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a b s t r a c t

Seismic reservoir prediction plays an important role in oil exploration and development. With the
progress of artificial intelligence, many achievements have been made in machine learning seismic
reservoir prediction. However, due to the factors such as economic cost, exploration maturity, and
technical limitations, it is often difficult to obtain a large number of training samples for machine
learning. In this case, the prediction accuracy cannot meet the requirements. To overcome this short-
coming, we develop a new machine learning reservoir prediction method based on virtual sample
generation. In this method, the virtual samples, which are generated in a high-dimensional hypersphere
space, are more consistent with the original data characteristics. Furthermore, at the stage of model
building after virtual sample generation, virtual samples screening and model iterative optimization are
used to eliminate noise samples and ensure the rationality of virtual samples. The proposed method has
been applied to standard function data and real seismic data. The results show that this method can
improve the prediction accuracy of machine learning significantly.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The seismic reservoir prediction method developed in 1970s
and popularized after 1990s. It has been successfully applied in
various oil and gas fields, and has played an important role in
improving exploration efficiency and economic benefit (Ahmed
et al., 2010; Liu et al., 2014; Gan et al., 2018). With the develop-
ment of high precision oil and gas exploration, traditional seismic
reservoir prediction methods based on linear hypothesis have been
unable to meet the requirements of fine reservoir description (Yin
et al., 2012). Machine learning, as a research hotspot in the big data
mining field, is an effective tool to building prediction models from
data (Peng et al., 2009; Gao et al., 2015; Zeng et al., 2018). Along
with the rapid development of machine learning in other fields,
many achievements have been made in machine learning seismic
reservoir prediction.

Liu et al. (2015) used the neural network andmulti-scale seismic
to achieve the goal of improving inversion resolution. Zhang et al.
(2014) applied the convolution neural network to seismic
).

y Elsevier B.V. on behalf of KeAi Co
reservoir prediction and got good results. Liu et al. (2020) proposed
a lithofacies classification method based on local deep multi-kernel
learning support vector machine. In addition, many other machine
learning algorithms are also applied in geophysics successfully,
such as long short-term memory networks (Cai et al., 2019),
generative adversarial networks (Kaur et al., 2020), and multilayer
long short-termmemory (Chen et al., 2020). To sum up, most of the
machine learning reservoir prediction methods need to establish
mapping relationship between seismic data and borehole data.
However, in many cases, the training samples do not meet the re-
quirements of sample number and data completeness (Lin et al.,
2018), which is also called small sample problem in the field of
data science. Direct use of these small sample data for modeling
will lead to poor generalization ability and therefore will affect the
prediction accuracy.

The small sample problem has always been a hot topic in
academia and industrial communities. And now it is still a big
challenge (Lu et al., 2018; Jayadeva et al., 2018). In order to over-
come this problem, researchers have developed various methods to
improve the prediction accuracy. These methods can be divided
into two categories. One is based on grey system theory (Wu et al.,
2012; Chang, 2015). The other method is virtual sample generation
(VSG), which fills the information gap among the original samples
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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by adding virtual samples (Zheng et al., 2017; Tang et al., 2018).
The concept of virtual sample was proposed initially by Niyogi

et al. (1998), who used the prior information from small sample
sets to generate virtual samples. And they also proved mathemat-
ically that the process of VSG is equivalent to incorporating prior
knowledge into model. Li et al. (2007) used adaptive network-
based fuzzy inference system (ANFIS) and mega-trend-diffusion
(MTD) to obtain the scheduling knowledge of the management
system. To avoid the disadvantage of single distribution hypothesis,
Zhu et al. (2016) proposed multi-distribution MTD method to
generate virtual samples. The results showed that the prediction
accuracy can be improved significantly after adding virtual
samples.

