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a b s t r a c t

Seismic data reconstruction is an essential and yet fundamental step in seismic data processing work-
flow, which is of profound significance to improve migration imaging quality, multiple suppression ef-
fect, and seismic inversion accuracy. Regularization methods play a central role in solving the under-
determined inverse problem of seismic data reconstruction. In this paper, a novel regularization
approach is proposed, the low dimensional manifold model (LDMM), for reconstructing the missing
seismic data. Our work relies on the fact that seismic patches always occupy a low dimensional manifold.
Specifically, we exploit the dimension of the seismic patches manifold as a regularization term in the
reconstruction problem, and reconstruct the missing seismic data by enforcing low dimensionality on
this manifold. The crucial procedure of the proposed method is to solve the dimension of the patches
manifold. Toward this, we adopt an efficient dimensionality calculation method based on low-rank
approximation, which provides a reliable safeguard to enforce the constraints in the reconstruction
process. Numerical experiments performed on synthetic and field seismic data demonstrate that,
compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multi-
channel singular spectrum analysis method, the proposed method obtains state-of-the-art reconstruc-
tion results.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seismic data is an important instrument for studying the sub-
surface geological structure and hydrocarbon distribution, and it
contains considerable geophysical information. However, due to
the constraints of obstacles or other forbidden areas such as res-
ervoirs, levees, villages, mines, etc., the collected seismic data are
often under-sampled or aliased, which leads to the loss of
geophysical information and thus is not conducive to the subse-
quent research. To restore complete geophysical information,
reconstructing the missing seismic data becomes an essential and
critical task (Stolt, 2002; Trad, 2009).

Methods for seismic data reconstruction can be divided into two
categories: wave equationmethods and signal processing methods.
The wave equationmethods use the physics of wave propagation to
recover missing observations (Ronen, 1987; Trad, 2003; Malcolm
et al., 2005; Zhao et al., 2021). These methods need to under-
stand the velocity distribution in the subsurface and perform full
).
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wavefield calculations, which limit their practical applicability. The
signal processing methods can be further subdivided into: predic-
tion error filtering methods based on linear event hypothesis,
transform domain methods based on sparsity promotion, and low-
rank methods. Predictive error filtering methods typically utilize
low frequency data components in a regular space grid to estimate
the predictive filter required to interpolate high frequency data
components. Spitz (1991) first developed a frequency (f-x) domain
interpolation method based on a unit-step prediction filter. How-
ever, using the unit-step prediction filter to reconstruct the missing
data is time-consuming and complex because it requires solving
two systems of linear equations. To solve this problem, Porsani
(1999) provided a method based on a half-step prediction filter,
which requires solving only one system and thus greatly improves
the efficiency and tractability of interpolation. Subsequently,
Gülünay (2003) extended the idea of prediction filtering to the
frequency wavenumber (f-k) domain and gave an efficient f-k
interpolation method. Another improved f-x interpolation method
has been proposed by Naghizadeh and Sacchi (2009), which adopts
an exponentially weighted recursive least-squares method to es-
timate the prediction filters, further improving the reconstruction
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efficiency.
The transform domain methods achieve the reconstruction of

under-sampled data by applying the sparsity-promoted minimi-
zation to the coefficients in a transform domain. Nowadays, many
mathematical transformations have been introduced in seismic
data reconstruction, such as Fourier transform (Zwartjes and Gisolf,
2006; Tang and Yang, 2010; Naghizadeh and Innanen, 2011; Zhang
et al., 2013), Radon transform (Tang and Mao, 2014; Wang et al.,
2017; Ibrahim et al., 2018; Tang et al., 2020), Curvelet transform
(Hennenfent et al., 2010; Zhang and Chen, 2013; Bai et al., 2014;
Zhang et al., 2017), Shearlet transform (Liu et al., 2018; Yang et al.,
2020), Seislet transform (Liu et al. 2013, 2017; Gan et al., 2015),
Dreamlet transform (Wang et al., 2015), and dictionary-learning-
based transforms (Yu et al., 2015; Siahsar et al., 2017a; Ma and
Yu, 2017; Lan et al. 2020, 2021). Sparsity-promoted minimization
belongs to a classical sparse optimization problem that requires an
appropriate regularization tool to obtain a unique and stable so-
lution. Regularization tools used to promote sparsity include L0
norm (Chen et al., 2013); L1 norm (Wang et al., 2011; Yin et al.,
2015); Cauchy norm (Sacchi and Ulrych, 1996); or mixed L1_L2
norm (Li et al., 2012). Besides, the non-convex Lp (0 < p < 1) norm is
also applied to seismic data reconstruction. Zhong et al. (2015)
applied the L1/2 norm as the constraint specification to recon-
struct 3D irregularly sampled data. Recently, Zhang et al. (2019)
proposed a smoothed L1/2 norm and applied it to restore the
under-sampled seismic data, which yielded satisfactory recon-
struction results.

