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a b s t r a c t

With ongoing development of oil exploration and techniques, there is a significant need for improved
well control strategies and formation pressure prediction methods. In this paper, a gas-liquid transient
drift flow model was established according to the gas-liquid two-phase flow characteristics during the
gas kick. A Roe scheme was used for numerical calculation based on the finite volume method. The
changes of bottom-hole pressure, casing pressure, the development law of cross-sectional gas holdup,
and gas velocity, along with the vertical well depth, were analyzed through simulation examples. The
time-series characteristics of mud pit gain were obtained by adjusting the formation parameter. The
complex nonlinear mapping relationship between the formation parameters and the mud pit gain was
established. The long short-term memory network (LSTM) of deep learning was used to obtain a for-
mation pressure inversion when the blowout is out of control and the well cannot be shut-in. Experi-
mental data from a well were used to verify the gas-liquid two-phase transient drift flow model based on
the finite volume method, demonstrating that this method is reliable, with greatly improved prediction
accuracy. This approach provides theoretical support for the early monitoring of gas kick during drilling,
and for well-killing design and construction after uncontrolled blowout.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the expansion of oil and gas exploration and increased
construction of complex wells in deep, deepwater/ultra-deepwater,
high-temperature, and high-pressure areas, there are increased
requirements for safety and risk management for well drilling and
well control (Bhandari et al., 2015; Sun et al., 2018; Xu et al., 2020).
Therefore, it is important to study the development law of gas-
liquid two-phase transient flow characteristics in the wellbore
during the gas kick and to predict the formation pressure when
blowout is out of control and the well cannot be shut-in. This in-
formation can help ensure the safety of drilling, improve drilling
efficiency, reduce drilling cost, and allow the restoration of control
with improved well-killing design and construction in response to
blowout.

The coupling process of gas-liquid two-phase flow plays an
essential role in the process of gas kick. The gas-liquid two-phase
y Elsevier B.V. on behalf of KeAi Co
flow in the wellbore has typically been studied using the drift flow
model, which is composed of continuity equations of each phase
and a mixing momentum equation. This model directly generates a
set of equations to study the mathematical structure of the two-
phase flow, and has advantages of simplicity and transparency
(Kulia et al., 2015, 2016; Zeidan and Sekhar, 2018; Shen, 2020). Ishii
and Hibiki (2011) studied the motion and constitutive equations of
drift velocity under different two-phase flow patterns. Considering
macroscopic factors such as the geometric parameters of the
interface, the volume force field, the shear stress, and the mo-
mentum transfer at the interface, they established a constitutive
equation describing the relative motion between phases in the drift
flow model. Evaluating the drift flow model's practical significance
for analysis of two-phase flow, Hibiki and Ishii (2003) determined
the two-phase flow pattern distribution parameters and drift
constitutive velocity equation in microgravity. Fjelde et al. (2016)
established a transient calculation model for the numerical simu-
lation of two-phase flow, effectively reducing numerical dissipation
and discretization errors based on the drift flow model and the
AUSMV scheme. Wang et al. (2016) proposed a new algorithm to
solve the drift flowmodel by referring to the SIMPLE algorithm and
mmunications Co. Ltd. This is an open access article under the CC BY license (http://
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the calculation results are in good agreement with those calculated
by the Roe method. Ma et al. (2016) established a multiphase flow
model combined with a well control hydraulic model of pressure-
controlled drilling based on the drift flow model. This model
retained transient multiphase flow characteristics of fluid and gas
in the wellbore and adopted an appropriate closure relationship.
Wei et al. (2018) used the MUSCL solver framework to establish a
gas-liquid two-phase transient flow model based on the drift flow
model, described the gas-liquid phase relationship with Shi's
relationship, and solved it through the second-order AUSMV nu-
merical scheme.

