1oo1D, 1oo2, 2oo2, 1oo2D, 2oo2D, 1oo3, 2oo3, and 2oo4 (Jahanian,
2015).

The time slice topology of BNs is shown in Fig. 2 n represents the
number of channels of different redundant architectures. When
n ¼ 1, no common cause failure exists in the model. The red line
represents the single-channel model architecture. The redundant
architectures with the same number of channels have the same
model structure. They are distinguished by conditional probability
between nodes.The solid and dotted lines in Fig. 2 represent the
interaction between nodes in the time slice.

The structure of the multistage DBNs is divided into four layers.
The first layer of the model is the failure factor node layer. The
nodes in this layer include channel independent failure nodes IFnt x
and common cause failure nodes CFt x They represent the failure
factors affecting the system. The failure factor nodes contain
normal state (NS), safety detected failure state (SD), safety unde-
tected failure state (SU), dangerous detected failure state (DD), and
dangerous undetected failure state (DU). The second layer is the
channel state node layer. They represent the channel state in single
cell under the influence of failure factors. The channel state nodes
contain five states: NS, SD, SU, DD, and DU. The third layer is the cell
state node layer. They represent the state of single redundant cell of
the system. The cell state nodes contain four states: NS, safety
failure state (SS), DD, and DU. The fourth layer is the system state
node layer. They represent the state of the subsystem being
r SIL determination.



Fig. 2. Time slice topology of BNs.
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evaluated. The system state node contains four states: NS, SS, DD,
and DU.

The model structure in function inspection test stage is
composed of two time slices of the DBNs in adjacent test interval
stage. The static time slice of the model in function inspection test
stage is the same as function inspection test interval stage. The
failure factor nodes do not interact with each other during function
inspection test stage. The interslice transition of failure factor nodes
is shown in Fig. 3. The solid lines in Fig. 3 represent the state
transitions of nodes between time slices during the function in-
spection test stage.
2.2. Parameter modeling of SIL determination model

2.2.1. Conditional probability within the time slice
The state of the channel state nodes CN is jointly determined by

nodes IF and CF. The state only depends on node IF for 1oo1 and
1oo1D architecture. The flow chart of conditional probability
modeling of nodes CN is shown in Fig. 4. The established rules are
as follows:

Rule 1: when the state of nodes IF and CF is the same, the state of
node CN is the same as theirs.
Rule 2: when the states of nodes IF and CF are different and the
state of node IF is NS, then the state of node CN is the same as
node CF.
Rule 3: when the states of nodes IF and CF are different and the
state of node CF is NS, then the state of node CN is the same as
node IF.
Rule 4: when the states of nodes IF and CF are different and the
states of nodes IF and CF are not in NS, then the probability of
node CN in the state of node CF is u, and the probability in the
Fig. 3. Transition of failure factor nodes d
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state of node IF is 1�u. The common cause failure weight
parameter is defined as u (the default is u ¼ 1).

The state of cell state nodes U is determined by nodes CN. The
flow chart of conditional probability modeling of nodes U is shown
in Fig. 5. The established rules are as follows:

Rule 1: when the number of channels with security failure (ns) is
greater than safety fault tolerance (SFT), the cell experiences
security failure. Specifically, the state of the node is SS.
Rule 2: when the number of channels with dangerous failure
(nD) is greater than hardware fault tolerance (HFT), the cell with
MooN architecture experiences dangerous failure. If at least one
safety detected failure or dangerous detected failure occurs, the
cell experiences dangerous detected failure. Specifically, the
state of the node is DD, otherwise the state of the node is DU.
Rule 3: when the number of channels with dangerous detected
failure (nDU) is greater than HFT for theM out of N voting system
with diagnostic (MooND) architecture, the cell experiences
dangerous failure. If at least one safety detected failure or
dangerous detected failure occurs, the cell experiences
dangerous detected failure. Specifically, the state of the node is
DD, otherwise the state of the node is DU.

The subsystem of SIS is composed of several different cells. The
state of system state node S is determined by nodes U. The condi-
tional probability of node S depends on the actual connection
relationship of redundant cells.

2.2.2. Conditional probability in function inspection test interval
stage

The process of establishing the conditional probability of inde-
pendent failure node IF during function inspection test interval
uring function inspection test stage.



Fig. 4. Conditional probability modeling of nodes CN.