Low-rank regularization is another most popular reconstruction
approach. Trickett et al. (2010) gave a multidimensional interpo-
lation algorithm built on the matrix-rank reduction of constant-
frequency slices. Oropeza and Sacchi (2011) rearranged the
seismic data into block Hankel matrix in the frequency domain, and
then reduced the rank of the block Hankel matrix by multichannel
singular spectrum analysis (MSSA) to gain the reconstructed
seismic data. Further, Kreimer and Sacchi (2012) provided a five-
dimensional seismic data reconstruction method by combining
the Hankel operation and high-order singular value decomposition.
Jia et al. (2016) presented the orthogonal matrix pursuit Hankel
reconstruction (OMPHR), which used the rank-one orthogonal
matching pursuit method instead of the singular value decompo-
sition to reduce the rank and greatly improved the computational
efficiency. Alternately, Chen et al. (2016) applied the dampedmulti-
channel singular spectrum analysis (DMSSA) operator to recon-
struct highly incomplete 5D seismic data. Siahsar et al. (2017b)
proposed an optimal singular value contraction method for
seismic data recovery, which generates the optimal low-rank esti-
mator according to the random matrix theory, and utilizes the
attenuation factor to constrain the singular value to improve the
robustness of the rank estimation. More recently, a fast and
memory-efficient implementation of the MSSA method is devel-
oped by Cheng et al. (2019) for seismic data reconstruction. It takes
advantage of random projections and the structure of Hankel
matrices to avoid the construction of large Hankel trajectory
matrices and thus significantly reduces the computational costs.

Recently, a novel regularization method based on patches
manifold had been put forward for general image processing (Osher
et al., 2017), where it has achieved state-of-the-art results. This
method held that patchesmanifold of general images is close to low
dimensional, and this low dimensional manifold is an effective
geometric prior in the image processing field. The superior per-
formance of this low dimensional manifold model (LDMM) was
also verified in other different fields (Lai and Li, 2018; Zhu et al.,
2018; Abdullah et al., 2019). Latterly, this model has been used in
geophysics. Yu et al. (2017) firstly proved that the manifold of
seismic data is close to low dimensional, and then applied the
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LDMM to attenuate seismic noise. In this paper, motivated by the
inherent low-dimensional properties of seismic data, we exploit
the LDMM regularization to reconstruct the missing seismic data
from under-sampled observed data. The article is organized as
follows. In the first section, we review the mathematical model of
seismic data reconstruction. The subsequent section presents the
details of the proposed LDMM-based seismic reconstructionmodel.
A fast and efficient algorithm for solving the proposed recon-
struction model is given in the third section. The fourth section
performs numerical experiments and compares various methods.
The discussion and conclusion are given in the fifth and sixth sec-
tions, respectively.
2. Methodology

2.1. Review of seismic data reconstruction model

The mathematical model of multi-channel seismic data recon-
struction can be described as:

y¼Jf (1)

where y denotes the recorded wave-field data, which often is
under-sampled; f denotes the complete wave-field data,J denotes
the sampling operator, which is a matrix of diagonal structure,
consisted of zero and identity operator:

J¼

2
6666664

I
O

O
I

1
I

3
7777775

(2)

where each I corresponds to a trace sampled from the complete
data, and each O corresponds to a missing trace. Since the sampling
operator is highly singular, Equation (1) is highly under-
determined. To solve the under-determined problem shown in
Equation (1), the popular strategy is to convert it into an optimi-
zation problem with a regularization term

f * ¼ argmin
f

ky�Jf k22 þ lRðf Þ (3)

where Rð �Þ denotes the regularization operator that contains prior

information on the model, k � k22 denotes the square of L2 norm, l is

the regularization parameter weighing the fidelity term ky�Jf k22
and the model constraint term Rðf Þ.

