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a b s t r a c t

In the early exploration of many oilfields, low-resistivity-low-contrast (LRLC) pay zones are easily
overlooked due to the resistivity similarity to the water zones. Existing identification methods are
model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated. In
this study, after analyzing a large number of core samples, main causes of LRLC pay zones in the study
area are discerned, which include complex distribution of formation water salinity, high irreducible
water saturation due to micropores, and high shale volume. Moreover, different oil testing layers may
have different causes of LRLC pay zones. As a result, in addition to the well log data of oil testing layers,
well log data of adjacent shale layers are also added to the original dataset as reference data. The density-
based spatial clustering algorithm with noise (DBSCAN) is used to cluster the original dataset into 49
clusters. A new dataset is ultimately projected into a feature space with 49 dimensions. The new dataset
and oil testing results are respectively treated as input and output to train the multi-layer perceptron
(MLP). A total of 3192 samples are used for stratified 8-fold cross-validation, and the accuracy of the MLP
is found to be 85.53%.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

A low-resistivity-low-contrast (LRLC) pay zone refers to a pay
zone with a resistivity Rt close to that of its adjacent water zone R0,
i.e., the formation resistivity index I (I ¼ Rt/R0, Archie, 1942) is low,
and, usually, I < 2. An LRLC pay zone is better considered as a relative
concept than an absolute concept, as pay zones in different oilfields
can have very different resistivity ranges. For example, the re-
sistivities of LRLC pay zones and water zones in the Attaka Oilfield in
Indonesia range from 2 to 5 Ohmm and 1 to 5 Ohmm, respectively,
but the resistivities of LRLC pay zones and water zones in the
Lakhmani Oilfield in India range from 10 to 30 Ohmm and 15 to 25
Ohmm, respectively (Worthington, 1997). LRLC pay zones are widely
distributed all over the world, including in Louisiana and Oklahoma
in the United States, Hainan and Tarim in China, the Gulf of Mexico,
the Middle East, etc. However, they are also easily overlooked by
conventional log analysis due to the low contrast in resistivity.
).
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In recent years, some novel well logging methods have been
demonstrated to perform well in the identification of LRLC pay
zones, such as NMR well logging (Guru et al., 2008; Rima et al.,
2012; Belevich and Bal, 2018; Heidary et al., 2019) and pulse
neutron well logging (Simpson and Menke, 2010). However, the
data acquired from these novel well logging methods are usually
absent inmany oilfields, and conventional well log data are the only
complete data that can be used.

Many researchers have sought model-driven solutions to the
identification of LRLC pay zones for decades. One kind of method is
to calculate the water saturation of a formation to determine
whether or not it is hydrocarbon-bearing. The most widely used
model for the calculation of water saturation from conventional
well log data is the Archie's equation (Archie, 1942). However, if an
LRLC pay zone has similar resistivity to its adjacent water zone, the
water saturation calculated by the Archie's equation will be over-
estimated. Hill and Milburn (1956) found that the relationship
between rock resistivity and formation water resistivity is
nonlinear due to the effect of clay. Based on this relationship,
Waxman and Smits (1968) developed a model that explains the
electrical conductivity of shaly sand. Givens (1987) proposed a
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conductive rock matrix model that separates the rock into two
parallel components, i.e., a conductive pore network containing
fluids that are free to move, and the remainder of the rock, which
may be conductive due to conductive minerals and immobile
conductive water. With the deepening of the study on LRLC pay
zones, recent methods tend to identify them based on the causes of
the LRLC phenomenon. Worthington (1997) proposed a systematic
workflow to interpret LRLC pay zones based on different causes,
and different models were deployed for water saturation calcula-
tion. To identify LRLC pay zones caused by fresh drilling mud in-
vasion, Li et al. (2010) established a three-step well logging
identification method that contains conventional well logging
cross-plot, drilling mud invasion factor analysis and well compar-
ison; Pratama et al. (2017) proposed an integrated workflow that
combines petrographical analysis, rock typing, and petrophysical
analysis to calculate the shale volume, water saturation, and
effective porosity, and eventually identifies the LRLC pay zones.
Mashaba and Altermann (2015) considered clay-bound water and
silt-bound water, which were the main causes of low resistivity in
their study area, and improved the Archie's equation to calculate
the water saturation. However, most of these model-driven
methods are only locally applicable, and cannot yield satisfactory
results when the causes of LRLC pay zones are complicated and the
types of hydrocarbon layers (e.g., gas layer, gas/oil layer, oil layer,
etc.) are various.

