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a b s t r a c t

Organic rich laminated shale is one type of favorable reservoirs for exploration and development of
continental shale oil in China. However, with limited geological data, it is difficult to predict the spatial
distribution of laminated shale with great vertical heterogeneity. To solve this problem, taking Chang 73
sub-member in Yanchang Formation of Ordos Basin as an example, an idea of predicting lamina com-
binations by combining 'conventional log data d mineral composition prediction d lamina combination
type identification' has been worked out based on machine learning under supervision on the premise of
adequate knowledge of characteristics of lamina mineral components. First, the main mineral compo-
nents of the work area were figured out by analyzing core data, and the log data sensitive to changes of
the mineral components was extracted; then machine learning was used to construct the mapping
relationship between the two; based on the variations in mineral composition, the lamina combination
types in typical wells of the research area were identified to verify the method. The results show the
approach of 'conventional log data d mineral composition prediction d lamina combination type
identification' works well in identifying the types of shale lamina combinations. The approach was
applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution
characteristics of the laminae.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Continental shale oil in China has huge resource potential.
Continental shale strata have laminated structure commonly, and
diverse types of laminae in frequent variation vertically (Du et al.,
2019; Zhao et al., 2020; Liu et al., 2021a,b). Studies on shale oil's
enrichment regularity conducted by many researchers show the
laminated shale reservoir with developed lamellation, high organic
matter content, and high brittle mineral content, has advantages
over other types of shale reservoirs for shale oil enrichment,
making it themost preferred reservoir type for shale oil exploration
y Elsevier B.V. on behalf of KeAi Co
and development (Du et al., 2019; Hu et al., 2020; Liu et al.,
2021a,b). Shale lamina combinations of different structures make
different contributions to oil and gas accumulation, among which
the lamina combination with alternate organic-rich shale and thin
reservoir layers has the highest hydrocarbon expulsion efficiency
and storage capability (Wang et al., 2016). Therefore, the research
on types and combinations of shale laminae is of great significance
for finding out the shale oil enrichment regularity.

Continental shale strata are often influenced by factors such as
climate changes, hydrodynamic conditions, and source material
feeding modes, so laminae in shale formations of different mineral
composition often show feature of sedimentary cycle (Zeng et al.,
2017; Fu et al., 2020) with wide differences in contents of mineral
components (Zhang et al., 2020; Xi et al., 2020). The differences in
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mineral component contents can be used to identify the types of
shale lamina combinations. Whole-rock analysis technique by X-
ray diffraction (XRD) is a common testing method of mineral
composition (Yan et al., 2015; Zhao et al., 2018a,b). Since coring
cannot be done on whole sections of all wells, this technique can
only provide mineral composition data of scattered points in shale
strata vertically (Alnahwi and Loucks, 2019). Elemental capture
spectroscopy log and natural gamma-ray spectroscopy log are
special logging technologies that can indirectly obtain the vertical
continuous data of whole-rock minerals and clay minerals from
well log data respectively (Wang et al., 2007; Shi et al., 2019). But
these technologies are limited in application due to the high cost.
So far, the basic field data universally available is conventional well
log data, which is commonly used to identify the reservoir lithol-
ogy. This kind of data can identify the reservoir lithology both
vertically and laterally (Zhao et al., 2017), but can’t meet the de-
mand of lamina type identification. If the relationships between
conventional well log data and mineral components are estab-
lished, the spatial distribution of shale laminae can be predicted
based on mineral differences of lamina combinations.

There have been successful trials of high precision quantitative
prediction of minerals based on conventional well log data by using
machine learning under supervision (Li et al. 2019a,b, 2020). Ma-
chine learning under supervision makes use of massive experience
and instances, or sample sets composed of multiple sets of data
(inputs) and corresponding known objective function values (out-
puts), to train under self-monitoring to find out the relationship
between two sets of values and construct models. The models then
can be used to predict the values of unknown objectives with new
data. Machine learning under supervision can realize the vertical
continuous prediction of mineral composition through sample set
composed of limited XRD data and corresponding conventional
well log data. In view of the current geological data richness and
economic perspective, machine learning under supervision is more
widely used than elemental capture spectroscopy log, which is a
method of quantifying mineral components by analyzing the rela-
tionship between main elements and minerals in formation.