The most extensively used model constraint methods in the
reconstruction field include: sparsity constraints and low-rank
constraints. The regularization optimization problem based on
sparsity constraints can be gave as (Hennenfent et al., 2010; Wang
et al., 2011; Bai et al., 2014):

8<
:

X* ¼ argmin
X

ky�JDXk22 þ lkXk1
f * ¼ DX*

(4)

where D is a sparse transform, such as Fourier transform, Curvelet
transform, etc. X is the coefficients of the signal in the transform
domain. k � k1 denotes the L1 norm. Another regularization opti-
mization problem based on low-rank constraints can be described
as follows:
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f *¼ argmin
f

ky�Jf k22 þ lkT ðf Þk* (5)

where T ð �Þ represents the mapping operations, such as Hankel/
Toeplitz operation (Oropeza and Sacchi, 2011; Jia et al., 2016). k � k*
denotes the nuclear norm.

Essentially, both sparsity constraints and low-rank constraints
are based on certain assumptions (sparsity or low-rank) of seismic
data in the transformation space (sparse space or rank space) to
reconstruct themissing data. Thesemodel constraint methods have
demonstrated their unique properties in seismic data reconstruc-
tion. However, when seismic data do not meet these assumptions,
they may be difficult to obtain satisfactory reconstruction results.
Unlike the aforementioned model-constrained approaches, this
paper exploits the inherent low-dimensional properties of seismic
data to achieve high-quality reconstruction. More specifically,
relying on the fact that seismic patches occupy a low-dimensional
manifold, we propose a new model constraint approach, the low-
dimensional manifold model, for reconstructing the missing
seismic data. The specific details are provided in the next section.

2.2. Seismic data reconstruction based on LDMM

For given seismic data f , definition the matrix G ðf Þ is a set of all
patches of size r � r extracted from the seismic image

G ðf Þ¼ fP½f ðxÞ� : x2Qg3ℝr2 (6)

where P½ �� denotes the patch operator, x is center of the patch, and
Q is an index set that describes the location of the patches. The

patches set G ðf Þ can be regarded as a point cloud in Rr2 , containing
a large number of patch points. The basic idea of LDMM is that this
point cloud is usually close to the smooth manifold embedded in

Rr2 , which is called the patches manifold of seismic data and de-
notes as M . Fig. 1 shows the relationship between patches, patches
set, and patches manifold. Due to the low-dimensional properties
of seismic patches manifold, the dimension of patchesmanifold can
be exploited a regularization term to reconstruct missing seismic
data. More specifically, the reconstruction model based on LDMM
regularization can be described as:

f *¼ argmin
f

ky�Jf k22 þ ldimðM Þ (7)
Fig. 1. The relationship diagram of patche
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where dimðM Þ denotes the dimension of patches manifold.
The optimization problem of Equation (7) has strong non-

convex and nonlinear, and its effective solution strategy is itera-
tive method. The crucial step of iterative method is to calculate the
dimension of manifold on the patch point cloud utilizing the low-
rank approximation method, and the details are introduced in the
next section.
2.3. Optimization by alternating iteration method

In most cases, patches manifold is not a single manifold with a
specific dimension, but a set of several manifolds with different
sub-dimensions. Thus, the patches manifold dimension can be
rewritten into the form of integral:

argmin
f ;M

ky�Jf k22 þ l

ð
M

dimðM ðG xðf ÞÞÞ dG xðf Þ s:t: G xðf Þ3M

(8)

where dimðM ðG xðf ÞÞÞ represents the dimension of the sub-
manifold which the patch G xðf Þ belongs. The key point to solving
the optimization problem in Equation (8) is how to calculate the
dimension of each sub-manifold. In the original LDMM, the
dimension of the sub-manifold can be calculated as the Dirichlet
energy of the coordinate function on the manifold, and the corre-
sponding Laplace-Beltrami equation can be solved by the point
integration method (Osher et al., 2017; Shi and Sun, 2017). How-
ever, the original LDMM has the drawback of poor computational
efficiency (Shi et al., 2018).