With the increasing scale and sophistication of data, the
development of machine learning algorithms has shed light on
complicated geophysical problems from a data-driven perspective
(Bergen et al., 2019). Unsupervised algorithms like clustering and
graphical models are usually used for well log data or seismic data
preprocessing (Kang et al., 2019), reservoir multiscale modeling
(Esmaeilzadeh et al., 2020), lithology identification (Feng et al.,
2018; Li et al., 2021), and production schedule optimization for
naturally fractured reservoirs (Liu and Forouzanfar, 2017).
Regarding supervised algorithms, artificial neural networks (ANNs)
are a popular tool for solving both regression and classification
problems. ANNs can be categorized into different types based on
their structures. Convolutional neural networks (CNNs) have a
unique convolutional layer and a pooling layer, which are suitable
for processing image data. CNNs are therefore used for seismic
horizon tracking (Yang and Sun, 2020), seismic impedance inver-
sion (Das et al., 2019), low-frequency noise suppression (Zhao et al.,
2020), and seismic fault detection (Cunha et al., 2020; Yang et al.,
2021). Recurrent neural networks (RNNs), including the long
short-term memory (LSTM) network, have an advantage in dealing
with sequential data, and are used to generate NMR T2 distributions
(Li and Misra, 2019), optimize seismic waveform inversions (Sun
et al., 2020), pore fluid identification (Zhou et al., 2021) and
obtain pore size distributions (Li et al., 2020). The multi-layer
perceptron (MLP) is widely applied together with some heuristic
algorithms to bridge scales for seismic phase picking (Chai et al.,
2020), seismic facies analysis (Bagheri and Riahi, 2015), and shear
wave travel time estimation (Anemangely et al., 2017).

In the present work, the powerful data processing and infor-
mation extraction abilities of machine learning algorithms are
employed in the construction of an implicit relationship between
conventional well log data and LRLC pay zones. The density-based
spatial clustering algorithm with noise (DBSCAN) is first applied to
cluster the input dataset. By calculating the Euclidean distances
from the data to the cluster centroids, the dataset can be projected
into a feature space with a higher dimension. Eventually, the
optimally structured MLP is deployed to train the data for the
identification and classification of LRLC pay zones.
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2. Methodology

2.1. DBSCAN algorithm

DBSCAN is a clustering algorithm based on the density distri-
bution of a dataset, and it can exclude noise points in the dataset.
Before the introduction of the DBSCAN algorithm, the following
definitions are provided.

Given a dataset D ¼ fx1;x2;…;xng, NεðxiÞ, the ε neighborhood of
point xi, is defined as the collection of points in dataset D whose
distance to point xi is less than ε, i.e., NεðxiÞ ¼�
xj2D

��dist�xi; xj� � ε

�
. Point xi is called the core point when its ε

neighborhood contains no fewer than npoints, i.e., jNεðxiÞj � n. Point
xj is directly density-reachable to point xi (denoted as xj0xi) when
point xj is in the ε neighborhood of point xi. Point xj is density-
reachable to point xi (denoted as xj/xi) when
xj0xp0/0xq0xi. Based on these definitions, the DBSCAN algo-
rithm is described as follows:

1) Determine the parameters ε and n;
2) Find all the core points in dataset D and collect them into

another dataset U;
3) Randomly choose one core point xi in U, find its density-

reachable points in D, and gather xi and its density-reachable
points in dataset Ci as one single cluster;

4) Update U by excluding the core points contained in cluster Ci,
i.e., U ¼ U� Ci;

5) Go to step 3 if U is not empty.
2.2. Multi-layer perceptron

The basic structure of an MLP includes an input layer, several
hidden layers, and an output layer. The more hidden layers an MLP
has, themore powerful its learning ability will be, and themore risk
of overfitting it will have. Fig. 1 presents the structure of an MLP
with two hidden layers. Given a labeled dataset A ¼ fðx1;y1Þ;ðx2;y2Þ
;…;ðxn;ynÞg, its training steps in this MLP are described as follows.