For uncontrolled blowout caused by a severe gas kick, the con-
ventional method of determining formation pressure by reading
the casing pressure and standpipe pressure after shut-in the well
will not work. Formation pressure is an essential key parameter in a
well-killing design after a blowout is out of control (Anderson et al.,
2011; Li et al., 2016; Meister et al., 2003). The interactive inter-
pretation method can predict formation pressure in combination
with the two-phase flow calculation model, continuously adjusting
bottom hole parameters during forward modeling to obtain pre-
diction results with high consistency with measured wellhead
parameters. However, this method is a trial and error method based
on manual optimization, requiring a large amount of calculation
and with limited processing accuracy (Wang et al., 2021). In recent
years, deep learning has attracted extensive attention for modeling.
As a kind of recurrent neural network with memory ability, long
short-term memory (LSTM) can intelligently process the time-
series evolution characteristics of data (Kratzert et al., 2018;
Yildirim et al., 2019; Zhao et al., 2017). In this study, time-series
evolution characteristics of wellhead mud pit gain were deter-
mined by adjusting the bottom hole parameters and using a tran-
sient calculation model. The corresponding training set was then
established and input into the LSTM network. Measured time series
evolution data of mud pit gain were then used with the trained
LSTM network to realize the inversion and prediction of formation
pressure.

The finite difference method has been widely used to solve the
drift flow model. This method has low conservation, relies on high
computational cost to satisfy the conservation relationship, and is
accessible to divergence in the iterative calculation. There is no
attempt to retrieve formation pressure in case of blowout out of
control and unable to shut in the well. The earlier a gas kick is
detected, the higher the possibility of successful well control. In this
study, a gas-liquid two-phase transient drift flow model based on
the finite volume method was established. The Roe scheme was
used for numerical calculation to analyze gas kick and overflow
development law in the wellbore. LSTM method based on deep
learning was used for the inversion of formation pressure when
blowout is out of control. This work can provide theoretical support
for the early monitoring of gas kick during drilling and for well-
killing design and implementation after a blowout.
2. Mathematical model of gas-liquid two-phase transient
flow

The gas-liquid two-phase transient flow in the wellbore after
gas kick can be calculated as follows: (1) According to the conti-
nuity equation of gas phase and liquid phase and the mixture
momentum equation of gas-liquid phase, a gas-liquid two-phase
transient drift flow model can be established in matrix form. (2)
Jacobian matrix transformation is then carried out for the equa-
tions. According to the chain rule, the sub-elements of the Jacobian
matrix A can be derived by constructing intermediate functions. (3)
The approximate linearization matrix A of matrix A is obtained, and
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the complex nonlinear equations can be transformed into simpler
linear equations. (4) The Roe scheme is then used to find the
relationship between matrix A and A. (5) The Roe flux difference
scheme is used to solve the conserved variables, and these variables
can then be updated on the time layer.

2.1. Governing equation of gas-liquid two-phase transient flow

The governing equations of gas-liquid two-phase transient flow
in the wellbore include the continuity equations and the mo-
mentum equation. Continuity equations of gas phase and liquid
phase are:

v
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�
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þ v
�
agrgvg

�
vz

¼ 0 (1)

vðalrlÞ
vt

þ vðalrlvlÞ
vz

¼ 0 (2)

The mixture momentum equation of the gas-liquid phase is:
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where ag and al are the volume fraction of gas phase and liquid
phase, respectively; rg and rl are the density of gas phase and liquid
phase, respectively; vg and vl are the velocity of gas phase and liquid
phase, respectively; p is the pressure; rm is the mixing density of
gas phase and liquid phase; Ffric is the friction term; g is the ac-
celeration of gravity; q is the inclination angle.

Because the interaction between the gas and liquid phase is
ignored, it is necessary to introduce the gas-liquid drift relation Ffric
to close the drift flow model. Shi's gas-liquid drift relationship has
been widely used in the drilling industry and verified by many
actual data (Shi et al., 2005).