To improve work efficiency, we calculate the dimension of each
sub-manifold by using low-rank approximation on its manifold.
Since the dimension of the sub-manifold which each patch belongs
is same as the dimension of its tangent space，it can be approxi-
mated as the rank of the covariancematrix generated by the similar
set of each patch G xðf Þ on M . On the discrete case, the patch set
G ðf Þ belongs to the sampling of the manifold M , so the low-rank
property of the covariance matrix formed by the similar set of
G xðf Þ on M can be linearly approximated by the matrix that is
generated for the K-nearest-neighbors of corresponding patch in
G ðf Þ. Therefore, if we define the matrix F M ðG xðf ÞÞ as the K-
nearest-neighbors of patch G xðf Þ in the patch set G ðf Þ, then there
are
s, patches set, and patches manifold.



Input: Under-sampled seismic dataf 0, Sampling operatorJ.
Output: Reconstructed seismic dataf * .
Repeat:
Extract the patches set G ðf kÞ from the data f k by equation (6);
Calculate the similar setℱ M k ðG xðf kÞÞby the K-nearest-neighbor algorithm;
Takef k;1)f k;
For j¼1 to J
Solve the auxiliary variablehjþ1

x by equation (17);
Update the seismic data f k;jþ1 by equation (21);
Calculate Qjþ1 by equation (16);

end for
Takef kþ1)f k;Jand f *)f kþ1;
Update the manifold M kþ1 by equation (11b);
k)kþ 1;

until
���f kþ1 � f k

���=���f k���< tol or k>K
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ð
M

dimðM ðG xðf Þ Þ Þ dG xðf Þ ¼
X
x2Q

rankðF M ðG xðf Þ Þ Þ

¼
X
x2Q

kF M ðG xðf Þ Þk*
(9)

where rankð �Þ denotes the rank operator. Note that the matrix
F M ðG xðf ÞÞ is obtained by concatenating the K-nearest-neighbors
patches as columns. Given the above definition, Equation (8) can be
rewritten as:

argmin
f ;M

ky�Jf k22 þ l
X
x2Q

kF M ðG xðf ÞÞk* s:t: G xðf Þ3M

(10)

The alternating iterative method is a common technique for
solving Equation (10), which needs to divide this optimization

problem into two sub-problems: first, fixed the manifold M k, up-
date the seismic dataf kþ1; second, the seismic data f kþ1 is fixed,

update the manifold M kþ1. Specifically, these two sub-problems
can be stated as:

f kþ1¼argmin
f

ky�Jf k22þl
X
x2Q

���F M kðG xðf ÞÞ
���
*

s:t: G xðf Þ3M k

(11a)

M kþ1 ¼
n
G x

�
f kþ1

�
;cx2Qg (11b)

where k is the number of outer iterations.
For the first sub-problem, by introducing the auxiliary variable

hx ¼ F M k ðG xðf ÞÞ, it can be expressed as follows:

argmin
f

ky�Jf k22þl
X
x2Q

khxk* s:t: hx¼F M kðG xðf ÞÞ;G xðf Þ3M k

(12)

Using the augmented Lagrangian method, the constrained
optimization problem in Equation (12) can be reformulated the
following unconstrained form:

argmin
f

ky�Jf k22 þ l
X
x2Q

khxk* þ
X
x2Q

m
���F M kðG xðf ÞÞ � hx þ Q

���2
F

(13)

where m represents penalty factor, Q is the scaled Lagrange multi-
pliers, and k � kF denotes the Frobenius norm. Similar to the split-
Bregman iteration (Goldstein and Osher, 2009; Osher et al., 2017;
Lai and Li, 2018; Liu et al., 2018), the solution of optimization
Equation (13) can be characterized by the following iterative
format:

hjþ1
x ¼ argmin

hx

lkhxk* þm
���hx � F M k

�
G x

�
f k;j
��

� Qj
���2
F
;cx2Q

(14)

