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ABSTRACT

Pyrolysis experiments were conducted on lacustrine organic-rich shale from Cangdong Sag in Bohai Bay
Basin, China, to investigate the impact of hydrocarbon generation on shale pore structure evolution.
Thermal evolution is found to control the transformation of organic matter, hydrocarbon products
characteristics, and pore structure changes. Furthermore, pore volume and specific surface area increase
with increasing maturity. In low-mature stage, the retained oil content begins to increase, pore volumes
show slight changes, and primary pores are occluded by the generated crude oil of high molecular weight
and density. In the oil-window stage, the retained oil content rapidly increases and reaches maximum,
and pore volumes gradually increase with increasing thermal maturity. At high mature stage, the
retained oil content begins to decrease, and the pore volume increases considerably owing to the
expulsion of liquid hydrocarbon. In over mature stage, natural gas content significantly increases and
kerogen transforms to asphalt. Numerous organic pores are formed and the pore size gradually increases,
resulting from the connection of organic pores caused the increasing thermal stress. This study lays a
foundation for understanding variation of hydrocarbon products during the thermal evolution of
lacustrine shales and its relationship with the evolution of shale reservoirs.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

vascular land plants. Furthermore, shale generally exhibits
immense capillary pressure (Hutton, 1987; Schlomer and Krooss,

Shale is defined as a sedimentary rock that is layered and fine-
grained (>50% of particles, grain size <62.5 um) (Milliken, 2014;
Lazar et al.,, 2015); thus, it is nearly interchangeable with the term
“mudrock” (Merriman et al., 2003; Ilgen et al., 2017; Liu et al.,
2020). Shale usually contains abundant organic matter sourced
from algae (e.g., planktonic algae and phytoplankton), bacteria, or
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1997), acting as a source rock or a cap rock (Hunt, 1996; Aplin
and Macquaker, 2011). Commercial production from shale reser-
voirs around the world has justified their prospects as effective
unconventional hydrocarbon reservoirs (Jarvie, 2012a, 2012b; Yang
et al.,, 2019; Zou et al., 2019; Nie et al., 2020; Solarin et al., 2020).
Various types of pores, including interparticle and intraparticle
pores as well as organic pores, constitute the main storage space for
shale oil and gas, with pore sizes as small as nanoscale (Loucks
et al., 2009, 2012; Slatt and O'Brien, 2011; Ougier-Simonin et al.,
2016). Considering the complex pore systems in shale, various
techniques have been developed to evaluate shale pore structure
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(Chalmers et al., 2009; Loucks et al. 2009, 2012; Ougier-Simonin
et al, 2016; Lai et al, 2018). Visualization methods, including
scanning electron microscopy (Chalmers et al., 2012), transmission
electron microscopy (Wirth, 2009), focused ion beam—scanning
electron microscopy (Goral et al., 2019), and nano-computed to-
mography (Sun et al., 2018), are used to examine the geometric
morphology and connectivity of shale pores. Pore characteristics
are quantified by other techniques, including gas adsorption (Wei
et al.,, 2016), helium pycnometry (Yang et al., 2010), mercury in-
jection (Kuila and Prasad, 2013), small-angle/ultrasmall-angle
neutron scattering (Clarkson et al., 2013), and nuclear magnetic
resonance (Xu et al., 2015).

Pore evolution during the burial process or during thermal
maturation is an important aspect for predicting the occurrence of
effective reservoirs (Athy, 1930; Selley, 1978; McBride, 1989;
Chandra et al., 2021). In the case of conventional reservoirs, pore
structure evolution is mainly affected by diagenesis (Selley, 1978;
Land et al., 1987; Teillet et al., 2019). The pore structure evolution of
a shale reservoir can be attributed to the coupling of diagenesis and
hydrocarbon generation (Aplin and Macquaker, 2011; Milliken and
Curtis, 2016; Milliken et al., 2019), as influenced by mineral trans-
formation (Deng et al., 2021), hydrocarbon generation and migra-
tion (Tang et al., 2015a), expansion and shrinkage of kerogen
(Alcantar-Lopez, 2016), overpressure (Li et al, 2019), and
organic—inorganic interactions (Seewald, 2003), among other fac-
tors. Hydrocarbon generation, which is primarily a function of
thermal maturation, plays an important role in the development
and evolution of pores in shales (Camp, 2014; Han et al., 2017; Tang
et al,, 2015b; Kartz and Arango, 2018). Previous studies have pro-
vided insights into the impact of thermal maturation on pore
structure changes (Mastalerz et al., 2013; Chen and Xiao, 2014; Tang
et al., 2015a; Zargari et al., 2015; Ko et al., 2016; Wu et al., 2019).