1) Input layer / hidden layer 1 / hidden layer 2

vi ¼ f ðw1xi þ b1Þ; i ¼ 1; 2; …; n (1)

where vi is the output of hidden layer 1 and also the input of hidden
layer 2, and f is the activation function of the neurons, common
choices of which are the rectified linear unit, sigmoid, and tanh
Fig. 1. Structure of an MLP with two hidden layers.
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functions.

2) Hidden layer 1/hidden layer 2/output layer

ui ¼ f ðw2vi þ b2Þ; i ¼ 1; 2; …; n (2)

For a regression problem, ui ¼ y*i . However, for a classification

problem, y*i is a probability that is generally expressed as the
softmax function:

y*i;j ¼ exp
�
ui;j

�,X
j

exp
�
ui;j

�
(3)

After all the sample inputs xi have been trained, their corre-
sponding predicted outputs y*i are obtained. For a regression
problem, the mean squared error (MSE) between the predicted
output y*i and the real output yi can be calculated as follows:

MSE ¼ 1
n

X
j

�
y*i � yi

�2 (4)

The MSE function is then minimized to find the optimal weight
and bias parameters w1;w2;b1, and b2 of the MLP.

For a classification problem, the cross-entropy (CE) between the
predicted output y*i and the real output yi can be calculated as
follows:

CE ¼ �
X
i

�
y*i ,logðyiÞ

�
(5)

The CE function is then minimized to find the optimal weight
and bias parameters w1;w2;b1, and b2 of the MLP.

To avoid the overfitting problem in the training steps, dropout
regularization is applied to randomly neglect some neurons in the
hidden layers by setting the weights of these neurons to 0.
3. Case application

The study area is located inWOilfield, China. It includes two sets
of Paleogene hydrocarbon-bearing strata. The formation lithology
is dominated by pebbled sandstones with low porosity, low
permeability, and a complex pore structure. Fig. 2 presents the
resistivity histogram of the water layers and oil layers from 15 wells
Fig. 2. The resistivity histogram of water layers and oil layers from 15 wells.
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in the study area. It is evident that the resistivities of the water
layers are in the range of 6 Ohmm - 40 Ohmm, and the resistivities
of the oil layers are in the range of 12 Ohmm - 36 Ohmm. Fig. 3
exhibits the well logs of a water layer and an oil layer from well
#2. The 1st track contains spontaneous potential log (SP), gamma
ray log (GR) and caliper log (CAL). The 2nd track contains deep
investigation induction log (ILD) and laterolog 8 log (LL8). The 3rd
track contains density log (DEN), acoustic log (AC) and compen-
sated neutron porosity log (CNL). The 4th track is the oil testing
results. The contrast between the resistivity logs of these layers is
low. Overall, it can be concluded that the reservoirs in the study
area are typical LRLC pay zones.

The workflow of this case study is shown in Fig. 4. In section A,
the causes of the LRLC pay zones in the study area are analyzed,
which offers instructions for the data preprocessing described in
section B. In section C, by deploying the DBSCAN algorithm, the
dataset is projected into the feature space. In section D, the new
dataset and the oil testing results are respectively treated as the
input and output to train an MLP.
3.1. Cause analysis of LRLC pay zones

The water salinity in the study area has a very complicated
distribution, and ranges from 421 mg/L e 89997.5 mg/L. Fig. 5
shows the water salinity histogram of the study area, from which
we can see the water salinity distributes widely and unevenly. A
water layer whose formation water has a very low water salinity
will have a relatively high resistivity, whereas a hydrocarbon layer
whose formation water has a high water salinity will have a rela-
tively low resistivity. Fig. 6 exhibits an example to show the influ-
ence of the water salinity on the resistivities of difference layers. In
Fig. 6, the layers of well #6 are tested as gas/oil layer and the water
salinity in this depth interval is 12000 mg/L. The layers of well #13
are tested aswater layer and thewater salinity in this depth interval
is 3381mg/L. However, the resistivity ranges of well #6 and #13 are
similar. Therefore, we can see the influence of the complex distri-
bution of formation water salinity on the formation resistivity.