f k;jþ1 ¼ argmin
f

ky�Jf k22 þ m
X
x2Q

���F M k

�
G x

�
f k
��

� hjþ1
x þ Qj

���2
F

(15)
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Qjþ1 ¼Qj þ
�
F M k

�
G x

�
f k;jþ1

��
�hjþ1

x

�
;cx2Q (16)

where j is the number of inner iterations. Equation (14) is a classical
nuclear norm optimization problem, which can be solved by the
singular value thresholding (Cai et al., 2010). Specifically, its closed-
form solution can be described as:

hjþ1
x ¼D 1=m

�
F M k

�
G x

�
f k;j
��

þQj
�

(17)

where D 1=mð �Þ presents the soft-thresholding operator, which
defines as the following equation:

D tð � Þ :¼ UD tðSÞV*; D tðSÞ ¼ diagðfsi � tgþÞ (18)

fsi � tgþ ¼ maxð0; si � tÞ (19)

The optimization problem in Equation (15) is a least squares
problem whose solution can be formulated as:

 
J*Jþm

X
x2Q

G *F*FG

!
f k;jþ1¼J*yþmG *

 X
x2Q

F*
�
hjþ1
x �Qj

�!

(20)

where F ¼ F M k ðG xðf kÞÞ, and the superscript * represents adjoint
operator. By simplifying Equation (20), the analytical solution can
be described as

f k;jþ1 ¼
 
J*Jþ m

X
x2Q

G *F*FG

!�1

 
J*yþmG *

 X
x2Q

F*
�
hjþ1
x �Qj

�!! (21)

For the second sub-problem, the manifold M kþ1 can be directly
updated through Equation (11b). Thus, by combining equations
(11b), (16) and (17) and (21), the LDMM-based reconstruction
model shown in Equation (7) can be solved efficiently. Algorithm 1
summarizes the overall algorithm workflow of the proposed
LDMM-based seismic data reconstruction method.

Algorithm 1. Seismic data reconstruction based on LDMM
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3. Examples

In this section, we perform numerical experiments to test the
proposed LDMM method on synthetic and field seismic data. Note
that the number of inner and outer iterations of the proposed
method is set to 3 and 10 in all the examples, respectively. For
comparison, we also present the reconstruction results with the
Curvelet-based sparsity-promoting L1-norm minimization method
(Wang et al., 2011) and themultichannel singular spectrum analysis
method (Oropeza and Sacchi, 2011). To quantitatively evaluate the
reconstruction performance, this paper introduces two measure-
ment parameters, which defined as follows:

SNR ¼ 10log 10

 
kf k22

kf � f *k22

!
(22)

ERR ¼ kf * � f k2
kf k2

(23)

where f * denotes the reconstructed data, f denotes the complete
data. Here, the higher the SNR value and the lower the ERR value
means that the result has better reconstruction quality.

3.1. Synthetic example

In order to analyze the feasibility and stability of the proposed
method, we forward a synthetic record (see Fig. 2a) using Mar-
mousi model and finite-difference approach with the following
parameter settings: the temporal sampling interval is 2 ms, the
time samples are 1001, the trace interval is 25 m, and the trace
number is 500. By irregularly removing 50% traces from the
Fig. 2. The synthetic data for testing. (a) Original synthetic reco
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complete data, we simulate the under-sampled data and show it in
Fig. 2b. Fig. 3a illustrates the reconstruction results using the LDMM
algorithm with patch size 16 � 16 and patch overlap 15, which is
substantially close to the exact result shown in Fig. 2a. We
compared the proposed LDMM method with the Curvelet and
MSSA methods. For Curvelet method, the maximum number of
iterations is set to 300, and the Lagrangian parameter is set to 0.15.
In MSSA method, the processing frequency range is 0e125 Hz, the
size of the local window is set to 100, the window overlap is set to
70 in each dimension, the rank is determined by the adaptive
strategy (Wang et al., 2020), and the rank reduction process is
implemented by the rank-one orthogonal matching pursuit algo-
rithm (Jia et al., 2016). We reveal the reconstruction results of the
Curvelet method and the MSSA method, as shown in Fig. 3c and e.
From Fig. 3c and e, it can be observed that Curvelet method and
MSSA method all effectively restore the removing traces, but these
are slightly inferior to LDMM in the continuity of seismic events. In
addition, we also draw the difference between the reconstructed
results of three methods and the original data, as shown in Fig. 3b,
d, and 3f, respectively. As can be seen from Fig. 3b, d, and 3f, the
LDMM method has a smaller residual signal than the other two
methods. This clearly confirms that the proposed method obtains a
more accurate reconstruction result than other two methods.