However, shale pore evolution remains a matter of little
consensus because of among-shale inconsistencies in the rela-
tionship between pore changes and thermal maturity. Modica and
Lapierre (2012) suggested that pore evolution in shales is governed
mainly by kerogen transformation, with a likely limited contribu-
tion from mineral matrix pores. Ko et al. (2017) considered depo-
sitional and diagenetic processes as important factors governing
pore changes in lacustrine mudstones of the Yanchang Formation.
The formation of organic pores is known to be closely associated
with hydrocarbon generation, as confirmed by studies of artificial
maturation and natural thermal evolution (Modica and Lapierre,
2012; Kuchinskiy, 2013; Mastalerz et al., 2013; Chen and Xiao,
2014; Wu et al,, 2019; Wang et al., 2020). However, it remains
very unclear about thermal maturity relevance to the initial pres-
ence of organic pores (Reed et al., 2015; Jennings and Antia, 2013;
Han et al., 2017). Moreover, there are discrepancies in organic pore
abundance and size during thermal maturation (Curtis et al., 2012;
Reed et al., 2012; Mastalerz et al., 2013; Zargari et al., 2015; Han
et al., 2017). The occlusion of organic pores and mineral-matrix
pores by migrated oil or bitumen has been reported in many pre-
vious studies (Loucks et al., 2012; Loucks and Reed, 2014; Lohr et al.,
2015; Zargari et al., 2015; Kartz and Arango, 2018). Because changes
in the abundance, size, and shape of pores are closely related to
hydrocarbon generation in shales, the impact of hydrocarbon
generation on pore structure evolution during thermal maturation
must be investigated further. Other governing factors, including
organic richness (Milliken et al., 2013), organic matter types
(Cardott et al., 2015; Guo et al., 2020), mineral compositions (inan
et al., 2018), and rock fabric (Liu et al., 2019), are known to locally
control pore structure changes in shale. Therefore, isolating these
nonthermal maturity factors is essential for a clear discussion of the
impact of thermal maturity on pore structure.

460

Petroleum Science 19 (2022) 459471

In this study, the pyrolysis technique was applied to study
lacustrine shale to minimize the influence of nonthermal maturity
factors. The experimental products, including retained hydrocar-
bon from the shale residues and expelled hydrocarbon, were
quantified. Furthermore, the pore structures corresponding to
various thermal maturities were analyzed to determine the impact
of hydrocarbon generation on pore structure evolution during
thermal maturation. The results provide important insights
regarding two factors of great importance for exploration and
efficient development of shale oil plays: pore spaces and reservoir
quality assessment.

2. Geological background

The Cangdong Sag, a Cenozoic rifted lacustrine basin, is a sec-
ondary structural unit of the Huanghua Depression in Bohai Bay
Basin, China. The second member of the Paleogene Kongdian For-
mation (Ek;) in Cangdong Sag was deposited in a deep to semi-deep
lacustrine environment during the early stages of the Paleogene.
The lithology consists of siltstone, sandstone, and argillaceous
dolostone, clastic mudstone, oil shale, etc. The Ek; shale possesses
high organic matter content, predominantly organic matter types I
and II; with a small amount of types I, and III. Vitrinite reflectance
(Ro) values range from 0.4% to 1.3%, and the Ek, shale generates
mainly liquid oil (Zhao et al, 2020). Recent exploration has
demonstrated the considerable potential of the Ek; shale oil, and
industrial oil production exceeds 20 t/d at several local wells,
including wells GD6x1 and KN9 (Zhao et al. 2018a, 2018b, 2019,
2020, 2018b).

In this study, organic-rich shale samples were collected from the
Ek; shale at well G995 (Fig. 1). Pyrolysis experiments were per-
formed on shale samples with high organic matter abundance
(total organic carbon, TOC: 7.87 wt%) and low maturity (burial
depth: 2913.76 m; Ro: 0.55%).

3. Experimental procedures
3.1. Pyrolysis experiments

Pyrolysis has been an effective technique for understanding
pore development mechanisms during thermal maturation (Wu
et al., 2019). Time and temperature are two critical factors that
impact the thermal maturity of shale, and a given experimental
temperature or duration may result in a similar thermal maturity.
Therefore, source rocks at various evolution stages can be obtained
by controlling the temperature and time, and the characteristics of
a given sample at various stages of evolution can be explored.

The experimental boundary conditions of the pyrolysis experi-
ment in this study were determined to realize the dynamic process
of hydrocarbon generation and expulsion according to the previ-
ously reported formation pressure and temperature characteristics
of the Ek, shale in the Cangdong Sag (Dong et al., 2015). The
experimental temperatures were set to 300, 325, 350, 375, 400, and
500 °C to distinguish the various evolutionary stages of hydrocar-
bon generation.