In this paper, we study the machine learning seismic reservoir
prediction method based on virtual samples. To solve the small
sample problem, a supervised virtual sample generation method is
proposed. First, we use the deep extreme learning machine, data
trend estimation and hypersphere characteristic equation to
generate the initial virtual samples. Then, the mechanism of virtual
sample screening and model iterative optimization is used to
eliminate noise samples and ensure the rationality of virtual sam-
ples. This method is performed on standard function data and real
seismic data to demonstrate its feasibility. The results show that the
proposed method is effective on the numerical model and real
seismic data.

2. Theory

2.1. Deep extreme learning machine

2.1.1. Extreme learning machine
Extreme learning machine (ELM), proposed by Huang et al.

(2006a), is a kind of single hidden layer feedforward neural
network for classification and regression. Different from usual
forward feed neural network based on gradient descent, ELM
adopts a fast and new learning mechanism. It randomly assigns
input weights and thresholds, and uses the least square method to
calculate the output weights. The structure of ELM is shown in
Fig. 1.
Fig. 1. The structure of ELM. wNhp represents the weight between the hidden neuron Nh and
output neuron q. p,Nh,q respectively represent the number of neurons in the input layer, h
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The output of the ELM model can be represented as follows:

Y ¼Hb ¼
2
4 f ðW1X1 þ b1Þ / f ðWNhX1 þ bNhÞ
« f

�
WjXi þ bj

�
«

f ðW1XN þ b1Þ / f ðWNhXN þ bNhÞ

3
5

�
2
4 b1
«
bNh

3
5

(1)

where Y ¼ fY1;Y2;/;YNg represents the output matrix, H is an

output matrix of the hidden layer, N is the number of samples, b ¼
fb1; b2;/; bNhgT is the weight matrix between the hidden neurons
and the output neurons, f ð ,Þ is the activation function, Wj ¼ fwj1;

wj2;/;wjpg denotes weight vector between the hidden neuron and

the input neurons, Xi ¼ fx1i ; x2i ;/; xpi g
T
respectively represent the

input vector, Yi ¼ fy1i ; y2i ;/; yqi g
T
represent the output vector, and

bj is the threshold of hidden neuron.
According to Huang et al. (2006b), the single hidden layer

feedforward neural network can assign the input weights
randomly, and the hidden layer output matrix H can remain un-
changed in the learning process. Thus, the optimization of the
single hidden layer neural network will transform to the least
square solution of the linear system Hb ¼ Y:

���ðW1;/;WNh;b1;/; bNhÞb
_
� Y

���2
¼ min

b
kðW1;/;WNh; b1;/;bNhÞb� Yk2 (2)

where b
_

is the calculated weight matrix between the hidden
neurons and the output neurons.
2.1.2. Deep extreme learning machine
The classical extreme learning machine has only one hidden

layer, so it is difficult to extract the deep characteristic information
from sample set, even if there are a large of neurons. Therefore, in
the input neuron p. bNhq represents the weight between the hidden neuron Nh and the
idden layer, output layer.
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this paper, we combine ELM with a deep neural network to
establish the deep extreme learning machine (DELM). The essence
of DELM is still a multi-layer feedforward neural network, and the
structure of DELM is shown in Fig. 2. The part in the red box is the
main structure of DELM. It still consists of an input layer, multiple
fully connected hidden layers, and an output layer. Those ELM
models in black boxes are used for DELM training.

In this paper, we choose the ELM auto-encoder (ELM-AE)
learning algorithm (Cheng et al., 2017; Uzair et al., 2018; Yang et al.,
2018) to obtain the weights fV1;V2;/;Vhþ1 g, where h is the
number of hidden layers. As shown in Fig. 2, use the ELM-1 to

calculate the output weight matrix b
_1

by Eq. (2). In ELM-1, the

output vector X
_

i is equal to the DELM input vector Xi. Take the

transpose of the output weight matrix b
_1

as the DELM weight
matrix V1, and calculate the first hidden layer output vector g1.
Then use g1 as the input vector and output vector of ELM-2 to get

b
_2

. In the same way, take the transpose of b
_2

as the weight matrix

V2 of DELM. And so on, until the last hidden layer, calculate b
_hþ1
Fig. 2. The structure and training mechanism of DELM. The part in the red box is the stru
encoder learning algorithm to obtain the weights fV1;V2;/;Vhþ1 g. The dotted lines and a
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with Yi as the objective output by b
_hþ1

¼ ðghÞ�1Yi, where ðghÞ�1 is
the generalized inversematrix of gh and Yi is the objective output of
DELM.