The drift flow model equations of gas-liquid two-phase flow in
vector form can then be obtained by simultaneous Eq. (1)e(3):
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These governing equations are a class of typical hyperbolic
nonlinear partial differential equations. The use of these equations
may generate problems such as weak discontinuity, discontinuous
derivatives of the solution, a discontinuous solution, and the strong
discontinuity of the function itself. Additionally, a numerical
method is required to solve the problem. In this paper, we use the
finite volume method to solve the nonlinear governing equations
based on the Roe scheme (Roe, 1981), including Jacobian matrix
transformation and solving the approximate linearization matrix.
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The step-by-step calculations are detailed below.
2.2. Transformation of the Jacobian matrix

Without consideration of the source term S(W), Eq. (4) can be
written as a homogeneous equation by applying the chain rule:

vW
vt

þ vFðWÞ
vz

¼ vW
vt

þ vF
vW

vW
vz

¼ 0 (8)

The transformed Jacobian matrix A(W) is:
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Due to the strong nonlinearity of the drift flow control equa-
tion's coefficient matrix A(W), its eigenvalues and flow propagation
direction cannot be determined accurately. Therefore, it is difficult
to construct the upwind difference of the nonlinear vector equa-
tion. To address this, an intermediate function can be constructed
and through chain rule, every submatrix of the Jacobian matrix can
be obtained. Because the derivation process is lengthy, the deriva-
tion results of each sub-matrix are given directly here.
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Among them, ε1, ε2, and ε3 are parameters without physical
meaning, and are used only to simplify the above formula's
expression.
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where C0 is the gas distribution coefficient.
Using these equations, the expression of the Jacobian matrix

A(W) is obtained.
2.3. Calculating the approximate linearization matrix of Jacobian
matrix

According to the Roe flux difference scheme, the approximate
linearized matrix A has the same form as the original matrix. The
matrix A can be split into the matrix representing the continuity
equation Amass and the matrix representing the momentum
equation Amoment. The continuity and momentum equations can be
further decomposed into the gas phase submatrix, the liquid phase
submatrix, and the pressure term submatrix, as shown in the
following formula.

A¼Amass þAmoment¼
�
Ama;g þAma;l
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Amo;g þAmo;l þAmo;p

�
(22)

According to the gas-liquid two-phase transient drift flow
model, the splitters of the linearized matrix can be calculated from
the continuity and momentum equations. Similarly, the split form
of flux term F(W) can be obtained.

F ¼ Fma þ Fmo ¼
�
Fma;g þ Fma;l
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�
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According to Roe's average rule:
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�
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�
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where L and R are the left and right sides of the flux.
Next, the Roe average values of the continuity equation, mo-

mentum equation, pressure term, void fraction, liquid fraction, and
interphase slip relation can be calculated. Since there aremany sub-
elements in matrix splitting design, resulting in a cumbersome
calculation process, the complex expression of splitting sub-terms
is not presented here. Using the above steps, the approximate
linearizationmatrix of the original Jacobianmatrix can be obtained.

The relationship between gas density, pressure, and tempera-
ture is used as the auxiliary equation of the model. The auxiliary
equation has three parts: the density relationship of compressible
gas under different temperature and pressure conditions (ideal gas
equation of state), the relationship between pressure and viscosity
of gas-phase (Dean-Stiel viscosity model (Tan et al., 2017)), and the
general flow pattern discrimination relationship of gas-liquid two-
phase (including dispersed bubble flow, bubble flow, slug flow,
stirred flow, annular fog flow, etc.).



Fig. 2. Flow chart to solve the gas-liquid two-phase transient drift flow model.
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2.4. Boundary conditions and the Roe algorithm to solve equations

The grid division of the wellbore is shown in Fig. 1, with the
bottom and wellhead set as the boundary conditions of the flow
region. To simulate gas kick, the parameters of the bottom hole and
wellhead will change with the change of gas-liquid two-phase
coupling relationship in the wellbore, correlating to a change of
boundary conditions. During drilling, when gas invasion occurs in
the wellbore or if the wellhead back pressure is adjusted, the
boundary conditions change dynamically, and the changes of these
boundary conditions alter the flow parameters in the whole well-
bore grid space. The boundary conditions can be obtained from the
characteristic lines and compatibility equations.

The annular flow field inlet is set as the pressure-inlet boundary
condition. The drilling fluid flows along the bottom hole inlet di-
rection, and the inlet velocity is evenly distributed. The annulus
outlet is set as the boundary condition of the pressure-outlet, with
unidirectional flow back along the annulus.