From the cast thin sections in Fig. 7, we can see there are many
dissolution pores in the core samples. The pore size distributions
show that there are two kinds of pore sizes. The first peak is around
0.01 mm, and the second peak is around 1 mm. Core porosity of the
study area is in the range of 4.54%e12.7% and the porosity of most
core samples is around 8%. Core permeability of the study area is in
the range of 0.20 mD - 2.49 mD and the permeability of most core
samples is around 0.5 mD. Fig. 8 is the porosity and permeability
histograms that exhibits the specific porosity and permeability
distribution of the core samples. Due to the small pore size, low
porosity and low permeability, the irreducible water saturation can
be very high. A high irreducible water saturation can result in the
high conductivity of the pay zone. Based on the clay mineral X-ray
diffraction analysis presented in Fig. 9, the clay content is around
20%, and the mixed-layer illite/smectite, which has a very high
cation exchange capacity, composes about 50% of all the clay
mineral content.

Above all, it can be concluded that the causes of the LRLC pay
zones in this area are the complex distribution of formation water
salinity, high irreducible water saturation due to micropores, and
high shale volume. Due to the complicated causes, common
methods cannot obtain satisfactory classification results. Fig. 10
shows the cross-plots of ILD with other well logs. We can see that
it is difficult to divide the oil layers and water layers in these cross-
plots. Therefore, it is necessary to apply the machine learning
methods to establish an explicit and robust model for LRLC pay
zone identification and classification.



Fig. 3. The well logs of a water layer and an oil layer from well #2.

Fig. 4. The workflow of this case study.
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Fig. 5. The formation water salinity histogram.

Fig. 6. Comparison of the gas/oil layers of w

Fig. 7. Cast thin sections of two core samples with their co
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3.2. Data preprocessing

Considering the complicated water salinity distribution and
pore structure, different oil testing layers may have different LRLC
causes. Therefore, it is reasonable to find the shale layers adjacent
to the oil testing layers based on the gamma ray (GR) well logs and
use them as reference data. As a result, 14 dimensions are included
in the dataset, which includes GRot, GRsh, SPot, SPsh, ACot, ACsh,
CNLot, CNLsh, DENot, DENsh, ILDot, ILDsh, LL8ot, and LL8sh. Footnote
‘ot’ stands for ‘oil testing layer’, and ‘sh’ stands for ‘adjacent shale
layer’.

Another problem is well logging data size mismatch between
the oil testing layers and its adjacent shale layers. For example, an
oil testing layer is 3 m thick (30 samples), whereas its adjacent
shale layer is 2m thick (20 samples). Due to the sizemismatch, they
cannot be combined as different dimensions of a dataset. To solve
this problem, the well log value histogram of the shale layer is
created and fitted with a Gaussian distribution. The mean value of
the Gaussian distribution is then taken as the representative value
and duplicated to make it have the same size as the oil testing layer.
ell #6 and the water layers of well #13.

rresponding MICP curves and pore size distributions.



Fig. 8. The porosity and permeability histograms of the core samples in the study area.

Fig. 9. Clay mineral X-ray diffraction analysis of 22 core samples in well #7.
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Eventually, the well log dataset can be obtained, as partly shown in
Table 1.

The dataset is normalized base on Equation (6):

x0 ¼ ðx� xminÞ=ðxmax � xminÞ (6)

where x is the sample to be normalized, and x0 is the normalized
sample.

There are 10 types of layers in the study area based on the oil
testing results, namely dry layers (DL), water layers (WL), oily water
layers (OWL), low-production gas layers (LPGL), low-production oil
layers (LPOL), low-production gas/oil layers (LPGOL), water/gas/oil
layers (WGOL), water/oil layers (WOL), gas/oil layers (GOL), and oil
layers (OL). With 3192 samples in the dataset, the oil testing results
can be expressed as a matrix with a size of 3192� 10. In the matrix,
each type of layer has a unique corresponding vector. The vector of
a dry layer, for example, is (1,0,0,0,0,0,0,0,0,0), which means that
the probability of a dry layer is 1 and the probability of other types
is 0. Table 2 reports the number of samples, vectors, and de-
scriptions of each type of layer.