To show the details of the reconstruction in different methods,
we present a comparison of the 217th trace in Fig. 4. In Fig. 4, the
blue line is the original seismic trace. The red, magenta and green
line is the recovery result of the LDMM, Curvelet, and MSSA,
respectively. As can be seen from Fig. 4, the blue and red lines are
still very close to each other while the magenta line and green line
deviate from the blue line a lot as shown in arrows, meaning that
the proposed LDMM method can better preserve the amplitude.
We summarize the evaluation metrics and calculation time of the
rd. (b) Decimated data with irregularly missing 50% traces.



Fig. 3. Reconstructed results of three methods on the decimated data with irregularly
missing 50% of traces. (a) Reconstruction by LDMM, SNR ¼ 20.2231 dB. (b) Recon-
struction error of LDMM. (c) Reconstruction by Curvelet, SNR ¼ 18.5131 dB. (d)
Reconstruction error of Curvelet. (e) Reconstruction by MSSA, SNR ¼ 16.2443 dB. (f)
Reconstruction error of MSSA.
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above three reconstruction methods in Table 1. From the evaluation
metrics in Table 1, we can note that the SNR value of reconstructed
data of the LDMM is 20.2231 dB, which is higher than other
methods. At the same time, the LDMM method yields a lower ERR
value than the othermethods. It is apparent that the LDMMmethod
achieves a higher reconstruction quality than the other methods.
From the time cost comparisons in Table 1, although the efficient
iterative algorithm is utilized to solve the LDMM-based recon-
struction model, its efficiency is still slightly inferior to the other
two methods.

To test the sensitivities of different methods to the under-
sampling rate, we consider several sampling rates vary from 30%
523
to 80%. For a fair comparison, we repeat the test for each sampling
ratio with 10 irregularly sampling operators, and then take the
average value of the 10 indicators (SNR and ERR) as the metric at
this sampling ratio. Fig. 5a and b respectively provide a comparison
of the SNR values and ERR values for all of the above sampling
ratios. From Fig. 5, the SNR values of the LDMMmethod are always
the largest and the ERR values are always the smallest among these
methods. Meanwhile, it also can be found that the reconstruction
accuracy of the three approaches is not much different at high
sampling rates, while the proposed LDMMmethod has a significant
improvement at low sampling rates. This demonstrates that the
proposed LDMM method can be potentially advantageous in
reconstructing seismic data with low sampling rates. To illustrate
this point more visually, Fig. 6 shows an example of the above
synthetic data reconstruction where 30% of traces are sampling.
Fig. 6a and b plot the complete and under-sampled data, respec-
tively. Fig. 6c-e presents the reconstructed data of the LDMM,
Curvelet, and MSSA methods, and Fig. 6f-g draw their reconstruc-
tion errors, respectively. As shown in Fig. 6, the Curvelet and MSSA
methods recover the missing traces to a certain extent, while
introducing a large number of amplitude artifacts in reconstructed
profiles. In contrast, the LDMM method can produce much better
results because it recovers the effective signal well and greatly
avoids the generation of additional artifacts. Using Curvelet method
and MSSA method in this case, we could achieve SNR ¼ 11.2358 dB
(ERR ¼ 0.2743), and SNR ¼ 9.1107 dB (ERR ¼ 0.3503), respectively,
while LDMMachieved SNR¼ 13.4563 dB (ERR¼ 0.2124). Obviously,
the LDMM method does superb work of reconstructing the seismic
data with a low sampling rate.
3.2. Field data example