Organic-rich shale in Chang 73 sub-member of Ordos Basin has
laminated structure generally, and the different types of lamina
combinations have distinct features and wide differences in min-
eral composition (Xi et al., 2020). Taking the work area as an
example, machine learning under supervision was used to set up
the mode of 'conventional log data d mineral composition pre-
dictiond lamina combination type identification'. Then, the spatial
distribution of laminae was analyzed to verify the reliability of this
mode. This approach can provide certain methodological guidance
for research on continuity distribution characteristics of continen-
tal shale laminae with limited core data and strong heterogeneity.

2. Geological background

Located in the west of the North China Platform, the Ordos Basin
is divided into 6 secondary tectonic units, namely, western margin
thrust belt, Tianhuan depression, Yishan slope, Jinxi flexure zone,
Yimeng uplift, and Weibei uplift (Yang et al., 2016; Fu et al., 2020).
In the Late Triassic epoch, it was a large inland depression lacus-
trine basin. The Yanchang Formation is a set of fluvial d delta d

lacustrine facies strata formed in this period and is divided into 10
members from top to bottom, namely Chang 1 to Chang 10 (Fu et al.,
2013). Among them, Chang 7 is a set of thick organic-richmud shale
that is mainly semi-deep lacustrine and deep lacustrine sub-facies
deposit. Chang 7 is subdivided into 3 sub-members from bottom to
top, Chang 73, Chang 72, and Chang 71 respectively. Chang 73 sub-
member depositing in the peak epoch of the lacustrine basin is
the major source rock of the Ordos Basin (Zhao et al., 2018a,b; Yuan
1620
et al., 2018; Li et al. 2019a,b; Zhu et al., 2019). Chang 73 sub-member
shale strata contain intercalated sandy layers (Fig. 1a). In the center
area of the lacustrine basin there develops deep-water gravity-flow
deposit caused by slumps while in the southwest area of the basin
center there develops deep-water gravity flow deposit caused by
floods, like hyperpycnal flow sandy layer and mud shale interbeds
(Xi et al., 2020).

Chang 73 sub-member shale in the research area has two kinds
of lamellation characteristics, rich white volcanic tuff strips and
black parallel laminae (Fig. 1b) (Xi et al., 2020). The shale has 4
types of laminae, tuff-rich, organic-rich, silty felsic, and clay
laminae. They combine into 3 types of lamina combinations,
namely massive mudstone, 'organic-rich and silt-grained feldspar-
quartz', and 'organic-rich and tuff-rich' lamina combinations. The
massive mudstone mainly consists of clay minerals and a small
amount of fine silts d very fine silts, with low organic carbon
content and undeveloped reservoir space. Whereas, the 'organic-
rich and silt-grained feldspar-quartz' lamina combination and
'organic-rich and tuff-rich' lamina combination (Fig. 1c) have
higher average organic carbon content and are the main reservoirs
of shale oil (Xi et al., 2020). At present, though there have some
understandings on Chang 73 sub-member's lamina combinations
and shale oil enrichmentmodels, the spatial distribution features of
the lamina combinations, especially the two types of lamina com-
bination rich in shale oil are still unclear, hindering the prediction
of favorable shale oil reservoirs.

3. Theory and methodology

3.1. Machine learning theory

Machine learning under supervision includes 4 elements,
namely DATA, MODEL, OBJECTIVE FUNCTIONG and OPTIMIZATION
ALGORITHM. It is a multi-layered feedforward neural network
trained by error feedback propagation algorithm (Fig. 2). A neural
network is connected and computed by massive neurons and its
model consists of three layers: the input layer directly receives
data; the hidden layer that is the intermediate layer of the network,
single or multiple layers, and responsible for analyzing and
balancing input data to perform related weight calculation (

P
) and

non-linearly transferring data to next layer of the network through
activating the function f(x); the output layer presents the results
after learning and training. The optimization algorithm compares
the predicted values of the model with the objective function and
reports errors to the model's starting point. By successive iteration
and training of each sample, the weight of neurons at the hidden
layer is adjusted toward the right direction to reach the goal of
minimizing errors eventually.

3.2. Methodology

Based on machine learning under supervision, mineral compo-
nents of Chang 73 sub-member in Ordos Basin in vertical direction
were predicted quantitatively by using conventional well log data.
First, the main mineral types in the research area and well log data
sensitive to changes in mineral components were sorted out and
taken as the predicted objective values and input parameters,
respectively. Then, the model was developed through machine
learning under supervision and used (Fig. 3).