Overall, the normalized well log dataset (denoted as dataset P)
with a size of 3192� 14 can be obtained, as can the matrix of the oil
testing results with a size of 3192 � 10.
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3.3. Application of the DBSCAN algorithm

To apply the DBSCAN algorithm, the neighborhood parameters ε
and n must first be determined. Generally, n ¼ d þ1, where d is the
dimension of samples in dataset P; therefore, in this work, n ¼ 15.
Moreover, ε can be determined by the silhouette coefficient:

Si ¼ðbi � aiÞ=maxðai; biÞ (7)

where Si is the silhouette coefficient of xi, ai is the mean Euclidean
distance from xi to the other samples in its cluster, and bi is the
shortest Euclidean distance from xi to the centroids of other clus-
ters. After the silhouette coefficients of all the samples in dataset P
are calculated, a mean silhouette coefficient S can be obtained,
which can be used to evaluate the clustering result. A higher S in-
dicates a better clustering result. Fig. 11 presents the S curve with
different values of ε in the range of 0.1e0.5. The optimal value of ε ¼
0:19 can be obtained when S reaches its maximum.

By applying ε ¼ 0:19 and n ¼ 15 to the DBSCAN algorithm,
dataset P can be clustered into 49 clusters. The centroid cj, j ¼ 1; 2;
:::; 49, of each cluster is the arithmetic mean of the data samples in
the cluster.

Dataset P is then projected into the feature space of the clusters
by calculating the Euclidean distance from each sample in dataset P
to the centroids. The sample in the feature space can be expressed
as

zi ¼
�
zi;1; zi;2;…; zi;49

�
; i ¼ 1; 2; …; 3192 (8)

zi;j ¼ dist
�
xi; cj

�
(9)

From Equation (8), it can be seen that the samples in the feature
space have 49 dimensions, whereas the samples in dataset P have
14 dimensions. It is known that a dataset projected into a higher
dimension is more easily classified than the dataset with a lower
dimension. Therefore, the dataset in the feature space is used as the
input of the MLP in the next section.
3.4. Application of the MLP

The performances of MLPs with different structures are inves-
tigated to find the optimal structure, as shown in Table 3. Stratified
8-fold cross-validation is applied to split the input and output data
into 8 folds. 7 folds are treated as the training dataset, and the final



Fig. 10. Cross-plots of ILD with other well logs.

Table 1
Part of the well log dataset of an oil testing layer (only the AC, CNL, DEN logs are
displayed).

ACot, ms/m ACsh, ms/m CNLot, % CNLsh, % DENot, g/cm3 DENsh, g/cm3

332.4 315 55.85 52.5 1.56 1.9
332.2 315 52.82 52.5 1.63 1.9
328.5 315 48.21 52.5 1.72 1.9
319.7 315 42.71 52.5 1.83 1.9
308.6 315 37.94 52.5 1.96 1.9
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fold is treated as the test dataset. After 8 loops, every fold has been
treated as the test dataset, and the test accuracy of the whole
dataset can be obtained. To be specific, the weight and bias pa-
rameters of the MLP in each loop are trained from the beginning to
make sure they are not affected by the other loops. The CE function
is used as the loss function, and the steepest gradient descent
method is applied to minimize it. The second column in Table 3
reports the structures of the MLPs. As an example, “49-128-64-
32-10” means that this MLP has 5 layers, and the numbers of
neurons in each layer are 49, 128, 64, 32, and 10, respectively. The
complexity can be calculated based on the structure via Equation
(10):
Table 2
Number of samples, vectors, and descriptions of each type of layers.

Type Number of
samples

Corresponding
vector

Description

DL 137 (1,0,0,0,0,0,0,0,0,0) Fluid production <0.4 t/d.
WL 991 (0,1,0,0,0,0,0,0,0,0) Water cut >98%.
OWL 110 (0,0,1,0,0,0,0,0,0,0) Water cut >90%.
LPGL 43 (0,0,0,1,0,0,0,0,0,0) Gas/oil ratio >890, and gas productio
LPOL 92 (0,0,0,0,1,0,0,0,0,0) Water cut <2%, gas/oil ratio <534, an
LPGOL 141 (0,0,0,0,0,1,0,0,0,0) Water cut <2%, 534 < gas/oil ratio <89
WGOL 177 (0,0,0,0,0,0,1,0,0,0) 10% < water cut <90%, and 534 < gas
WOL 361 (0,0,0,0,0,0,0,1,0,0) 10% < water cut <90%.
GOL 733 (0,0,0,0,0,0,0,0,1,0) Water cut <2%, and 534 < gas/oil rati
OL 407 (0,0,0,0,0,0,0,0,0,1) Water cut <2%, and gas/oil ratio <534
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complexity ¼
Xn�1