DELM can extract the feature information hidden in the sample
data through supervised learning. Compared with the conventional
back propagation neural network, it does not need the iterative
optimization process, which can improve the learning efficiency
greatly (Tang et al., 2016). At the same time, it solves the problem
that the ELM with single hidden layer structure cannot get deep
information, and it has a strong non-linear mapping ability.
2.2. Data trend estimation

To fill the information gap among small samples, it is important
to have a correct estimation to the sample distribution (Li et al.,
2006). In this paper, we use the data trend estimation method to
calculate the extension domain of each attribute.

For sample Xi ¼ fx1i ; x2i ;/; xpi g
T
, xpi is one data attribute of this

sample. So, fxp1; xp2;/; xpNg can be one data attribute for this sample
cture of DELM. The rest are ELM models for DELM training. We choose the ELM auto-
rrow marks indicate the relationship of weight matrixes between DELM and ELM.



Fig. 3. Determine acceptable extended domain of an attribute. CL is the data attribute center point. LB is acceptable lower bound and UB is acceptable upper bound of the attribute.
min and max are the minimum and maximum values for current attribute value. f is membership function.
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set. The center point of this data attribute can be calculated via:

CL ¼ 1
N

XN
i¼1

xpi (3)

We use triangle membership function to calculate the occur-
rence possibility. The mathematical expressions of attribute left
and right diffusion skewness are:

SkL ¼
NL

NL þ NU þ s
(4)

and

SkU ¼ NU

NL þ NU þ s
(5)

where NL and NU respectively represent the samples number those
are less or greater than the data attribute center point CL, s is shape
correction factor, taken as 1 in this paper.
Fig. 4. Nonlinear manifold subspace partition representation. (a) a nonlinear surface; (b) th
linear space, problem can be analyzed and solved using the linear methods.
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After obtaining the right and left diffusion skewness, we
calculate the attribute acceptable extension domain by

LB¼CL� SkL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� bs2x�NL � lnðfðLBÞÞ

q
(6)

and

UB¼CLþ SkU �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� bs2x�NU � lnðfðUBÞÞ

q
(7)

where LB is acceptable lower bound and UB is acceptable upper
bound of the attribute. As shown in Fig. 3, fðLBÞ and fðUBÞ are the

membership values of LB and UB. bS2x ¼ 1
N�1

PN
i¼1

ðxpi � xpÞ2 is the

attribute variance. xp is the attribute mean.
As shown in Fig. 3, the attribute acceptable extended domain

can be calculated by data trend estimation method,
xpi 2½LB min�∪½max UB�. It can be used as constraint to virtual
samples, which makes the virtual samples more accurate.
ree locally linear surfaces divided by using the nonlinear surface in (a). In the locally



Fig. 5. The process of virtual sample generation. (a) Small sample grouping process; (b) Small sample grouping result; (c) Building hypersphere; (d) Generating virtual samples.