The specified workflow of mineral component quantitative
analysis will be presented in detail in the case study section.

3.2.1. Data Pre-processing

(1) Determination of Predicted Objective Values



Fig. 1. (a) Areal distribution map of sedimentary facies of Chang 73 sub-member of the Triassic Yanchang Formation in the Ordos Basin, modified from Xi et al. (2020), (b) The core
characteristics of the Chang 73 sub-member, (c) The characteristics of laminae combination of Chang 73 sub-member.

Fig. 2. Schematic diagram of supervised machine learning.
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The whole-rock mineral analysis data needed for model con-
struction comes from samples of 6 typical wells with Chang 73 sub-
member encountered in the Ordos Basin. The samples, 75 in total,
cover all lamina types. According to the XRD's quantitative analysis
results, the main minerals in the research area are quartz,
1621
potassium feldspar, pyrite, and clay minerals (Fig. 4a), with average
contents of 35.0%, 12.8%, 17.8%, and 31.2%, respectively (Fig. 4b).
Among the four types of minerals, feldspar has the lowest content,
and the four types of minerals take up 96.8% of the total mineral
composition, while the other minerals only account for an average



Fig. 3. A proposed workflow showing the steps followed in this study to quantify the mineralogy.

Fig. 4. (a) The mineralogical compositions of samples from the Chang 73 sub-member, (b) Average mineral composition of shale.

Y.-Y. Zhang, K.-L. Xi, Y.-C. Cao et al. Petroleum Science 18 (2021) 1619e1629
of 3.2% of the total composition. Therefore, the quartz, potassium
feldspar, pyrite, and clayminerals were taken as predicted objective
values.

(2) Correlation Analysis

In terms of input parameters, too many types of parameters and
relatively low correlations will have negative impact on themodel's
accuracy. Therefore, well log data with higher correlation indexes
1622
should be taken as the main controlling factors to reduce
complexity and enhance accuracy of the model. The correlation
analysis between the 4 types of predicted objective minerals and
well log data shows (Table 1) that the types of well log data that are
sensitive to the above minerals are natural gamma ray log (GR),
acoustic log (AC), spontaneous potential log (SP), neutron log (CNL),
and density log (DEN). Therefore, the above types of 5 well log data
were taken as input parameters for model construction.

Through correlation analysis, it is found quartz, pyrite, and clay



Table 1
Correlation analysis between the minerals and log data.

Mineral type GR, API AC, ms/ft CNL, % DEN, g/cm3 SP, mV CAL, IN RT, U$m

Quartz �0.547 �0.512 �0.621 0.290 0.222 0.169 0.121
Feldspar 0.122 0.023 0.045 0.070 �0.195 �0.168 �0.104
Clay �0.447 �0.303 �0.386 �0.007 0.474 0.468 0.139
Pyrite 0.721 0.594 0.729 �0.553 �0.530 �0.377 �0.298

GR ¼ natural gamma ray log; AC ¼ acoustic log; CNL ¼ neutron log; DEN ¼ density log; SP ¼ spontaneous potential log; CAL ¼ calliper log; RT ¼ true resistivity log.
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minerals show obvious correlations with the above well log data.
Feldspar has lower correlations with the log data, mainly due to the
lowmineral content, which leads to the responses on the log data is
not obvious (Li et al. 2019a,b).
3.2.2. Train of machine learning
The model in this study was constructed by using Tensorflow

online open source code software library, the program for machine
learning was written by python 3.0 design language, machine
learning was used to quantitatively predict individual minerals, and
Keras was adopted to build, evaluate and supervise the machine
learning model. The detailed process is as follows.

(1) Import Training Dataset

75 sets of sample data composed of predicted objectivesmineral
contents and corresponding conventional well log data were im-
ported into the online neural network design software to conduct
self-monitored learning. The 5 types of logging data (GR, AC, SP,
CNL and DEN) were the input data, while the 4 types of minerals to
be predicted (quartz, feldspar, pyrite and clay minerals) were
output objective values.