Samples were considered to be in the low mature stage when
the simulated temperature was less than 325 °C. The mature stage
(i.e. the main “oil-window”) corresponds to the temperature range
of 325—375 °C; the high mature stage (i.e. the condensate and wet
gas phase) corresponds to the temperature range of 375—400 °C;
and the high mature to over mature stage (i.e. the dry gas phase)
corresponds to the temperature range of 400—500 °C. The experi-
mental hydrostatic pressures were established based on hypo-
thetical burial depths, and the formation and lithostatic pressures
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Fig. 1. Location of the study area and sedimentary facies: (a) and (b) location of the
Cangdong Sag in Bohai Bay Basin, China, and (c) the sedimentary facies of the Ek, and
the location of the sampling well (modified from Pu et al. (2016)).

were determined based on the actual pressure conditions of the Ek,
shale (Dong et al., 2015). The formation pressures, exerted by
injecting high-pressure water, were 1.2—1.4 times the hydrostatic
pressure. Lithostatic pressures and confining pressures were exer-
ted using oil cylinders. For the pyrolysis experiments, six small core
columns (diameter 38 mm, height 50 mm) were obtained from the
original core sample.

Pyrolysis experiments were conducted under high-temperature,
high-pressure conditions. The heating rate was set at 1 °C/min.
After the specified temperature was achieved, that temperature
was maintained for 48 h to ensure that the entire system attained a
constant temperature. Pore spaces in the pyrolysis experiment
were saturated with deionized water, and the overlying static rock
pressure and pore fluid pressure were listed in Table 1. A schematic
of the experiment is shown in Fig. 2. Hydrocarbon products
(expelled hydrocarbons, retained hydrocarbons, and gaseous hy-
drocarbons) and sample residues were obtained through the py-
rolysis experiments.
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3.2. Determination of experimental products

The expelled gaseous mixture was analyzed using a 3800 Gas
Chromatograph to determine the relative H,, O,, Ny, and CO, con-
tents as well as gaseous hydrocarbon contents including CxHox2,
where 2 < x < 5). The volume percentage of each gas component
was transformed into an amount in grams according to the ideal gas
law (Spigolon et al.,, 2015). Approximately 50 g of the original
sample and solid residues were ground and extracted using the
Soxhlet extraction method with dichloromethane (DCM) as the
solvent. The residue substance after removal of solvents was
considered as the retained hydrocarbon, also known as the
extractible organic matter (EOM). The total amount of retained oil
was calculated as the product of the total solid residue weight and
the weight ratio of the extracted retained hydrocarbon and the
extracted residue. In addition to the liquid hydrocarbon collected
from the oil collector, some liquid hydrocarbon remained on the
autoclave wall and pipe; these were irrigated by dichloromethane
after the system was cooled to room temperature, and both were
included in measurements of expelled liquid hydrocarbon.

TOC was determined using a LECO CS-200 carbon/sulfur
analyzer. Shale powder (approximately 100 mg, 60—80 mesh) was
initially digested with dilute hydrochloric acid (HCI:H,O0 v/v ratio of
1:9) to eliminate any inorganic carbon. Subsequently, each sample
was dried and introduced into the combustion oven to measure
TOC. About 50 mg of the powdered sample was used by a Rock-Eval
6 device to determine various pyrolysis parameters, including free
hydrocarbon (S1), thermal cracking hydrocarbon (S;), peak tem-
perature (Tpax), and hydrogen index (HI). R, was measured under
an oil-immersed lens through a light microscope equipped with an
MSP200 microphotometer as per the SY/T 5124 standard (2012).
The nitrogen adsorption test was performed using a JWBK-200C
specific surface area and pore-size analyzer. For the mercury
pressure test, a Micrometrics Autopore 9520 mercury porosimeter
was used; details of the experimental method were described by
Guan et al. (2020).

Asphaltenes were precipitated from the obtained extracts and
expelled oil using n-hexane. Subsequently, the aliphatic, aromatic,
and resin fractions were separated using a chromatographic col-
umn and various irrigating agents: n-hexane, a 2:1 (v/v) mixture of
dichloromethane and n-hexane, and a 1:1 (v/v) mixture of ethanol
and dichloromethane, respectively. The aliphatic components were
analyzed using an Agilent 7890 gas chromatograph. The initial
temperature was set at 60 °C for 2 min; the sample was then heated
at a rate of 10 °C/min up to 160 °C and then at a rate of at 3 °C/min
up to 310 °C. The sample was then maintained at 310 °C for 30 min.
Helium was used as the carrier gas; the flow rate was 1 mL/min, the
ionization energy was 70 eV, and the detection mode was full-scan/
multi-ion detection.