Fig. 5. Conditional probability modeling of nodes U.
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stage is shown in Fig. 6. This process represents the degradation,
self-diagnosis, and maintenance of independent failure node IF
1817
during function inspection test interval stage. This process can be
used to model and analyze the structures of heterogeneous



Fig. 6. Conditional probability of nodes IF during function inspection test interval stage.
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redundant architecture and special degradation.
The process of establishing the conditional probability of com-

mon cause failure node CF during function inspection test interval
stage is shown in Fig. 7. This process represents the degradation,
self-diagnosis, and maintenance of common cause failure node CF
during function inspection test interval stage. It can be used to
model and analyze the complex degradation and the influence of
common cause failure.
2.2.3. Conditional probability in function inspection test stage
The function inspection test is mainly affected by test coverage

rate ε, maintenance parameters, and degradation parameters. The
maintenance parameters of function inspection test can be specif-
ically divided into maintenance rate of safety detected failure mSD,
maintenance rate of safety undetected failure mSU, maintenance rate
1818
of dangerous detected failure mDD, and maintenance rate of
dangerous undetected failure mDU. The degradation parameters of
function inspection test can be specifically divided into degradation
rate of safety detected failure gSD, degradation rate of safety un-
detected failure gSU, degradation rate of dangerous detected failure
gDD, and degradation rate of dangerous undetected failure gDU.

The conditional probability table of nodes during the function
inspection test stage is shown in Table 1, where
g ¼ gSDþgSUþgDDþgDU.
2.3. SIL determination with parameter uncertainty

The SIL determination with parameter uncertainty is shown in
Fig. 8. This process combines the multistage DBNs and Monte Carlo
simulation (Zou et al., 2019; Innal et al., 2016; Gao et al., 2019;



Fig. 7. Conditional probability of nodes CF during function inspection test interval stage.

Table 1
Conditional probability table of nodes during function inspection test stage.

Before function inspection test After function inspection test

NS SD SU DD DU

NS 1�g gSD gSU gDD gDU
SD mSD 1�mSD 0 0 0
SU mSU (1�mSU)ε (1�mSU)(1�ε) 0 0
DD mDD 0 0 1�mDD 0
DU mDU 0 0 (1�mDU)ε (1�mDU)(1�ε)
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Kaczor et al., 2016; Chen et al., 2020; Koneshloo et al., 2018).
Expert assessment is used to calculate the parameter range for

the equipment. Expert assessment mainly uses fuzzy number to
express the parameters. It integrates the evaluation data of experts
by using an ordered weighted average algorithm.

Expert assessment is based on triangular fuzzy number theory.
The form of triangular fuzzy number is ~Tf ¼ ðTL

f ;T
M
f ;TU

f Þ, where TL f

represents the lower limit of the fuzzy interval, TM f represents the
intermediate value of the fuzzy interval, and TU f represents the
upper limit of the fuzzy interval. The greater the difference between
TL f (TU f) and TM f, the greater the fuzziness of the data. When TL
f ¼ TM f ¼ TU f, the data become accurate. If n experts assess the
parameters of the equipment, the triangular fuzzy number of the
k'th expert assessment value is ~Tf ¼ ðTL

f ; T
M
f ; TU

f Þ. The assessment

process is as follows.
Step 1: Calculate the arithmetic average ~Ta ¼ ðTL

a ; T
M
a ; TUa Þ of the

expert's assessment. TL a TM a, and TU a are expressed as follows:
1819
TLa ¼

Pn
k¼1

TLk

n
; TMa ¼

Pn
k¼1

TMk

n
; TUa ¼

Pn
k¼1

TUk

n
; k ¼ 1;2;3;…… (1)

Step 2: Calculate distance measure dð~Tk;
~TaÞ between each ex-

pert's assessment result and arithmetic average dð~Tk;
~TaÞ is as

follows:

d
�
~Tk; ~Ta

�
¼
����TLk � TLa

���þ ���TMk � TMa
���þ ���TUk � TUa

����.
3, (2)

Step 3: Calculate the similarity of each expert's assessment, and
sð~Tk; ~TaÞ is expressed as follows:

s
�
~Tk; ~Ta

�
¼1�

d
�
~Tk; ~Ta

�

Pn
k¼1

d
�
~Tk; ~Ta

�, (3)



Fig. 8. SIL determination with parameter uncertainty.
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Step 4: Calculate the weight coefficient wk of each expert's
assessment and obtain the assessment results ~T . ~T is expressed as
follows:

~T ¼
�
TL; TM ; TU

�
¼

Xn
k¼1

wk
~Tk ¼ ~Tk

Xn
k¼1

s
�
~Tk; ~Ta

�

Pn
k¼1

s
�
~Tk; ~Ta

�~Tk, (4)
3. Case study

3.1. Modeling of a high-pressure SIS in the export of oil well
platform

Oil platforms work in harsh environments, such as permanent
frozen zone, deep sea, and desert. The operation of oil well platform
requires high safety and availability. The coordination of SISs
1820
ensures the safe operation of the platform. The design and valida-
tion of the SISs of platform must strive for enhanced safety at low
cost (Zhang and Hu, 2013; Zhang et al., 2019; Hu et al., 2014; Eshiet
and Sheng, 2018).

A platform contains multiple oil wells. Each well contains
multiple safety instrumentation functions (SIF): high-pressure SIF,
low-pressure SIF, high-flow SIF, low-flow SIF, and gas detection SIF.
A single SIS can perform multiple SIFs. Fig. 9 shows a typical high-
pressure SIS in the export of oil well platform. The function of the
SIS is to shut down the system when an abnormal high pressure
occurs in the oil pipeline.

The block diagram of high-pressure SIS in the export of oil well
platform is shown in Fig. 10. The high-pressure SIS is mainly
composed of a sensor subsystem, a controller subsystem, and an
actuator subsystem. When the two pressure transmitters installed
by 1oo2 architecture detect abnormal high pressure in the oil
pipeline, they send a signal to the safety programmable logic
controller (SPLC) through the impulse line and the analog input
channel. The SPLC includes analog input processing, main



Fig. 9. Typical high-pressure SIS in the export of oil well platform.

Fig. 10. Block diagram of high-pressure S

Fig. 11. Time slice topology of ac
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processing, and digital output processing. The SPLC sends a closing
instruction to the electromagnetic valve (EV) through the digital
output channel. The lower main shut-off EV (LMVs), upper main
shut-off EV (UMVs), and wing EV (WVs) are installed by 1oo3 ar-
chitecture. The EV controls the corresponding ball valve (BV) to
close the pipeline. The lower main shut-off BV (LMV), upper main
shut-off BV (UMV), and wing BV (WV) are installed by 1oo3
architecture.

The sensor subsystem is composed of a pressure transmitter
(PT) cell, an impulse line (IMP) cell, and a safety programmable
logic controller analog input channel (SPLCIC) cell. The PT cell is
composed of two pressure transmitters installed with 1oo2 archi-
tecture. The uncertain parameter failure rate (lT/h�1) of pressure
transmitters obeys lognormal distribution lT ~ log N (�13.475,
0.18645). The IMP cell is composed of an impulse line installed with
1oo1 architecture.The uncertain parameter lT of impulse line obeys
lognormal distribution lT ~ log N (�15.249, 0.15792). The SPLCIC
cell is composed of an analog input channel installed with 1oo1
architecture. The uncertain parameter mean time to system resto-
ration (MTSR/h) of analog input channel obeys uniform distribution
MTSR ~ unif (43.2, 100.8).

The controller subsystem is composed of a safety programmable
logic controller analog input processing (SPLCIP) cell, a safety
programmable logic controller main processing (SPLCMP) cell, and
a safety programmable logic controller digital output processing
IS in the export of oil well platform.

tuator subsystem with BNs.



Fig. 12. Probability density function of single cell of the sensor subsystem a PT cell, b IMP cell, and c SPLCIC cell.

Table 2
Interval estimation of PFDavg and PFSavg in single cell of sensor subsystem.

Subsystem cell PFDavg PFSavg

PT cell [3.74 � 10�5,5.71 � 10�5,9.45 � 10�5] [2.45 � 10�5,3.53 � 10�5,5.41 � 10�5]
IMP cell [8.07 � 10�4,1.10 � 10�3,1.55 � 10�3] e

SPLCIC cell 1.52 � 10�5 [2.96 � 10�6,4.76 � 10�6,5.59 � 10�6]
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(SPLCOP) cell. The SPLCIP cell is composed of an analog input
processor installed with 1oo1 architecture. The uncertain param-
eter MTSR of analog input processor obeys uniform distribution
MTSR ~ unif (50.4, 93.6). The SPLCMP cell is composed of two main
processors installed with 1oo2 architecture. The uncertain param-
eter lT of main processors obeys lognormal distribution lT ~ logN
(�11.337, 0.15792). The SPLCOP cell is composed of a digital output
processor installed with 1oo1 architecture. The uncertain param-
eter hazard failure diagnostic coverage (CD) of digital output pro-
cessor obeys normal distribution CD ~ norm (0.8, 0.05).