Fig. 6. Flowchart of small sample modeling.
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2.3. Hypersphere characteristic equation

2.3.1. Manifold subspace division theory
In computing science, the function space, which varies with

time or other factors, is defined as nonlinear manifold (Lin and Zha,
2008; Jamshidi et al., 2011). So, manifold is a space with Euclidean
properties locally (Tenenbaum et al., 2000). As shown in Fig. 4, a
nonlinear manifold can be divided into several linear spaces, in
which we can analyze and solve problems using linear methods.
Generally, the more manifold subspaces are, the higher linearity of
subspaces have (Wang et al., 2008). So, in this paper, we divide the
nonlinear manifold that contains the small sample set into several
local linear subspaces.
2.3.2. Establishment of hypersphere characteristic equation
According to function theory, any sample is contained in one

base of topological space. And a finite number of samples are
included in a linear superposition space, which is composed by
multiple bases (Suhubi, 2003). That means, in small sample prob-
lem, the small sample space is a subspace of the real model space.
And it can be considered as a linear combination of spheres in the
entire space. These spheres are hyperspheres that can describe the
distribution of samples. The hypersphere has only two descriptive
parameters: hypersphere center and hypersphere radius, which
uses the following mathematical expression:

Sp ¼fXi 2ℝp : jjXi �X0jj � rg (8)

where X0 and r represent hypersphere center and hypersphere
radius respectively, Xi is the sample point in hypersphere.

The hypersphere characteristic equation can be expressed as



Fig. 7. Standard function surface (a) and sample projection information on the plane of t1 � t2 (b, c, d), G� t1(e), G� t2(f).
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Fig. 8. The prediction error of standard function example.

Table 1
The comparison of prediction effect.

Experimental sequence MAPEbefore, % MAPEafter, % MAPEMTD, % EIR, %

1 8.2659 4.0192 7.3608 51.38
2 8.3505 4.3978 7.4441 47.34
3 8.3445 3.9664 7.5706 52.47
4 8.6348 4.6892 7.3645 45.69
5 8.3110 4.6361 7.3592 44.22
6 8.3429 4.1506 7.5625 50.25
7 8.3920 4.6160 7.3048 45.00
8 8.5415 4.4933 7.3740 47.39
9 8.2593 4.7867 7.4617 42.04
10 8.6232 4.4946 7.3452 47.88

Fig. 9. The comparison of prediction error. MAPE-before is the mean absolute percent
error using small samples. MAPE-after is the mean absolute percent error using small
samples and virtual samples. MAPE-MTD is the mean absolute percent error using the
MD-MTD method according Zhu et al. (2016).
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8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

~x1i ¼ r sin q1 sin q2/sin qp�1

~x2i ¼ r sin q1 sin q2/cos qp�1

~x3i ¼ r sin q1 sin q2/cos qp�2

~x4i ¼ r sin q1 sin q2/cos qp�3

«

~xp�1
i ¼ r sin q1 cos q2
~xpi ¼ r cos q1

(9)

where q1; q2; q3;/; qp�12½0;2p� are hypersphere angles, and ~Xi ¼
f~x1i ; ~x2i ; ~x3i ;/; ~xpi g represents one virtual sample, while ~x1i ; ~x

2
i ; ~x

3
i ;/;

~xpi are the values of virtual sample ~Xi in different dimensions.
3. Methodology

3.1. Virtual sample generation method

The detailed steps of the virtual sample generation method
based on hypersphere characteristic equation are as follows:
1668
(1) Small sample data grouping: as shown in Fig. 5a and Fig. 5b,
group small sample data set according to manifold subspace
partition method. Detailed steps were performed as previ-
ously described (Jia, 2009).

(2) Establish the hypersphere characteristic equations using
grouped data: firstly, calculate the centres of these groups
using the following equation:

gkj ¼
1
n

Xn
i¼1

xkij j ¼ 1;2;/;m ; k ¼ 1;2;/; p (10)

where n and m are respectively dimension of the number of sam-
ples in the group and the number of sample groups, gkj is centre

value of k� th dimension in j� th hypersphere, xkij is k� th

dimension value of i� th sample in j� th hypersphere.
As shown in Fig. 5c, rj ¼ fg1j ; g2j ;/; gpj g is the centre of the j� th

hypersphere, and set the maximum distance between centre and
all samples in one group as radius. Then use Equation (9) to
establish the hypersphere characteristic equations.