i¼1

ðli þ 1Þliþ1rdr (10)

where n is the number of layers in the MLP, li is the number of
neurons in the ith layer, and rdr is the dropout rate in each layer.
Because the complexity is equal to the number of coefficients to be
trained in an MLP, the higher the complexity, the longer the run
time required by the MLP will be. For structures No. 1d No. 9, each
MLP is run five times, and the mean accuracy is calculated. From
Table 3, it can be seen that the accuracy increases with the
complexity. Structure No. 9 has the highest mean accuracy of
85.97%. However, structure No. 4 has a mean accuracy of 85.53%,
which is very close to that of structure No. 9. Moreover, structure
No. 4 has lower complexity than structure No. 9. Therefore, for a
slight sacrifice of accuracy in exchange for greater efficiency,
structure No. 4 is assumed to have the best performance.

To further analyze the prediction result, a confusion matrix is
obtained to show the detailed numbers of actual and predicted
types of samples. The precision and recall of each type of sample
can be calculated from the confusion matrix, and are respectively
defined as Equations (11) and (12):
n <3 � 104 m3/(km‧d).
d 1 t/(km‧d) < oil production <5 t/(km‧d).
0, 1 t/(km‧d) < oil production <5 t/(km‧d), and gas production <3� 104m3/(km‧d).
/oil ratio <890.

o <890.
.



Fig. 11. Silhouette coefficient with different values of ε.
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precision¼ TP=ðTPþ FPÞ (11)

recall¼ TP=ðTPþ FNÞ (12)

where TP is the number of true positive samples, FP is the number
of false positive samples, and FN is the number of false negative
samples. Table 4 presents the confusionmatrix of the 2ndMLP from
structure No. 4. Taking the water layer in Table 4 as an example, the
TP of the water layer is 761 (the 4th row of the 3rd column in
Table 4), the FP of the water layer is 59 (the sum of the 3rd column
in Table 4 excluding its 4th row), and the FN of thewater layer is 230
Table 3
Performances of MLPs with different structures.

No. Structure Complexity Accura

1st

1 49-128-64-32-10 8533 71.77
2 49-128-64-32-16-10 8717 74.09
3 49-256-128-64-32-10 28,181 79.45
4 49-512-256-128-64-10 99,365 85.15
5 49-1024-512-256-128-10 370,757 85.68
6 49-512-256-128-64-32-10 100,245 83.15
7 49-512-256-128-64-32-16-10 374,565 85.06
8 49-1024-512-256-128-64-10 100,429 85.49
9 49-1024-512-256-128-64-32-10 375,445 88.35

Table 4
Confusion matrix of the 2nd MLP from structure No. 4.

Actual Predicted

DL WL OWL LPGL LPOL

DL 135 0 1 0 0
WL 12 761 11 27 40
OWL 0 1 107 0 0
LPGL 0 0 0 43 0
LPOL 0 0 0 0 91
LPGOL 0 0 0 0 0
WGOL 0 0 0 0 2
WOL 0 46 16 0 1
OGL 0 0 0 0 0
OL 0 12 1 0 2
Precision 0.92 0.93 0.79 0.61 0.67
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(the sum of the 4th row in Table 4 excluding its 3rd column).
From Table 4, it can be seen that the recalls of the water layer

and water/oil layer are relatively low, because many water layer
samples are predicted as low-production gas layer, low-production
oil layer, and water/oil layer samples. Consequently, the precisions
of these three types of samples are affected.

To intuitively show the effectiveness of this method, we exhibit
the well logs, oil testing results and predicted results of well #2, as
shown in Fig. 12. In Fig. 12, the 1st track contains SP, GR and CAL.
The 2nd track contains ILD and LL8. The 3rd track contains DEN, AC
and CNL. The 4th track is the oil testing results. The 5th track is the
predicted results. Layers where the predicted results are inconsis-
tent with the oil testing results are marked by symbol ‘*’. We can
see the oil testing results of most layers have a very good agreement
with its corresponding predicted results. Thus, the effectiveness of
the proposed method is well demonstrated.
4. Discussions

4.1. The necessity of including the well log data of adjacent shale
layers and projecting the dataset into the feature space

Two cases are designed for comparison with the proposed
method:

Case 1: Only the well log data of the oil testing layers are
included in the dataset;
Case 2: The well log data of the oil testing layers and adjacent
shale layers are included in the dataset.