According to the Roe flux difference scheme, the transient drift
flow equations can be solved as:
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j �
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0
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2
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2

1
CA� DtSnj (25)

where FRoejþ1
2
is the interface flux term constructed according to the

Roe flux difference scheme, and its expression is:
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where lk is the eigenvalue of approximately linearized matrix A; Rk
is the eigenvector of matrix A; R

�1
is the inverse matrix of the

matrix formed by the eigenvector of matrix A.
Through the Jacobian matrix and its approximate linearization

matrix obtained by the previous calculation, the conserved vari-
ables can then be calculated by the Roe iterative scheme according
to Eq. (25).

The calculation scheme is as follows (see Fig. 2):

(1) Input basic parameters, including well trajectory, wellbore
structure, formation parameters, and physical parameters of
drilling fluid and natural gas.

(2) Discretize the wellbore flow region and divide into one-
dimensional grids to determine the total simulation time,
time step, and convergence conditions.

(3) Starting with each node parameter of thewell before gas kick
at initial values and using the bottom of the well at any time
as the starting point (the first node as the boundary value),
the Roe scheme based on the finite volume method can be
applied to get the 2nd, 3rd, and nth recursively.
Fig. 1. The grid divisio
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(4) The parameter values of each space node in the time layer are
calculated step by step to obtain the velocity field and
pressure field distribution of the whole wellbore space. All
parameters of the time layer node are then used as the
known data of the next layer, and the cycle continues until
the preset total simulation time cycle is reached.

3. Formation pressure inversion method based on LSTM

Long short-term memory network (LSTM) is an improved al-
gorithm based on recurrent neural networks (RNN). LSTM has the
advantages of RNN for the processing of time-series data and
overcomes the limitations of long-term dependence and easy
gradient disappearance. LSTM retains the chain form of RNN and is
composed of a series of recursively connected subnetworks of
memory blocks. The LSTM fundamental structure consists of three
gates in the interaction layer, i.e., input gate, output gate, and forget
n of the wellbore.



Fig. 4. Photos of full-scale experimental well.
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gate (Greff et al., 2016). The cooperation of the three gates can
effectively control the information coming into the model. The
network and structure of LSTM are shown in Fig. 3.

The time series of wellheadmud pit gain of the input layer is x ¼
ðx1; x2;/; xtÞ, the state of the hidden layer memory unit
h ¼ ðh1;h2;/;htÞ and output layer sequence y ¼ ðy1; y2;/; ytÞ can
be calculated as follows:

ht ¼ f ðWxhxt þWhhht�1 þ bhÞ (28)

yt ¼ g
�
Whyht þ by

�
(29)

The memory unit memorizes the historical information of the
sequence data together with the hidden state. The information in
the memory unit is controlled by three gating units. The forget gate
is:

ft ¼ s
�
Wxfxt þWhfht�1 þWcfct�1 þ bf

�
(30)

The input gate adds new information to the memory unit ac-
cording to hte1 and xt:

it ¼ sðWxixt þWhiht�1 þWcict�1 þ biÞ (31)

ct ¼ ftct�1 þ it tanhðWxcxt þWhcht�1 þ bcÞ (32)

The output gate determines ht according to hte1, xt, and ct:

ot ¼ sðWxoxt þWhoht�1 þWcoct�1 þ boÞ (33)

ht ¼ ottanhðctÞ (34)

where xt is the input at t time; yt is the output at t time; ht is the
hidden state at t time; Wxh, Whh, and Why are the weights of input,
hidden, and output, respectively; bh and by are the offset of hidden
state and output, respectively; f($) and g($) are the activation
functions of hidden layer and output layer, respectively; hte1 is the
output of the last single state; Wxf, Whf, and Wcf are the corre-
sponding weights of forgetting gate, respectively; bf is the offset of
forget gate; s is the sigmoid function; Wxi, Whi, and Wci are the
corresponding weights of input gate; bi is the offset of input gate;
tanh is the hyperbolic tangent activation function;Wxc andWhc are
the corresponding weights of memory units; bc is the bias term of
memory unit weights; Wxo, Who, and Wco are the corresponding
weights of output gate; bo is the bias of output gate; ct is the state
value of cell structure at t time.