4. Results
4.1. Organic geochemistry

The original samples were low mature samples with high
abundance of organic matter. Sample maturity increased with
increasing temperature. When the temperature was lower than
325 °C (R, < 0.60%), the maturity was low and the TOC decreased
slightly. When the temperature was in the range of 325—375 °C
(0.60 < R, < 1.21%), the sample entered the mature stage, and the
TOC decreased by 52.6% compared with that of the original sample.
When the temperature was in the range of 375—400 °C
(1.21% < R, < 1.42%), the sample was in the high mature stage, and
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Table 1

Boundary conditions of pyrolysis experiments.
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Temperature, °C Sample Depth, m Formation pressure, MPa Lithostatic pressure, MPa
_ 0s 2914 35 71
300 PY-300 2938 35 71
325 PY-325 3209 40 79
350 PY-350 3713 47 94
375 PY-375 4023 53 106
400 PY-400 4231 58 116
500 PY-500 5669 70 141
Note: OS = original sample; sample PY number refers to the simulated temperature of the sample in °C.
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Fig. 2. Schematic of the pyrolysis device: 1. Hydraulic system; 2. Temperature transmitter; 3. Oil cylinder A; 4. Oil cylinder B; 5. Sample cell; 6. Autoclave; 7. Pipe splice; 8. Pressure

transmitter; 9. High-pressure pneumatic valve; 10. Two-position, three-way solenoid valves; 11. High-pressure air bottle; 12. Decompression valve; 13. Oil collector; 14. Cold trap;
15. Pressure gage; 16. Magnetic valve; 17. Gas collector; 18. Vacuum pump; 19. Piston container; 20. Air compression system; 21. High-pressure pump.
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Fig. 3. Organic geochemical characteristics of the Ek, shale samples.

Organic geochemical characteristics of the Ek, shale samples.

Sample code Ro, % TOC, % Sy, mg/g Sy, mg/g Tmax °C HI, mg/g OSI. mg/g EOM, % Stages of hydrocarbon generation
oS 0.55 7.87 1.28 60.94 446 805 16.26 0.04 Early oil generation

PY-300 0.60 7.89 1.61 59.52 448 824 20.41 0.05 Early oil generation

PY-325 0.75 7.74 3.46 56.89 448 780 44.70 0.12 Oil generation

PY-350 1.00 6.39 5.04 18.36 430 266 78.87 0.39 Peak oil

PY-375 1.21 3.73 7.78 10.27 435 270 208.58 0.22 Condensate and wet gas

PY-400 1.42 241 1.34 1.11 - 34 55.60 0.05 Condensate and wet gas

PY-500 2.50 3.30 0.83 0.40 - 11 25.15 0.01 Dry gas
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TOC decreased by a further 16.8%. When the temperature was in the
range of 400—500 °C (1.42% < R, < 2.50%), the sample entered the
high mature to over mature stage. The TOC of the sample slightly
increased at 500 °C (Fig. 3, Table 2).

The S1 and oil saturation index (OSI, equivalent to S;/TOC x 100
(Jarvie, 2012b)) of the shale samples initially increased and sub-
sequently decreased with the increasing maturity. S; and OSI
increased continuously from the low mature to the high mature
stages (T < 375 °C), reaching their maximum at 375 °C. Subse-
quently, it gradually decreased during the high mature to over
mature stages (375 °C < T < 500 °C). The S, and HI of source rocks
decreased with the increasing maturity (Table 2, Fig. 3).

4.2. Hydrocarbon products

4.2.1. Total hydrocarbons generated, retained, and expelled

The amount of total hydrocarbons generated, liquid hydrocar-
bons generated, expelled liquid hydrocarbons, and retained hy-
drocarbons initially increased and subsequently decreased as
experimental temperature and pressure increased. In contrast, the
amount of gas generated increased monotonically with increasing
experimental temperature and pressure. In low mature stage
(T <325 °C, Ry < 0.75%), the amounts of hydrocarbons generated,
expelled, and retained were low. In mature stage
(325°C < T<375°C, 0.75% < Ry < 1.21%), a large amount of liquid
hydrocarbons was generated at 350 °C (corresponding to an R, of
1.00%). In addition, the amounts of total hydrocarbons generated,
liquid hydrocarbons generated, and retained hydrocarbons reached
their peaks in this stage. Compared with the amount of natural gas
released in the low mature stage, natural gas increased relatively
rapidly in the mature stage, but liquid hydrocarbons still pre-
dominated over gas in this stage. At temperatures lower than
350 °C, fewer liquid hydrocarbons were expelled from the shale
samples, and the majority of hydrocarbon products remained in the
shale samples. The retained hydrocarbons constituted the main
part of the total hydrocarbons generated.