(2) Data Normalization

Different types of logging data have a great difference in their
dimensions, for instance, in the research area, the natural gamma
ray log has data ranging from 0 API to 700 API, while the density log
ranges from 1.5 g/cm3 to 3.0 g/cm3. Input parameters with greater
values may attenuateweights of the ones with smaller values in the
neural network. To eliminate the deviation caused by largely
different dimensions of input parameters, all input parameters
need to be normalized (Lai et al., 2015). In this work, the data was
normalized through linear transformation into the range [0, 1]. The
normalization formula is:

xn ¼ x� xmin
xmax � xmin

(1)

Where xn is the normalized value; x is the original sample data; xmin
and xmax are the maximum and minimum values of the main
controlling factors of sample sets, respectively.

(3) Construction of Sample Set

The samples were divided randomly into two sets at a ratio of
3:1. The set with 75% of the samples was used for training to find
the optimal model. The set with the other 25% of the samples was
used to verify the effectiveness of the model. To ensure the objec-
tivity of the test, the latter set of the data didn’t take part in the
training process. During the machine learning under supervision of
this research area, the number of actual samples for training and
test were 56 and 19, respectively.

(4) Training and Optimizing
1623
Neural network optimizes by looking for a minimum error. The
estimated value with minimum error is considered the optimum.
The error minimization can be achieved by adding hidden layers
and neurons to complicate the neural network (Alnahwi and
Loucks, 2019).

Note that the final training goal of machine learning is to obtain
theminimum error by a relatively simple neural network and fewer
iteration times. Meanwhile, previous experience shows that a
neural network with a single layer can build a model with high
accuracy (Alnahwi and Loucks, 2019; Li et al. 2019a,b, 2020).
Therefore, the number of hidden layers of neural network in this
study was adjusted to be 1 or 2, the number of neurons in hidden
layers based on Kolmogorov theorem (2) (Liu et al., 2019) and the
formula (3) (Gao, 1998) was set between 3 and 9. With other pa-
rameters remaining the same, the parameterswere adjusted one by
one within the set range.

s¼2mþ 1 (2)

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:43mnþ 0:12nnþ 2:54mþ 0:77nþ 0:35

p
þ 0:51 (3)

where s represents the number of neurons in the hidden layer, m
represents the number of neurons in the input layer, and n repre-
sents the number of neurons in the output layer.

Activation function of the neural network in this research used
'rule', the activation level was dependent upon the weight of neu-
rons, and the weight of neuron can decide whether the data is
exported to neurons in the next layer. In the process, the neurons
construct complicated nonlinear models, which usually are more
suitable for predicting nonlinear data's trend than a linear rela-
tionship. The optimizer used 'adam' to calculate self-adaptive
learning rate to speed up convergence rate and shorten the
massive time spent on repeating training by machine learning; loss
function used the mean square error 'MSE'.

(5) Model Performance Analysis

The predictedmineral values of the training and test sample sets
from the models and the actual measured values were plotted,
while straight lines from fitting were evaluated, the model with the
highest correlation index (ideal condition is a slope of 1) was the
optimal model.

(6) Model Applications

The model developed from training the set with 75 samples
from Chang 73 sub-member in Ordos Basin was used to predict
mineral contents of target organic rich shale layer in vertical di-
rection continuously with conventional well log data.
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4. Results and discussion

4.1. Analysis of mineral composition differences in lamina
combinations

Through analysis of massive XRD data of the shale layers in
Chang 73 sub-member, Ordos Basin, it is found that different lamina
combinations in the research area differ significantly in mineral
composition (Fig. 5).

(1) Mineral composition of 'organic-rich and silt-grained feld-
spar-quartz' lamina combination

This lamina combination features high feldspar content, me-
dium quartz and pyrite contents, and low claymineral content. This
kind of lamina combination has relative quartz contents from 11%
to 38%, mainly 15% to 35%, on average 27.3%; relative feldspar
contents from 7% to 46%, mainly from 10% to 25%, and 18.2% on
average; relative pyrite contents from 13% to 42%, mainly 10% to
35%, and on average 28.5%; relative clay mineral contents from 13%
to 36%, mainly 10% to 35%, and on average 24.5%.