The actuator subsystem is composed of a safety programmable
logic controller digital output channel (SPLCOC) cell, an EV cell, and
a BV cell. The SPLCOC cell is composed of a digital output channel
installed with 1oo1 architecture, and the uncertain parameter
mean time to repair MTTR (h) of digital output channel obeys uni-
form distribution MTTR ~ unif (19.2, 28.8). The EV cell is composed
of three EVs installed with 1oo3 architecture, and the uncertain
parameter failure rate lT of EVs obeys lognormal distribution lT
~ logN (�12.071, 0.15792). The BV cell is composed of three BVs
1822
installed with 1oo3 architecture, and the uncertain parameter
failure rate lT of BVs obeys lognormal distribution lT ~ logN
(�12.867, 0.17333).

The time slice topology of actuator subsystemwith BNs is shown
in Fig. 11. The SPLCOC cell is a single-channel 1 out of 1 architecture.
The EV cell is 1 out of 3 architecture consisting of LMVs, UMVs, and
WVs. The BV cell is 1 out of 3 architecture consisting of LMV, UMV,
and WV. The nodes of the actuator subsystem model are described
as follows.

The failure factor of the first layer consist of nine nodes. The
nodes are SPLCOC channel independent failure (single-channel
equipment does not consider common cause failure), LMV channel
independent failure, UMV channel independent failure node, WV
channel independent failure node, EV cell common cause failure,
LMV channel independent failure, UMV channel independent fail-
ure node, WV channel independent failure node, and EV cell
common cause failure nodes. The channel state nodes consists of
seven nodes. The nodes are SPLCOC channel state, LMV channel
state, UMV channel state, WV channel state, LMV channel state,



Fig. 13. Probability density function of a single cell of the controller subsystem a SPLCIP cell, b SPLCMP cell, and c SPLCOP cell.

Table 3
Interval estimation of PFDavg and PFSavg in single cell of controller subsystem.

Subsystem's cell PFDavg PFSavg

SPLCIP cell 4.72 � 10�4 [6.44 � 10�5,8.25 � 10�5,1.04 � 10�4]
SPLCMP cell [5.74 � 10�6,8.04 � 10�6,1.18 � 10�5] [1.05 � 10�3,1.44 � 10�3,2.03 � 10�3]
SPLCOP cell [1.02 � 10�4,1.86 � 10�4,2.92 � 10�4] [6.7241 � 10�5, 6.7248 � 10�5] 6.7254 � 10�5]
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UMV channel state, and WV channel state nodes. The cell state
nodes consists of three nodes. The nodes are SPLCOC cell state, EV
cell state, and BV cell state nodes. The system state node layer is the
state node of the actuator subsystem.
3.2. Results and discussions

The research results are obtained through Monte Carlo simula-
tion by using the established multistage DBNs.The simulation
number is set as N ¼ 103 to ensure the accuracy of the test samples.
The results are statistically analyzed as follows.
3.2.1. Results and analysis of sensor subsystem
The average of failure probability on demand (PFDavg) is the

evaluation parameter of SIL under low demand mode. The average
of safe failure probability (PFSavg) is the evaluation parameter of
availability. The probability density functions of PFDavg and PFSavg of
single cell of the sensor subsystem are shown in Fig. 12. When the
1823
confidence degree is 5%, the upper limit, mean value, and lower
limit of interval estimation of PFDavg and PFSavg in single cell of the
sensor subsystem are given in Table 2.

In the confidence interval, the SIL of the PT cell is SIL4, the SIL of
the IMP cell is SIL3-SIL2, and the SIL of the SPLCIC cell is SIL4. The
SIL of the SPLCIC cell is the highest in the sensor subsystem. The cell
that restricts the SIL of the sensor subsystem is the IMP cell. No
safety failures occur in the IMP cell. The cell that restricts the
availability of the sensor subsystem is the PT cell. The availability of
SPLCIC cell is higher than the PT cell. The uncertainty of lT has great
influence on the SIL and availability determination results in the
sensor subsystem. As shown in Fig. 12c, the uncertain parameter
MTSR has minimal influence on the SIL determination of the SPLCIC
cell and can be ignored. However, it affects availability. Therefore,
parameter uncertainty has different effects on the SIL and avail-
ability determination in the SISs. Thus, determining the SIL and
availability of SISs at the same time is valuable.