By changing the bottom hole parameters, including formation
pressure and gas-liquid physical parameters, the model can be
trained in real-time to meet the parameters of specific wells. The
established gas-liquid two-phase transient calculation model can
Fig. 3. Structure of LS
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be used to obtain the time series data set of mud pit gain change to
explore gas invasion and overflow development law under
different formation parameters. These data are input into the LSTM
neural network to learn the sequential operation law of mud pit
gain fluctuation caused by a gas kick. LSTM training uses the mean
relative error (MRE) and mean square error (MSE) as evaluation
indexes. With a large amount of data in the time-series data set, the
unique gating mechanism of LSTM and the use of a memory unit
enable learning all historical information up to the current time and
then allow modeling of this long-distance dependency when
dealing with such a long input sequence. When training LSTM, the
forward propagation is calculated using Eqs. (28)e(32), and the
coupling result of the current memory unit is calculated using Eq.
(33), combining the forget and input units. According to the error
equation for gradient backpropagation training, the Adam algo-
rithm can then be used as an adaptive momentum estimation al-
gorithm for optimization training.
4. Case calculation

We tested this approach using a full-scale experimental well in
the well control training center of the Daqing drilling engineering
company (Fig. 4). The gas-liquid two-phase transient drift flow
model described above was used to predict the gas-liquid two-
phase development law in the wellbore after gas kick and then
TM memory unit.



Table 1
Well experimental parameters.

Parameter value Parameter value

Drilling fluid density, kg/m3 1000 Gas viscosity, cP 0.018
Drilling fluid viscosity, cP 1 Gas compressibility, 1/MPa 6.2�10�5

Drilling fluid displacement, L/s 30 Surface temperature, �C 25
Gas density, kg/m3 1.29 Geothermal gradient, �C/100 m 2.73
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calculate the gas holdup in the annulus at different times and the
distribution of gas-phase velocity with well depth.

The test well has complete wellhead equipment (including bell
mouth and BOP group), experimental annulus and gas storage
annulus, a 35 MPa full set of well control equipment, an energy
storage air compressor, a simulated gas injection device, a mea-
surement and control system, and a monitoring system. The spe-
cific parameters are as follows: vertical depth of 2000 m,
continuous gas injection simulation realized at 2000 m borehole
depth, hole diameter of 215.9 mm, and drill pipe outer diameter of
127 mm. The BHA is the experimental wellbore that consists of a
bit, drill collar, drill pipe, variable thread joint, back pressure valve,
annular pressure measuring nipple, and other components. Air is
injected into the gas storage well through the air compressor until
the pressure rises to the specified value. Drilling fluid enters the
annulus through the surface manifold, drilling tools, and other
equipment. The gas is injected into the annulus through a parasitic
pipeline from the gas storage well. The parameters of the experi-
mental well were used to generate the basic parameters of the
simulation model, with consistent well depth, borehole diameter,
and drill pipe diameter. The simulation model included 1000 grids,
and the gas kick durationwas set to 100 s (100e200 s after the start
of the experiment). The total simulation time is 1000 s and the time
step is 0.005 s. Other experimental parameters are listed in Table 1.

The transient simulation analysis of gas-liquid two-phase flow
was carried out using the gas-liquid two-phase transient drift flow
model described in this work. And the specific results are detailed
below. Fig. 5 shows the variation of bottom hole pressure with time
within 110 s before the experiment (10 s after gas kick) and the
distribution of cross-sectional gas holdup and gas velocity with
well depth at t¼ 110 s.When the bottom hole gas first intrudes into
the wellbore, the velocity of the liquid column in the wellbore
Fig. 5. Development law of gas kick durin
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increases because the bottom hole gas increases the annular cir-
culation friction resistance. At the same time, because the invaded
volume occupies part of the liquid column volume, the hydrostatic
fluid column pressure decreases. However, the gas does not expand
significantly due to the small air intake. The hydrostatic fluid col-
umn pressure is less, and the increase of annular circulating friction
is more significant than the loss of hydrostatic fluid column pres-
sure, so the bottom hole pressure increases. There is some free gas
at the bottom of the well, and the cross-section gas holdup is no
longer zero.