(2) Mineral composition of 'organic-rich and tuff-rich' lamina
combination

This kind of lamina combination features high pyrite content,
medium contents of quartz and clay minerals, and low feldspar
content. They have quartz relative contents from 15% to 29%, mainly
15% to 30%, on average 21.7%; feldspar relative contents from 4% to
15%, mainly 0% to 15%, and on average 8.0%; pyrite relative contents
from 9% to 51%, mainly 25% to 45%, and on average 32.5%; clay
minerals relative contents from 18% to 56%, mainly 25% to 45%, and
Fig. 5. The difference of mineral content of three types of laminae combination in t
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on average 34.7%.

(3) Mineral composition of massive mudstone

This kind of lamina combination features high contents of
quartz and clay minerals, low feldspar content, and very low pyrite
content. They have quartz relative contents from 34% to 62%,
mainly 35% to 55%, and on average 44.2%; feldspar relative contents
from 2% to 40%, mainly 0% to 10%, and on average 8.8%; pyrite
relative contents from 0% to 16%, mainly 0% to 5%, and on average
3.8%; relative contents of clayminerals from 18% to 55%, mainly 35%
to 55%, and on average 43.9%.
4.2. Analysis of effect of the developed Model's quantitative
prediction

Based on machine learning under supervision, the best model
was developed bymachine learning of the training sample set of 75
samples XRD analysis results and corresponding depth's conven-
tional well log data with high correlation indexes and validated on
the testing sample set. Through repeated iteration and optimiza-
tion, the optimal structural parameters of the neural networkwere:
1 hidden layer, 9 neurons in the hidden layer, learning rate of 0.01,
and circulated training times of 2000. The fitting result between
XRD values from the developed model and actual measured values
is shown in Fig. 6. The mineral contents of the training sample set
and test sample set predicted by machine learning show a good
linear relationship with the actual measured values, with linear
coefficient close to 1, and overall above 0.83. Compared with pre-
diction results of other minerals, the predicted results of feldspar of
the training and test sample sets are lower in accuracy, as feldspar
has lower correlations with conventional logging curves and lower
he Chang 73 sub-member. (a) Quartz, (b) Feldspar, (c) Pyrite, (d) Clay minerals.



Fig. 6. Cross plot of measured values vs. predicted values. (a) Training samples of quartz, (b) Testing samples of quartz, (c) Training samples of feldspar, (d) Testing samples of
feldspar, (e) Training samples of pyrite, (f) Testing samples of pyrite, (g) Training samples of clay minerals, (h) Testing samples of clay minerals.
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content, very small prediction deviation could result in significant
fluctuation in its correlation. But the predicted feldspar contents
are in the ideal range, with a linear coefficient of around 0.6.

4.3. Lamina combination identification and lamina distribution
analysis

The model built from machine learning under supervision was
used to predict mineral contents of an organic-rich shale section
(1709.7 m - 1721.7 m, 12 m in total) in Well Ning 70 of the research
1625
area, and then the lamina combinations were identified based on
the differences in mineral composition. The type of lamina com-
bination was identified following the principle of identification
according to the accuracy of predicted mineral contents from high
to low (pyrite, quartz, clay minerals, feldspar): a) The predicted
value of pyrite was taken as the first evidence for identification, the
lamina combination with low pyrite content and a relatively high
content of quartz was identified as Massive structure shale; while
the lamina combination with high pyrite content and low quartz
content was identified as combination of two kinds of laminae. b)
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Then the shale layers with high pyrite contents were further
divided, among which the shale layers with relatively low pyrite
content, high feldspar content and low clay mineral content were
deemed 'organic-rich and silt-grained feldspar-quartz' lamina
combination; while the shale layers with relatively high pyrite
content, low feldspar content and higher clay mineral content were
identified as 'organic-rich and tuff-rich' lamina combination. The
analysis results are shown in Fig. 7. Track 1 and 2 are the conven-
tional well log data used as inputs during the model construction;
Track 3 is the logging depth; Track 4 is the lithological profile; Track
5 to track 8 are percentages of different minerals predicted by the
model, in which the solid points are actual measured values of core
samples by XRD that are taken as the benchmark values to validate
the model's accuracy; Track 9 shows the identification results of
lamina combinations; Track 10 shows the microscopic character-
istics of thin sections at the corresponding depths.