As the temperature continued to increase, the amount of hy-
drocarbons expelled increased, whereas the amounts of total hy-
drocarbons generated, liquid hydrocarbons generated, and retained
hydrocarbons began to decrease. In high mature stage
(375 °C < T < 400 °C, 1.21% < Ry < 1.42%), the amounts of total
hydrocarbons generated, liquid hydrocarbons generated, and
retained hydrocarbons decreased. Furthermore, the amount of
natural gas generated and liquid hydrocarbons expelled increased.
The amount of expelled liquid hydrocarbons reached its maximum
at 400 °C and subsequently decreased. Natural gas predominated
during the over mature stage (400 °C < T < 500 °C,
1.42% < Ry < 2.50%), during which natural gas production increased
rapidly. The amounts of total hydrocarbons, liquid hydrocarbons
generated, and retained hydrocarbons decreased in this stage, and
the amounts of liquid hydrocarbons generated and retained
decreased considerably. Over-maturity not only caused the
decomposition of kerogen and retained liquid hydrocarbons but

Table 3
Hydrocarbon products from the pyrolysis experiments of the Ek, shale samples.
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also resulted in natural gas generation by consuming kerogen and
retained hydrocarbons (Table 3).

4.2.2. Aliphatic hydrocarbon molecular composition of the retained
and expelled hydrocarbons

Table 4 and Fig. 4 present the molecular composition charac-
teristics of the retained and expelled hydrocarbons at various
evolutionary stages. The n-alkane distribution of the expelled hy-
drocarbons ranged from nCy4 to nCsy, and the main peak in carbon
number was observed to range from nCy; to nCy;. The n-alkane
distribution of the retained hydrocarbons ranged from nCq4 to nCsg,
and the main peak in carbon number was observed to range from
nCyg to nCy3. During each stage of thermal evolution, the highest
carbon number and the main peak carbon number of the expelled
hydrocarbons were lower than those of the corresponding retained
hydrocarbons (Table 4, Fig. 4). Aliphatic hydrocarbons with small
molecular weights were preferentially expelled from the source
rocks. The ratio of light to heavy normal alkanes (> nC3/>nC3),
odd—even predominance (OEP), the ratio of pristane to nCy7 (Pr/
nCy7), and the ratio of phytane to nC;g (Ph/nC;g) indicate that the
maturities of the retained and expelled oil changed with increasing
experimental temperature (Table 4, Fig. 4).

Comparative results indicate that the molecular compositions of
the aliphatic hydrocarbons in the expelled and retained hydrocar-
bons change regularly but differently during thermal evolution. In
low mature stage (T < 325 °C, R, < 0.75%), the hydrocarbon prod-
ucts were mainly large-molecule components accompanied by a
small quantity of small-molecule components. Small molecule
components with high mobility tended to be expelled, but large-
molecule hydrocarbons were mostly retained in the samples,
resulting in considerably high $"nC3/3"nCJ> values in expelled
hydrocarbons and low $"nCz1/3 nC3; values in retained hydrocar-
bons. In this stage, the OEP values of the expelled hydrocarbons and
retained hydrocarbons were 1.29—1.15 and 1.43—1.29, respectively.
Both these values were greater than 1, indicating an obvious odd-
carbon preference. The Pr and Ph contents were high, and the
values of Pr/nCy7; and Ph/nCyg were large. All these geochemical
indicators reflect the low maturity of the crude oil in this stage.

During the high mature to over mature stages
(400 °C < T<500°C,1.42% < Ry < 2.5%), the hydrocarbon products
were mainly dry gas in the form of expelled hydrocarbons. The
biomarkers from liquid hydrocarbons exhibited little significance as
indicators of thermal maturity and hydrocarbon generation in this
stage.

4.3. Pore structure characteristics

4.3.1. Ny adsorption curves

The adsorption branches of the original and experimental
samples transform gradually from type III to type II in this study,
according to the latest classification standard of IUPAC (Thommes
et al.,, 2015) (Fig. 5). Type III isotherms usually show an obvious
uptake at very low P/Pg and a steep upward trend when P/Py is close

Sample Expelled gas HC (mgHC/ Expelled liquid HC (mgHC/

Retained HC (mgHC/

Liquid HC generated (mgHC/ Total HC generated (mgHC/

gRock) gRock) gRock) gRock) gRock)
PY-300 0.09 0.43 5.18 5.60 5.70
PY-325 0.38 1.10 12.05 13.16 13.54
PY-350 2.32 3.01 39.43 42.44 44.75
PY-375 4.12 16.51 22.17 38.68 42.80
PY-400 9.60 21.78 6.48 28.26 37.85
PY-500 21.11 6.03 0.49 6.53 27.64
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Table 4

Petroleum Science 19 (2022) 459—471

Aliphatic hydrocarbon molecular composition characteristics of the expelled and retained hydrocarbons.