(3) Generate virtual samples: as shown in Fig. 5d, based on
hypersphere parameter equation, there are two methods for
generating virtual samples. Method 1 generates virtual
samples randomly inside the hyperspheres; Method 2 gen-
erates virtual samples uniformly on the edges of
hyperspheres.
3.2. Training and prediction method based on virtual data and
machine learning

The Fig. 6 displays the workflow of machine learning seismic
reservoir prediction based on VSG. The detail steps are as follows:

(1) Building the initial DELM model: set up DELM model, and
train DELM model using small sample data.

(2) Virtual sample generation: calculate the acceptable extended
domain of each attribute by DTE method, and use it as



Fig. 10. (a) Regional map of the Ordos Basin (modified from Wu et al., 2019); (b) The structure map of the target layer.

Fig. 11. Seismic data section. Location of the seismic data is shown in Fig. 10b (red line).
The blue box indicates the range of Fig. 13a.
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constraint to establish hypersphere characteristic equation.
Then generate virtual samples.

(3) Virtual sample screening: according to Li and Wen (2014), Li
and Lin (2006), when relative error is less than 10%, the
virtual samples are acceptable. Therefore, we determine 10%
as the virtual samples screening standard. Virtual samples,
whose relative error are less than 10%, are considered as valid
virtual samples, and the relative error equation is as follows:

kYi � Yi
0k

kYi0k
<10% (11)

where Yi represents output variable. Yi
0 represents objective output

variable. But in application, we cannot get the real Yi
0. So, we use

the virtual input data and the initial DELM to get an approximation
1669
objective output data. k $k represents the norm of vector.

(4) Update the DELM: retrain the DELM using virtual samples
and original small samples.

(5) Prediction error judgment using test set: calculate prediction
error using test samples. If prediction error meets the
termination criterion, the training process completes;
otherwise, return to step 2) to continue generating virtual
samples.

(6) Reservoir prediction: use the DELM and post-stack seismic
data for reservoir prediction.

4. Applications

4.1. Standard function example

In this section, we use the standard function to verify the val-
idity of the proposedmethod. As shown in Eq. (12), the function has
two inputs and one output. In this paper, set the input value:
t12½ � p : 0:1 : p�, t22½0 : 0:1 : 2*p�. The function is shown in
Fig. 7a, indicating that the function is highly nonlinear.

Gðt1; t2Þ¼ sinðt1Þ þ cosðt2Þ þ sinðt1Þ � cosðt2Þ (12)

In this section, 50 samples are chosen as small sample set, and
we also use 20 samples as test set. Fig. 7a and b shows the distri-
bution of small samples in space and plane. From the distribution
on the plane, it is not uniform, and there are no effective samples in
many areas.

Fig. 7d shows the projection of virtual samples on plane t1 � t2.
From the distribution, the virtual samples fill among small samples,
so that makes the samples distribution more uniform on the plane,
which will improve the generalization ability of prediction model.
It also proves that the hyperspheres are good enough to capture the



Fig. 12. The probability density of training and testing data. From the 30 elements of the input variable, we select the 5th (a), 15th (b), 20th (c), 25th (d) elements and calculate the
probability density of the input variable. The red line is the probability density distribution of the test data, and the black line is the probability density distribution of the training
data.
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multi-modal distributions of the input data. And Fig. 7e and f dis-
plays the projections on the plane t1 � G and t2 � G. The virtual
samples can basically fall on the surface or fit well with the surface,
which indicates the correctness of the virtual samples. Fig. 8 shows
the prediction error curve along iterations. After a certain number
of iterations, the error curve can converge quickly.

In order to further verify the improvement of virtual samples on
predictionmodel, we do 10 independent experiments and compare
the prediction error. We employee two metrics, i.e. mean absolute
percent error (MAPE) and error improvement rate (EIR),

MAPE¼1
n

Xn
i¼1

����Y
0
i�Y

0

Y
0

�����100%

EIR¼MAPEbefore�MAPEafter
MAPEbefore

�100% (13)

where n denotes the number of test samples, MAPEbefore and
MAPEafter are the mean absolute percent error before and after the
virtual samples generated.