The difference between Case 1 and Case 2 is that the well log
data of adjacent layers are included in Case 2. The difference be-
tween Case 2 and the proposed method is that the dataset is not
projected into the feature space in Case 2.
cy, %

2nd 3rd 4th 5th Mean

74.28 76.07 72.43 73.56 73.62
72.18 66.29 69.61 67.95 70.02
81.52 79.51 80.95 83.11 80.91
87.41 84.84 84.34 85.9 85.53
85.28 85.59 86.34 86.69 85.92
85.31 85.96 85.40 84.27 84.82
81.58 86.94 82.24 81.80 83.52
85.20 85.27 85.68 85.25 85.38
85.24 85.18 86.40 84.68 85.97

Recall

LPOGL WGOL WOL OGL OL

0 0 1 0 0 0.99
2 8 95 0 35 0.77
0 0 2 0 0 0.97
0 0 0 0 0 1.00
0 0 1 0 0 0.99
141 0 0 0 0 1.00
0 175 0 0 0 0.99
0 0 243 0 55 0.67
0 0 0 733 0 1.00
0 0 2 0 390 0.96
0.99 0.96 0.71 1.00 0.81



Fig. 12. The well logs, oil testing results and predicted results of well #2.
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Table 5
Performances of MLP with different structures in Case 1.

No. Structure Complexity Accuracy, %

1st 2nd 3rd 4th 5th Mean

1 7-128-64-32-10 11,690 64.29 60.93 61.34 60.46 63.19 62.04
2 7-128-64-32-16-10 12,058 58.96 59.87 60.43 62.27 61.25 60.56
3 7-256-128-64-32-10 45,610 65.19 67.61 65.82 67.67 68.33 66.92
4 7-512-256-128-64-10 177,226 68.73 70.11 67.98 66.92 70.8 68.91
5 7-1024-512-256-128-10 698,506 72.06 73.03 74.15 73.15 73.09 73.10
6 7-512-256-128-64-32-10 178,986 65.95 71.02 70.8 66.92 67.2 68.38
7 7-512-256-128-64-32-16-10 179,354 65.19 70.8 66.32 68.3 66.76 67.47
8 7-1024-512-256-128-64-10 706,122 71.77 70.39 74.69 71.27 72.49 72.12
9 7-1024-512-256-128-64-32-10 707,882 72.81 74.22 73.18 72.59 71.77 72.91

Table 6
Performances of MLP with different structures in Case 2.

No. Structure Complexity Accuracy, %

1st 2nd 3rd 4th 5th Mean

1 14-128-64-32-10 12,586 73.97 66.82 68.52 69.92 71.15 70.08
2 14-128-64-32-16-10 12,954 71.46 69.71 66.35 64.97 69.77 68.45
3 14-256-128-64-32-10 47,402 71.71 68.17 65.91 69.96 66.54 68.46
4 14-512-256-128-64-10 180,810 81.58 81.17 80.01 79.86 77.54 80.03
5 14-1024-512-256-128-10 705,674 81.64 80.80 80.70 82.42 81.55 81.42
6 14-512-256-128-64-32-10 182,570 78.04 79.64 80.42 80.08 79.51 79.54
7 14-512-256-128-64-32-16-10 182,938 73.81 74.75 76.88 79.32 77.63 76.48
8 14-1024-512-256-128-64-10 713,290 81.17 80.26 81.20 81.30 81.92 81.17
9 14-1024-512-256-128-64-32-10 715,050 78.82 81.05 77.38 79.07 78.95 79.05
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Tables 5 and 6 exhibit the performances of MLPs with different
structures for Case 1 and Case 2. The highest mean accuracy of Case
1 achieved by the MLP with structure No. 5 is 73.10%, and the
highest mean accuracy of Case 2 achieved by the MLP with struc-
ture No. 5 is 81.42% from structure No. 5, which is 8% higher than
that for Case 1. Also, the mean accuracy of the proposed method is
85.53%, which is 4% higher than that of Case 2. Overall, the necessity
of including the well log data of the adjacent shale layers and
projecting the dataset into the feature space is revealed.