Expelled hydrocarbon

Retained hydrocarbon

Temperature, °C 300 325 350 375 400
Maximum Peak Ci7 Ci7 Co1 Cio Ci7

S nCai/nCh 4.46 6.09 1.09 1.46 3.95
OEP 1.29 1.15 1.07 1.02 1.00
Pr/nCy7 1.05 0.92 0.43 0.13 0.06
Ph/nCyg 1.58 0.89 0.48 0.10 0.05

500 300 325 350 375 400 500
Cx Co3 Ca3 Co3 C Cao Ca2

1.04 0.47 0.51 0.51 0.61 113 0.74
1.04 143 1.29 1.20 1.02 1.00 1.01
0.17 1.10 0.95 0.27 0.11 0.04 0.08
0.12 1.66 0.87 0.29 0.08 0.03 0.14

OEP (odd—even predominance): (nCa; + 6 x nCa3 + nCas)/(4 x nCyy + 4 x nCay).

to 1. In contrast, type Il isotherms lack a sharp knee at very low P/Pg
and retain the finite adsorbed amount at the saturation pressure (P/
Py = 1). The maximum adsorption volume of each shale sample
increased continuously with increasing temperature, reaching a
maximum at 400 °C and then decreasing with the further tem-
perature increase. Hysteresis loops were observed for all shale
samples. The amplitude of the hysteresis loops of the N, adsorption
and desorption curves increased with increasing temperature. The
hysteresis loop was the largest at 400 °C, and the shape of the loop
gradually changed from Type Hy4 to Type Hs and then to a combi-
nation of Types H,b and Hs.

Different types of pores resulted in loops of different shapes. The
formation of an Hyb hysteresis loop is related to pore blockage,
usually corresponding to ink-bottle-shaped pores. The formation of
an Hs hysteresis loop corresponds to slit pores with a tapered
structure, while the formation of an H4 type hysteresis loop is
caused by slit pores with a parallel plate structure (Thommes et al.,
2015). At low mature stage (T < 325 °C, R, < 0.75%), the micropores
in the shale primarily exhibited a parallel plate structure or a
tapered structure. In mature stage (325 °C < T < 375 °C,
0.75% < R, < 1.21%), the pores predominantly exhibited a tapered
structure. In high mature to over mature stages (375 °C < T,
1.21% < R, < 2.5%), ink-bottle-shaped pores formed. Thus, with
increasing maturity, the micropores gradually changed from a
parallel plate structure or tapered structure to an ink-bottle-shaped
structure (Fig. 5).

4.3.2. Mercury intrusion curves

The mercury intrusion curves indicate two-stage distributions
for all samples, except for sample PY-350. In the low mature stage
(T < 325 °C, Ry < 0.75%), the curves of the samples rise rapidly at
saturation values below 40% and then increased slowly. At 350 °C
(corresponding to R, = 1.00%), the shale sample's mercury intrusion
curve rises at a relatively constant rate. In the high mature to over
mature stages (375 °C < T < 500 °C, 1.21% < R, < 2.50%), the curve
rises sharply at saturation values below 10%; it subsequently rises
slowly (Fig. 6). As the degree of thermal maturity increased, the
mercury withdrawal efficiency initially increased and subsequently
decreased. Sample PY-375 exhibits the highest mercury withdrawal
efficiency (77.59%). The decrease in the mercury withdrawal effi-
ciency of samples such as PY-375, PY-400, and PY-500 may be
related to the thermal evolution that increased the number of ink-
bottle-shaped pores, changing the wettability of the surface.
Indeed, the presence of fine-pore-neck and ink-bottle-shaped pores
made it difficult for all the mercury to be withdrawn from the
porous media.

4.3.3. Pore size distribution

The pore (throat) size distribution (from 2 nm to 40 um) in shale
at various evolutionary stages was determined based on the pore
size distributions of mesopores (2—50 nm) and macropores
(>50 nm) at the evolutionary stages derived from the N, adsorption
and mercury injection tests. Pores with sizes smaller than 50 nm
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were detected based on the results of the N, adsorption test,
whereas pores with sizes of 50 nm—400 um were detected based
on the results of the mercury intrusion test. Thus, 50 nm was the
common point between these two techniques (Fig. 7). Table 5
presents the pore structure parameters obtained from the orig-
inal sample and pyrolytic samples, including the specific surface
area and pore volume. The specific surface areas and pore volumes
determined by the N, adsorption test are 1.898—8.114 m?/g and
0.007—0.025 cm?>/g, respectively, whereas those determined via the
mercury  intrusion test are 6.359—19.660 m?%/g and
0.090—0.277 cm>/g, respectively.