Table 1 and Fig. 9 respectively show the prediction results using
different methods and different samples. They show that the
1670
prediction error decreases significantly after adding virtual sam-
ples. The prediction error is about 8.5% before adding virtual
samples. After adding the virtual samples, the error reduces to 4%
approximately, and the error correction rate is about 50%.

We also compare the method proposed in this paper with MD-
MTD method (Zhu et al., 2016). Fig. 7c shows the projection of
virtual samples generated by MD-MTD. The virtual samples are
gathered in center area of the plane. For many areas, the MD-MTD
method does not generate virtual samples. As shown in Fig. 9, the
MAPE of MD-MTD method increases but the effect is limited.
4.2. Real data example

In order to study the feasibility of the proposed method in real
seismic reservoir prediction, we use a practical work area for test.

(1) Geologic background: The Ordos Basin is a large, intra-
cratonic sedimentary basin in central China, which com-
prises a total area of 23� 104 km2 (Fig. 10a, Wu et al., 2019).
The study area is located on northeastern of Ordos Basin, in
which the red box is the 3D seismic survey area. There is a



Fig. 13. The effect comparison of real data application. (a) Seismic section; (b) Predicted porosity section by small samples; (c) Predicted porosity section by small samples and
unscreened virtual samples; (d) Predicted porosity section by small samples and screened virtual samples.
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large tight sandstone gas reservoir in the Upper Paleozoic
succession, which is characterized by strong horizontal het-
erogeneity, thin interbeds in vertical, low porosity, low
permeability, low saturation and generally less than 10 m in
thickness. The gas reservoir is not controlled by geological
structure and is dominated by large stratigraphic traps. The
seismic profile of target layer is shown in Fig. 11. Due to these
special geological conditions, it is difficult to identify the
horizontal and vertical distribution of the reservoir using
pre-stack seismic inversion and other conventional post-
stack seismic inversion. And because this area is in the
initial development stage, the well data is limited. Accurate
reservoir prediction in the case of few wells is of great sig-
nificance for further exploration and development. The well
distribution and geological structure of the Upper Paleozoic
are shown in Fig. 10b.

(2) Seismic reservoir prediction: there are 6 wells in the study
area, and their distribution is shown in Fig. 10b. We select
training samples fromwell A1, A2, A3, A4 and A5. Well A7 is
used as test well, without participating in the training pro-
cess. There are 1000 training samples and 200 test samples.
The seismic data beside the wells composes the input vari-
able, while the logging porosity data composes the output
variable. The output variable is one-dimensional single
element vector, and the input variable is one-dimensional
seismic data with 30 elements. In this paper, the sampling
interval of seismic data is 1 ms. Setting the sampling position
as the midpoint, taking 14 ms up and 15 ms down, a total of
29 ms seismic records (30 samples) are taken as input
variable.

To verify that the training and test data follow the same distri-
bution, we calculate the data probability density function. Since the
input data are variables with 30 elements, the probability density
1671
function is variable with 30 dimensions, which cannot be displayed
directly. Therefore, we select the 5th, 15th, 20th, and 25th elements
of the input variables to estimate the probability density. And the
results are shown in Fig. 12. The red line is the probability density
distribution of the test data, and the black line is the probability
density distribution of the training data. Based on the probability
density results, the training and test data follow the same
distribution.

After parameter test, we use the DELM model with structure:
30-20-20-20-20-20-20-1. It means that the DELM has 6 hidden
layers, each of which contains 20 neurons. And the input and
output layers have 30 and 1 neurons, respectively. After sample set
and DELM being established, we predict porosity using the method
in Section 3.2.