Fig. 6 shows the change of bottom hole pressure within the first
210 s of the experiment (10 s after the end of gas kick) and the
distribution of cross-sectional gas holdup and gas velocity with
well depth at t ¼ 210 s. At t ¼ 210 s, all the gas has been completely
injected into the wellbore. With increased air intake, the bottom
hole pressure decreases. The larger the bottom hole pressure, the
smaller the volume occupied by gas and the smaller the pressure
loss of the hydrostatic column, resulting in a minor reduction of the
bottom hole pressure. With the constant gas intrusion rate, the
pressure fluctuates widely at critical points during the initial and
completion stages of the intake, but quickly returns to normal.

Fig. 7 shows the variation of bottom hole pressure within the
first 680 s of the experiment and the distribution of gas holdup and
gas velocity with well depth at t ¼ 680 s. When the gas column
migrates to the middle of the wellbore, as the gas column moves
upward along thewellbore, thewellbore pressure becomes smaller,
and the gas expands continuously. The maximum cross-sectional
gas holdup increases from 0.2 at the bottom of the well to 0.3.
The gas velocity increases with the decrease of the well depth, but
the velocity change is not apparent. The gas expansion increases
the velocity of the liquid column which increases the circulating
friction pressure drop, but the gas expansion also reduces the
g the first 110 s (10 s after gas kick).



Fig. 6. Development law of gas kick during the first 210 s (10 s after the end of gas kick).
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hydrostatic pressure. The hydrostatic fluid column pressure loss is
dominant, so the bottom hole pressure continues to decrease, but
the decrease rate is relatively slow.

Fig. 8 shows the variation of bottom hole pressure within the
first 980 s before the experiment and the distribution of gas holdup
and gas velocity with well depth at t ¼ 980 s. When the gas column
moves close to the wellhead, the gas in the annulus expands
rapidly. The closer the wellhead is, the higher the gas holdup. The
wellhead is almost full of gas, and the upper liquid column is nearly
emptied, resulting in a sharp decrease in hydrostatic fluid column
pressure. Although the gas velocity increases sharply, the bottom
hole pressure decreases sharply because the gas density is far less
than the drilling fluid density. The increase in annular friction loss
is negligible compared with the hydrostatic fluid column pressure.
The variation of bottom hole pressure and casing pressure as
measured are shown in Fig. 8, where the dotted lines show the
measured pressure fluctuation curves. We found that the gas-liquid
two-phase transient calculation model can better predict the
Fig. 7. Development law of gas kick
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development law of bottom hole pressure and casing pressure
compared with the model, with average relative errors of predic-
tion of 11.58% and 8.41%, respectively. The analysis error may be
caused by the difference between the discrimination formula of the
gas-liquid two-phase flow pattern and the actual situation as well
as by inconsistency between the drill collar and drill pipe.

The gas-liquid two-phase transient calculation model can
effectively simulate the fluid changes in the wellbore, allowing
prediction of the gas-liquid two-phase transient flow development
and the gas holdup and gas velocity distribution law at different
well depths. However, it is difficult to predict the formation pres-
sure when blowout is out of control due to a severe gas kick. The
use of the LSTM method with deep learning can determine the
nonlinear mapping relationship between the mud pit gain and
formation pressure. Studying the time series characteristics and
evolution mechanism of mud pit gain fluctuation caused by the gas
kick and using measured early wellhead mud pit gain fluctuation
data allows determination of inversion and prediction of formation
overflow during the first 680 s.



Fig. 8. Development law of gas kick overflow in 980 s (comparison between experimental (dotted lines) and predicted (solid lines) values).

Fig. 9. Comparison of measured and LSTM predicted values of time series evolution of mud pit gain under four different formation pressures: (a) 20.2 MPa; (b) 20.5 MPa; (c)
21.0 MPa; (d) 21.4 MPa.
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Table 2
Evaluation indexes of LSTM model prediction results.