It can be seen the predicted mineral contents of Well Ning 70
show good agreement with the actual measured values. The min-
eral components with higher contents have clear log responses and
therefore much smaller deviations in predicted contents than the
mineral component with low content (feldspar), but the vertical
variation tendency of the feldspar with low content still coincides
with that of the actual measured values. Compared with the
Fig. 7. Prediction of the mineralogical abundance of well Ning 70 and the ve
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adjacent relatively thick continuous sand layer, the organic-rich
shale section has great differences in mineral composition
(1711.3 m - 1721.2 m), featuring a rapid increase in pyrite content
and drop in contents of quartz, feldspar, and clay minerals. Through
the mode 'conventional log datadmineral composition pre-
dictiondlamina combination identification', the prediction results
of lamina combination types in the organic-rich shale section are
similar to the observation results of core samples under micro-
scope. The organic-rich shale section mainly has two types of
lamina combinations, 'organic-rich and silt-grained feldspar-
quartz' lamina combination and 'organic-rich and tuff-rich' lamina
combination. Massive mudstone mainly occurs between relatively
thick continuous sand layers stacking vertically. With the model,
the mud shale section in Well Ning 70 was estimated at around
8.5 m thick in total. In this section, 'organic-rich and silt-grained
feldspar-quartz' lamina combination was estimated at 4.4 m
thick, accounting for the largest proportion of 51.8%; 'organic-rich
and tuff-rich' lamina combination was estimated at 3.7 m thick,
accounting for 43.5%; massive mudstone was estimated at 0.4 m
thick, accounting for 4.7%.

Based on the mode 'conventional log datadmineral composi-
tion predictiondlamina combination type identification', lamina
combinations in the organic-rich shale section ofWell Ning 70were
rtical distribution of laminae combination in the Chang 73 sub-member.
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identified, and the results show the model developed has high
reliability and can be popularized to other oil wells in the research
area. This approach was also applied to analyze the planar distri-
butions of favorable lamina combinations in wells Cai 30, Zhuang
Fig. 8. The planar distribution characteristics of laminae combination in t
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282, Huang 234, and Hu 361. The results are shown in Fig. 8. In the
research area, the 'organic-rich and tuff-rich' lamina combination
mainly concentrates in the center area of the lacustrine basin; while
the 'organic-rich and silt-grained feldspar-quartz' lamina
he Chang 73 sub-member of Yanchang Formation in the Ordos Basin.
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combination is mainly distributed in the southwest of the lacus-
trine basin center.

The sedimentation of Chang 73 sub-member in Yanchang For-
mation of Ordos Basin was influenced by eruptions of Qinling
Volcano located in the southwest of Late Triassic lacustrine basin
(Zhang et al., 2009; Dong et al., 2015). Massive volcanic ash entered
the lacustrine basin carried by air or water (Zou et al., 2008; Qiu
et al., 2014). In the basin's center area, volcanic ash drifted down
and directly settled into tuffaceous bedding, interbedding with
organic-rich laminae (Zhang et al., 2009). In contrast, in the
southwest region of the lacustrine basin, affected by deep-water
hyperpycnal flow, coarse volcanic materials previously settled on
land were carried into the deep water zone under strong water
currents (Liu et al., 2014; Xi et al., 2020); and alternating water
currents created silty felsic laminae interbedding with organic-rich
laminae in this region.

5. Conclusions

By using machine learning under supervision and neural
network analysis technique, the mineral component contents of
organic-rich shale were quantitatively evaluated continuously in
vertical direction from conventional well log data. Then, on this
basis, a mode of 'conventional log datadmineral composition
predictiondlamina combination type identification' was proposed
to identify the types of lamina combinations based on the mineral
composition differences of different types of lamina combinations.
This mode has been used successfully in predicting mineral
composition quantitatively and identifying lamina combination
types of the organic-rich shale section in Chang 73 sub-member of
the typical well Ning 70 in Ordos Basin. The predicted results
coincide with the XRD measured values and thin section observa-
tion results, proving the effectiveness and reliability of the mode.
This mode was then further applied to Chang 73 sub-member
organic-rich shale strata across the research area, to analyze the
spatial distribution of lamina combinations and predict the plane
distribution characteristics of the favorable lamina combinations.

The approach of ''conventional log datadmineral composition
predictiondlamina combination type identification'' takes the
advantage of abundant conventional well log data in the field and
overcomes the issues of scattered XRD measured points and
insufficient special well log data, providing a new methodology for
the identification of shale lamina combination with great hetero-
geneity and frequent vertical variations.
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