Fig. 13 shows reservoir prediction results using virtual samples
and machine learning. Fig. 13a represents a seismic section, and
Fig. 13b, 13c and 13d show the predicted porosity sections.
Compared the predicted porosity with seismic, the porosity pre-
diction results have higher vertical resolution and they are
consistent well with the seismic morphology in transverse. Fig. 13b
displays predicted porosity section by small sample set, and this
result has very high randomness. In contrast, as shown in Fig. 13c
and d, machine learning with mixed samples can reduce random-
ness and improve prediction accuracy. Fig. 13c displays predicted
porosity result with unscreened virtual samples, while Fig. 13d is
predicted porosity result with screened virtual samples. Comparing
these two results, there are no difference in resolution, but the
latter one is more consistent with logging results. At the positions
marked by arrows in Fig. 13c and d, the result using unscreened
samples shows a large deviation from logging data, while the result
using screened samples is consistent with logging data highly.

In order to make a more intuitive evaluation to the prediction
results, Fig. 14 shows the cross plot of predicted porosity with real
porosity. Compared with the prediction result by small sample set,



Fig. 14. Cross plot of the predicted data with the real data (a) Predicted porosity by small samples; (b) Predicted porosity by small samples and unscreened virtual samples; (c)
Predicted porosity by small samples and screened virtual samples.
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machine learning with mixed samples can reduce the MAPE to
23.23%. Meanwhile, the method with sample screening can further
improve the prediction accuracy to more than 90%.
5. Discussion

The machine learning method based on virtual samples can
solve the small sample problem to a certain degree. Through the
preliminary test, it is found that this method also has certain
requirement for the completeness of small samples. Taking reser-
voir porosity prediction as an example, the proportion of high
porosity samples and low porosity samples should be relatively
balanced. It means that it shouldn't only have high porosity sam-
ples or low porosity samples. When a class of samples is missing,
the hypersphere of this class cannot be created, and virtual samples
1672
of this class cannot be generated.
About the number of hyperspheres, it is determined by the

manifold subspaces. According to the manifold subspace partition
theory (Jia, 2009), the number of subspaces is not set in advance.
Instead, by setting threshold parameter, the larger the threshold
parameter is, the higher nonlinearity of the subspaces have, and the
fewer subspaces will be constructed. Conversely, the smaller the
threshold parameter is, the more subspaces will be constructed.
Based on reference and practical application, the threshold value is
related to sample dimension. The higher the sample dimension is,
the smaller the threshold value should be to ensure the linearity in
subspaces.

This paper is an exploratory work in small sample machine
learning problem. We have established the method for small
sample reservoir prediction. But like many other machine learning
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prediction methods (Lei et al., 2014; Franco, 2006), there is still a
problem: how to improve generalization ability. At present, in
machine learning reservoir prediction, it can only build sample sets
and train model in one geological area. Then predict the reservoir
parameter for this area. There is no established method with strong
generalization ability, by which reservoir prediction can be made
for any geological areas through once learning. This requires further
study in future.

6. Conclusions

In this paper, machine learning and virtual samples are used to
achieve the reservoir prediction in cases of small samples. First,
generate the initial virtual samples by using DELM, data trend
estimation and hypersphere characteristic equation. Then the
mechanism of virtual samples screening and model iterative opti-
mization are used to eliminate noise samples. Finally, the virtual
samples are combined with the original small samples to form the
training set for machine learning.

Through the standard function example and real data applica-
tion, the following implications can be recognized:

1) The supervised virtual sample generation method can reduce
the influence of noise samples and improve prediction accuracy
significantly. Moreover, sample screening is applicable to
different virtual sample generation methods. So, we believe that
the combination of virtual sample generation and sample
screening can achieve the optimal effect in small sample
problem.

2) To a certain extent, virtual sample generation method can solve
the small sample problem in machine learning. This method can
be used to predict the reservoir in less well working area.
Minimum requirement for well number can reduce from dozens
to several. This can advance the application of machine learning
in oil and gas exploration greatly.
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