4.2. Results comparison with support vector classification

Support vector classification (SVC) is a kind of support vector
machine (SVM), but SVC is used to solve classification problems.
SVC can be classified into two categories, linear SVC and kernel SVC.
The common choices of kernel functions are polynomial function,
radial basis function (RBF) and sigmoid function. We apply these
methods above to compare their predicted results with the results
of the proposed method, as shown in Table 7, where the regulari-
zation parameter used in the SVC methods is 0.1. From Table 7, we
can see that the accuracy of these method is smaller than the ac-
curacy of the proposed method, which is 85.53%.

4.3. Analysis of the reason for the poor prediction results of water
layers and water/oil layers

The recalls of the water layers and water/oil layers are around
70%, which are relatively low compared to the recalls of other types
of layers. Specifically, there are 991 samples of water layers, 95 of
which are predicted as water/oil layers; moreover, there are 361
Table 7
Predicted results of SVC.

SVC Linear Polynomial RBF Sigmoid

Accuracy 63% 69% 80% 30%

579
samples of water/oil layers, 46 of which are predicted as water
layers, and 55 of which are predicted as oil layers.

The possible reason for this phenomenon is the scale difference
between the well log data and oil testing results. The depth interval
of well log data in the study area is 0.1 m, whereas the oil testing
results are an overall evaluation of a whole layer, which is usually
several meters thick. For instance, the oil testing results in well #2
indicate that a water/oil layer has an oil production of 0.5 m3 per
day, a water production of 3.07 m3 per day, and is 3.2 m thick,
which means that this layer contains 32 pieces of well log data.
Therefore, the well log data below the water/oil interface are very
likely to be predicted as water layers, while the well log data above
the water/oil interface are very likely to be predicted as oil layers.

4.4. Problems to be optimized

The determination of neighborhood parameters is very essential
for DBSCAN algorithm. This paper offers a general but not optimal
procedure to calculate these parameters. There are also infinite
choices for the number of layers and neurons in an MLP. Perfect
balance between accuracy and efficiency is still needed to be found.

Another problem is the category imbalance in the training
dataset. The water layer samples and gas/oil layer samples take up
half of the whole sample numbers, which may affect the predicted
results. Oversampling the minority categories or undersampling
the majority categories is a feasible way to adjust the imbalance.

5. Conclusions

A large amount of core analysis shows that the causes for those
LRLC pay zones include complex distribution of formation water
salinity, high irreducible water saturation due to micropores, and
high shale volume. A machine learning method for LRLC pay zones
identification and classification is proposed. After the result anal-
ysis and discussion, several conclusions are drawn: The proposed
machine learning methods can effectively learn the relation
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between conventional well logging data and oil testing results. This
method is applicable when the causes are complicated; Consid-
ering the complexity and accuracy, the optimal structure of theMLP
is ‘49-512-256-128-64-10’ with a mean accuracy of 85.53%; By
comparing the results of Case 1 method to the results of Case 2
method, we can see there is a great accuracy improvement after
adding the data of adjacent shale layers into the dataset; By
comparing the results of proposed method to the results of Case 2
method, we can see the necessity of projecting the dataset into
feature space.
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Nomenclature

AC Acoustic logs
ANN Artificial neural network
CE Cross entropy
CNL Compensated neutron porosity logs
CNN Convolutional neural network
DBSCAN Density-based spatial clustering algorithm with noise
DEN Density logs
DL Dry layer
FN False negative
FP False positive
GOL Gas/oil layer
GR Gamma ray logs
ILD Deep investigation induction logs
LL8 Laterolog 8 logs
LPGL Low-production gas layer
LPGOL Low-production gas/oil layer
LPOL Low-production oil layer
LRLC Low-resistivity-low-contrast
LSTM Long short-term memory
MICP Mercury injection capillary pressure
MLP Multi-layer perceptron
MSE Mean squared error
OL Oil layer
OWL Oily water layer
RBF Radial basis function
RNN Recurrent neural network
SP Spontaneous potential logs
SVC Support vector classification
SVM Support vector machine
TP True positive
WL Water layer
WGOL Water/gas/oil layer
WOL water/oil layer
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