Except for sample PY-350, which exhibits a multipeak distri-
bution with two main peaks at 130—300 nm and 50—90 pm, all
samples exhibits a bimodal distribution. For low-maturity samples,
including samples OS, PY-300, and PY-325, the pore size distribu-
tion shows a small peak at <50 nm and a large peak at approxi-
mately 50—100 nm. As maturity increases, the pore size
distributions of samples PY-375, PY-400, and PY-500 shows a small
peak at approximately 10—20 nm and a sharp peak at hundreds of
nanometers. While the pore diameter corresponding to the peak
decreased in the mesopore range. During thermal evolution, the
number of pores of small diameter (dozens of nanometers)
increased. As for large pores, the pore diameter corresponding to
the peak position gradually increased with increasing maturity.

5. Discussion
5.1. Evolution of pore structure characteristics

The specific surface areas and pore volumes observed in the
study are the results of hydrocarbon generation and expulsion,
without consideration of the pores occupied by retained oil or
extractible organic matter, perhaps resulting in the underestima-
tion of the pore volume and specific surface area of the Ek; shale.
Integrating the variation in pore structure parameters with the
variation in retained oil across a range of thermal maturities would
provide a clearer view of the impact of pore structure variation
during thermal maturation. The specific surface areas and pore
volumes of the samples increased with increasing thermal maturity
(Fig. 8), whereas retained oil first increased and then decreased
with increasing thermal maturity. Retained oil reached its
maximum at 1.00% R,, indicating not only that increasing thermal
maturity brought about the increase in pore volume and specific
surface area, but also that the occlusion of original pores or newly
generated pores by the generated liquid hydrocarbon caused an
underestimation of pore volume and specific area for R, values
below 1.00%. The pore volume and specific surface area of the PY-
500 sample decreased slightly at R, values above 2.00%. With the
expulsion of natural gas, the exerted confining pressure may have
caused the collapse of some microscopic pores, slightly decreasing
the overall pore volume and specific surface area. The increases in
specific surface area and pore volume with increasing temperature
were considerably greater in magnitude when based on the
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Fig. 4. N-alkane and isoprenoid distributions: (a) retained hydrocarbons, and (b) expelled hydrocarbons generated during the pyrolysis experiments.
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Fig. 7. Pore (throat) diameter distribution: (a) shale samples from the original shale, and (b—h) shale samples after the pyrolysis experiments. The boundary between micropores
and mesopores is defined by dashed lines at a diameter of 50 nm.

Table 5

Pore structure parameters from the original shale sample (OS) and pyrolysis samples (PY).

Sample ID N, adsorption Mercury intrusion
Specific surface area, m?/g Pore volume, cm?/g Specific surface area, m?/g Pore volume, cm?/g
oS 1.898 0.007 6.359 0.090
PY-300 1.907 0.009 7.974 0.112
PY-325 2.409 0.011 5.739 0.081
PY-350 2.874 0.012 8.587 0.121
PY-375 5.040 0.017 9.488 0.134
PY-400 8.114 0.025 19.660 0.277
PY-500 7.691 0.020 18.721 0.264
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Fig. 8. Correlations between thermal maturity and pore structure parameters based on samples from the original shale as well as the shale samples after pyrolysis experiments: (a)

SSA vs. R, and (b) TPV vs. R,.

mercury injection test than when based on the nitrogen adsorption
test. This disparity was due to the wider pore-size detection range

sample.
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of the former, allowing it to identify more pores in the same shale
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The shale pore development characteristics were affected by the
shale microstructure. Organic pores in shales are mostly smaller
than 200 nm in diameter; however, the pores related to the mineral
matrix are mostly larger (Chen et al., 2016; Katz and Arango, 2018).
The characteristics of pore development with maturation varied
with pore size. At R, values below 1.00%, retained oil content un-
derwent a clear increase. Meanwhile, increasing maturity did not
considerably affect the pore-size-dependent changes in pore dis-
tribution, probably because liquid hydrocarbons were retained in
the pores during the “oil-window” stage, causing pore occlusion
(Wei et al., 2014). At R, values above 1.00%, retained oil content
gradually decreased to zero, with gaseous hydrocarbons beginning
to predominate. Pore volumes for pore diameters of <10 nm,
10—50 nm, and 50—200 nm first increased and then decreased, but
variation was slight. In contrast, pore volumes for pore diameters
>200 nm increased monotonically. The expulsion of gaseous hy-
drocarbons exposed more pores, resulting in a higher effective pore
volume. The increasing level of thermal maturity brought about
new pore generation, especially for organic pores, as well as pore
connectivity, as observed in the Longmaxi Shale (Huang et al,,
2020). The process of organic pore formation and evolution has
been previously outlined and can be divided into four periods: 1)
scattered small spotted spherical pore formation, 2) gradual pore
growth with incipient pore—pore contact, 3) large ellipsoidal pore
formation due to interconnectivity, and 4) rapid pore expansion
producing pores with “pit” structure (Huang et al., 2020).