Fig. 14. Probability density function of a single cell of the actuator subsystem a SPLCOC cell, b EV cell, and c BV cell.

Table 4
Interval estimation of PFDavg and PFSavg in single cell of actuator subsystem.

Subsystem's cell PFDavg PFSavg

SPLCOC cell [1.409 � 10�5, 1.427 � 10�5, 1.431 � 10�5] 7.56 � 10�6

EV cell [8.02 � 10�4, 1.09 � 10�3, 1.56 � 10�3] [1.68 � 10�3, 2.23 � 10�3, 3.18 � 10�3]
BV cell [2.76 � 10�4, 3.89 � 10�4, 5.63 � 10�4] [8.23 � 10�4, 1.16 � 10�3, 1.67 � 10�3]
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3.2.2. Results and analysis of controller subsystem
The probability density function of PFDavg and the PFSavg of

single cell of the controller subsystem are shown in Fig. 13. When
the confidence degree is 5%, the upper limit, mean value, and lower
limit of the interval estimation of PFDavg and PFSavg in the single cell
of the controller subsystem are given in Table 3.

In the confidence interval, the SIL of the SPLCIP cell is SIL3, the
SIL of the SPLCMP cell is SIL4, and the SIL of the SPLCOP cell is SIL3.
The SIL of the SPLCMP cell is the highest in the controller subsys-
tem. The cell that restricts the SIL of the controller subsystem is the
SPLCIP cell. Compared with the uncertainty of MTSR, CD, and lT in
the controller subsystem, the uncertainty of CD has greater influ-
ence on the SIL determination, and the uncertainty of MTSR has a
lower influence. The cell that restricts the availability of the
controller subsystem is the SPLCMP cell. Therefore, the architecture
1oo2 improves the SIL and reduces the availability of the cell.
Compared with the uncertainty ofMTSR, CD, and lT in the controller
subsystem, the uncertainty of lT has a greater influence on the
availability, and the uncertainty of CD has a lower influence.
1824
3.2.3. Results and analysis of actuator subsystem
The probability density function of PFDavg and the PFSavg of a

single cell of the actuator subsystem are shown in Fig. 14. When the
confidence degree is 5%, the upper limit, mean value, and lower
limit of the interval estimation of PFDavg and PFSavg in single cell of
the actuator subsystem are given in Table 4.

In the confidence interval, the SIL of the SPLCOC cell is SIL4, the
SIL of the EV cell is SIL3-SIL2, and the SIL of the BV cell is SIL3. The SIL
of the SPLCOC cell is the highest in the controller subsystem. The cell
that restricts the SIL and availability of the actuator subsystem is the
EV cell. Therefore, the EV cell is the most crucial part for strength-
ening the actuator subsystem. The SIL and availability of EV cell can
be improved by replacing parts with low failure rate or selecting a
suitable architecture. Compared with the uncertainty ofMTTR and lT
in the actuator subsystem, the uncertainty of lT has a greater influ-
ence on the SIL and availability determination. The uncertainty of
MTTR has small influence on SIL and availability determination. The
uncertainty parameters of the EV cell and BV cell are lT, and the BV
cell is more affected by uncertainty parameter lT.



Fig. 15. PFDavg statistical histogram and probability density function of the SIS and a singlesubsystem
a sensor subsystem, b controller subsystem, c actuator subsystem, and d SIS.
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3.2.4. Results and analysis of the SIS
The PFDavg statistical histogram and probability density function

of the SIS and single subsystem are shown in Fig. 15. When the
confidence degree is 5%, the upper limit, mean value, and lower
limit of the interval estimation of PFDavg of the SIS and single
subsystem are shown. The SIL of the sensor subsystem is SIL3-SIL2,
and most of the intervals are at SIL2. The SIL of the controller
subsystem is SIL3, the SIL of the actuator subsystem is SIL2, and the
SIL of the SIS is SIL2. The SIL of the sensor subsystem is most
affected by uncertainty parameters. The controller subsystem is
least affected by uncertainty parameters during the SIL determi-
nation. The actuator subsystemhas the greatest influence on the SIL
determination of the SIS. The controller subsystem has the least
influence on the SIL determination of the SIS.