Experimental groups Experimental formation pressure, MPa LSTM inversion results, MPa Mean relative error, %

1 20.2 23.3 15.4
2 20.5 22.4 9.3
3 21.0 23.2 10.5
4 21.4 23.8 11.2
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pressure.
The fluctuation time-series data set of mud pit gain is calculated

by adjusting formation parameters according to the established
gas-liquid two-phase transient drift flowmodel tomeet the specific
LSTM model training needs. Here, the sampling interval was 0.5 s,
and 1045 training sets of time series evolution samples were ob-
tained. These datawere divided into the training set and test set at a
ratio of 8:2, and then the data training set were further divided into
the training set and verification set at a ratio of 8:2 for cross-
training. The data set was then normalized and preprocessed to
enhance robustness and generalization. The LSTM algorithm es-
tablishes the inversion prediction model by combining the entire
connection layer and nonlinear activation function for intelligent
training. This was done as follows. Using double-layer LSTM and the
entire connection layer in series, the neuron parameters of the
hidden layer were 256, 512, and 1000, the learning rate range was
0.005e0.00001, the batch size was 128, and the number of epochs
was 4000. As the number of iterations increased, the error of
training samples decreased. After 2750 iterations, the model
converged, and the final model was obtained. The prediction ac-
curacy of the model was 87.3%. The time series evolution data sets
of four groups of mud pit gain data under different formation
pressures were simulated using this model and also obtained
through full-scale experiments, as shown in Fig. 9. The inversion
values of different formation pressures and the model's prediction
indexes are listed in Table 2.

It can be seen from Fig. 9 that the prediction results of the LSTM
model at the local position deviate significantly from the measured
values. For example, there is significant prediction error of gas in-
vasion overflow in the initial stage. Still, the overall prediction re-
sults are similar, which can better reduce the fluctuation of mud pit
gain caused by the gas kick. As shown in Table 2, the inversion
accuracy of formation pressure is high and the mean relative error
in the testing process is about 11.5%, indicating that the LSTM
model can be used for effective inversion and prediction of for-
mation pressure.

The inversion methods of formation pressure when blowout is
out of control can be summarized as follows: (1) the gas-liquid two-
phase transient calculationmodel based on finite volumemethod is
first used to calculate the time-series variation characteristics of
mud pit gain under field conditions; (2) the training set is estab-
lished and input into the algorithm to train the LSTM neural
network; (3) the time series characteristics of mud pit gain
measured in the early stage of gas invasion are substituted into the
training set to invert the formation pressure.

5. Conclusions

In this paper, we established a drift flow model of gas-liquid
two-phase flow in the wellbore. In this approach, the governing
equations can be solved using the finite volume method and the
Roe scheme. The corresponding calculation conditions are then
used to obtain the transient development law of gas-liquid two-
phase flow in the wellbore after gas kick.

When gas intrudes into the wellbore, the annular circulation
friction resistance increases, and the bottom hole pressure
686
increases. When the gas column moves to the middle of the well-
bore, the gas expands continuously. The circulation friction resis-
tance increases, and the hydrostatic fluid column pressure
decreases, so the bottom hole pressure decreases continuously.
When the gas columnmoves close to thewellhead, the gas expands
rapidly and the hydrostatic fluid column pressure decreases
sharply, so the bottom hole pressure decreases sharply.

Based on the deep learning algorithm framework, the time-
series variation characteristics of mud pit gain were obtained by
the adjusting bottom hole parameters according to the transient
calculation model. The corresponding training set was then
established and input into the algorithm to train the LSTM neural
network, extract the time relationship between formation pressure
and mud pit gain, describe the evolution characteristics of this
relationship, and establish an accurate inversion prediction model.
The measured time series evolution data of mud pit gain were
entered into the trained LSTM network to realize formation pres-
sure inversion when the blowout is out of control, and the well
cannot be shut-in.

Experimental data were collected from the well control training
center of a Daqing Drilling Engineering Company and used to
confirm the reliability of prediction using the gas-liquid two-phase
transient drift flow model. The formation pressure inversion and
prediction results based on the LSTM algorithm exhibited high
accuracy, providing theoretical support for the early monitoring of
gas kick and overflow and prediction of formation pressure after
uncontrolled blowout.
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