5.2. Impact of hydrocarbon products on pore evolution

Different types of hydrocarbons were generated at different
stages of thermal evolution, and the pore structure characteristics
of the shale samples varied accordingly.

The pore structure characteristics of pores with different pore
diameter varied with maturity. Pores of diameter >50 nm pre-
dominated in the shale pore system and were the main contributor
to pore volume (Fig. 10). In the low mature stage (T < 325 °C,
R, < 0.75%), TOC did not change considerably, and the amount of
liquid hydrocarbons generated was small. The majority of crude oil
components of high molecular weight and density were retained in
the shale samples. The C31/C3; value was small, and the pore vol-
umes of various types of pores decreased slightly, indicating oc-
clusion of the primary pores in the low mature stage by crude oil
components of high molecular weight and density that were
retained in the shale (Han et al., 2017).

In mature stage (325 °C < T < 350 °C, 0.75% < R, < 1.00%), the
TOC of the sample decreased considerably, and the low-molecular-
weight hydrocarbon content increased. The C31/C3; value increased,
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and the pore volumes of those pores (<100 nm) not occupied by
liquid hydrocarbons did not change considerably. As for peak oil
generation, retained oil content reached its maximum, and organic
pores were mostly occluded by crude oil or bitumen. Furthermore,
the volume of inorganic pores of diameter above 200 nm increased,
probably because of the organic acid-generated dissolution pores in
minerals such as feldspar and calcite (Yuan et al., 2013). Dissolution
pores were observed in the Ek; shale with pore sizes ranging from
several hundred nm to several um (Fig. 9).

In the highly mature stage (375 °C < T < 400 °C,
1.21% < R, < 1.42%), TOC continued to decrease as maturity
increased, with retained oil content decreasing. Furthermore, the
liquid hydrocarbons originally trapped in the shale decomposed
into gaseous phases. The low-molecular-weight hydrocarbon con-
tent increased, and the mobility of hydrocarbon products improved
considerably, resulting in a constant increase in the quantity of
expelled hydrocarbons. Thus, for each pore size class, the number of
pores increased continuously due to the expulsion of hydrocarbons
and additional pore formation. The increase in the number of pores
of diameter beyond 50 nm was particularly significant, and the total
pore volume increased to its maximum at this stage.

When R, exceeds 2.00%, the shale entered over mature stage,
mainly generating gaseous hydrocarbons, and the retained oil
content is close to 0. TOC increased slightly because of poly-
condensation reactions that occurred after the thermal degradation
of kerogen. Kerogen transforms to asphalt and natural gas content
significantly increases, generating nanoscale organic pores. Addi-
tionally, some minerals decomposed at high temperatures to form
new inorganic pores. Nonetheless, the total pore volume of the
shale decreased. Although pore volumes for pore diameters beyond
200 nm increased, pore volumes decreased for pore diameters in
the ranges of <10 nm, 10—50 nm, and 50—200 nm. As the degree of
maturity further increased and the sample reached the over mature
stage, small pores connected to form larger pores and even pit-
structure pores. However, the total pore volume decreased due to
external pressure and the expulsion of gaseous hydrocarbons
(Milliken and Curtis, 2016) (Fig. 10).

6. Conclusions

In this study, the pore structure evolution of lacustrine organic-
rich shale was investigated via pyrolysis experiments, allowing the
following conclusions to be drawn.

The generation and expulsion of hydrocarbons caused changes
in pore structure during thermal evolution. Organic pores were
generated by the thermal decomposition of organic matter. In
addition, organic acids generated during hydrocarbon generation

Fig. 9. Images of dissolution pores in Ek, shale: (a) G33 well, 2485.23 m, irregular dissolution pores in calcite, and (b) F29 well, 2447.32 m, serrated dissolution pores in feldspar.
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Fig. 10. Evolution of pore volume and hydrocarbon generation during thermal maturation.

caused the dissolution of minerals, such as feldspar and calcite,
increasing the number, specific surface area, and volume of pores.
The blockage of nanoscale pores by hydrocarbons or bitumen
during thermal evolution clearly affected pore structure.

In the early oil-window stage, viscous, dense, liquid hydrocar-
bons or bitumen was generated by thermal degradation of kerogen
and restricted the increase in pore volume for various pore types by
occluding the newly formed organic pores or the original mineral-
matrix pores. The viscosity and density of the liquid hydrocarbons
decreased as thermal maturity increased. The liquid hydrocarbons
were subsequently expelled from the shale samples; the pore vol-
ume considerably increased during this process. In the dry gas
generation stage, small pores, particularly organic pores, begin to
interconnect and form large pores or pit-structure pores, thus
increasing the pore volume contribution of large pores. This study
provides a basis for examining variation in hydrocarbon production
during the thermal evolution of shale and the relationship of these
variation with shale reservoir evolution.
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