The PFSavg statistical histogram and probability density function
of the SIS and single subsystem are shown in Fig. 16. When the
confidence degree is 5%, the upper limit, mean value, and lower
limit of the interval estimation of PFSavg of the SIS and single sub-
system are shown. The availability of the sensor subsystem is most
affected by uncertainty parameters. Therefore, the SIS should focus
on the parameter uncertainty on the sensor subsystem. The actu-
ator subsystem is least affected by uncertainty parameters for
availability. The actuator subsystem has the greatest influence on
the availability of the SIS. The sensor subsystem has the least in-
fluence on the availability of the SIS. Combined with the previously
analyzed results, the EV cell of the actuator subsystem have the
lowest SIL and availability. Thus, the EV should be optimized first in
the SIS.

Fig. 17 shows the PFDavg/PFD and PFSavg/PFS of the SIS with the
1825
change in running time. The increase in SIL and availability of the
SIS is modest after the first year. This condition is because the in-
spection test and maintenance rates of components are assumed to
be higher than 90%. With long running time of the SIS, the SIL and
availability can be inferred from the image.

4. SIL determination software development

A user-friendly SIL determination software with parameter un-
certainty is developed on MATLAB graphical user interface. The SIL
and availability of SIS and its subsystems can be determined on the
software by using the proposed method in Section 2. The software
is suitable for multiple redundant cells, such as a subsystem
composed by 1oo2, 1oo1, and 1oo3. It mainly consists of main and
calculation interfaces. As shown in Fig. 18, the SIL and availability of
the high-pressure SIS in the export of oil well platform are deter-
mined in the main interface. The SIL and availability of single
subsystem are calculated separately, and the percentage of each
cell's influence on the subsystem SIL and availability is displayed. As
shown in Fig. 19, the SIL and availability of redundant architecture
with uncertain parameter l are determined in the calculation
interface. The interface is different for different uncertain param-
eters. The redundant architecture and uncertain parameter of a
single cell are selected in the main interface. Parameter, such as
failure parameter, maintenance parameter, degradation parameter,
test coverage rate, and confidence degree, are inputted in the
calculation interface. After calculation, the values of PFDavg and
PFSavg of the cell are outputted, and the probability density function
curves of PFDavg and PFSavg are displayed.



Fig. 16. PFSavg statistical histogram and probability density function of the SIS and a single subsystem a sensor subsystem, b controller subsystem, c actuator subsystem, and d SIS.

Fig. 17. PFDavg/PFD and PFSavg/PFS of the SIS subsystem a PFDavg/PFD and b PFSavg/PFS.
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5. Conclusion

This study proposes a novel SIL determination methodology of
SISs with parameter uncertainty by combining multistage DBNs
and Monte Carlo simulation. This methodology can solve the SIL
determination problem with parameter uncertainty of multicell
redundant architecture and is applicable to common Moon archi-
tectures. A high-pressure SIS in the export of oil wellplatform is
adopted to demonstrate the application of the proposed approach.
The results show that the SIL of the high-pressure SIS is SIL2. The SIL
of the sensor subsystem is most affected by uncertainty
1826
parameters. The availability of the sensor subsystem is most
affected by uncertainty parameters. The actuator subsystem has the
greatest influence on the SIL and availability of high-pressure SIS.
Comparing the SIL and availability results of single subsystem and
single cell with different uncertain parameters, the uncertainty of
maintenance parameters MTTR and MTSR has small effect on the
determination results. Although some cells, such as IMP units in the
sensor subsystem, are easily overlooked in the general evaluation,
they have important effects on the SIL and availability of SIS. The
results show that the proposed methodology can be used to
calculate the SIL and availability of SISs with multiple redundant



Fig. 18. Main interface of the SIL determination software.

Fig. 19. Calculation interface of the SIL determination software.
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cells and parameter uncertainty. This methodology can also be used
to compare the influence of parameter uncertainty on single sub-
system and the influence of different parameters on the evaluation
results under uncertain conditions. The user-friendly SIL determi-
nation software with parameter uncertainty is developed on
MATLAB graphical user interface. The PFDavg and PFSavg of single
cell, single subsystem, and SIS can be calculated, and the contri-
bution of single cell to the subsystem and the contribution of single
subsystem to the SIS can be displayed.
1827
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