To verify the applicability of the proposed method, we choose a
field pre-stack gather as the experimental data, as shown in Fig. 7a.
Fig. 7b presents the under-sampled data, which regularly removes
50% traces of Fig. 7a. The reconstructed data obtained by the LDMM,
Curvelet, and MSSAmethods are depicted in Fig. 8a, c, 8e, and their
corresponding reconstruction errors are shown in Fig. 8b, d, 8f,
respectively. In this example, the maximum number of iterations of
Curvelet method is 300, and the Lagrange parameter is 0.062. For
the MSSA method, we linearly increase the frequency band from
0 to 125 Hz at an interval of 0.05 Hz and implement the recon-
struction on each frequency slice. Meanwhile, the local window
strategy is still applied, and its specific parameters are set as fol-
lows: the window size is 60, thewindow overlap is 35, and the rank
is also determined by the adaptive strategy. For the proposed
LDMM method, the parameters are set up in the same way as the
synthetic example. From Fig. 8c and d, we can observe that the
Curvelet method successfully recovers missing data, but it also
produces certain amplitude artifacts. It is found from Fig. 8e and f
that the MSSA method performs slightly worse on the wave-field
boundaries, and there are serious energy residues in these areas.
From Fig. 8a and b, it can be observed that, the continuity of seismic
events is well enhanced and the amplitude variation is effectively
maintained after reconstruction by the present method, while the
reconstruction result is closer to the original field data, demon-
strating that the proposed LDMM method still has higher accuracy
in field data reconstruction.

In addition, we also compared the FeK spectrum of the second
field data before and after reconstruction. Fig. 9a and b are the FeK



Fig. 4. Comparison of the 217th seismic trace in Fig. 3. In which the blue line is the original seismic trace. The red, magenta and green line is the recovery result of the LDMM,
Curvelet, and MSSA, respectively.

Table 1
The evaluation metrics and time cost of three methods in synthetic example.

Method SNR, dB ERR Time, s

LDMM 20.2231 0.0974 339.5887
Curvelet 18.5131 0.1186 216.3248
MSSA 16.2443 0.1541 256.3827

Fig. 5. The SNR (a) and ERR (b) diagrams of the three approaches with different sampling rate.
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Fig. 6. Reconstructed results of three methods on the under-sampled data with missing 70% of traces. (a) Complete data. (b) Under-sampled data. (c) Reconstruction by LDMM,
SNR ¼ 13.4563 dB. (d) Reconstruction by Curvelet, SNR ¼ 11.2358 dB. (e) Reconstruction by MSSA, SNR ¼ 9.1107 dB. (f) Reconstruction error of LDMM. (g) Reconstruction error of
Curvelet. (h) Reconstruction error of MSSA.
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Fig. 7. The first field data for testing. (a) The complete field data. (b) The under-sampled data with regularly removing 50% traces.
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representations of the data in Fig. 7a and b, respectively. From
Fig. 9b, we can see that severe spatial aliasing that is attributable to
the regular removal of seismic traces. Fig. 10 illustrates the FeK
spectrum of the data in Fig. 8, in which Fig. 10a, c, 10e are the
FeK spectrum of the reconstructed results of three methods, and
Fig. 10b, d, 10f are the FeK spectrum of the reconstructed errors.
From FeK spectrum of the reconstruction results, we observe that
the most of aliased energy presented in the FeK spectrum has been
effectively eliminated by three methods. However, from the FeK
spectrum of the reconstruction errors, we can find that the more
residual energy is distributed around the effective signal in both the
Curvelet method and the MSSA method (as shown the white ar-
rows), and the proposed LDMM method has fewer residual energy
around the effective signal. This result further proves that the
proposed LDMM method has distinct strengths in aspect of pre-
serving the reconstructed amplitude. Table 2 presents the recon-
struction evaluation metrics and time cost of the above three
methods in this example. From Table 2, it is clear that the proposed
LDMM method outperforms the other two methods in terms of
accuracy, but is slightly inferior to them in terms of efficiency.

The second field example is shown in Fig. 11, which intends to
further test the effectiveness of the proposed LDMM method for
reconstructing the mixed missing data. Fig. 11a plots the original
complete seismic gather with a temporal sampling interval of 2 ms
and a trace interval of 10 m. We regularly remove 50% of the traces
and irregularly remove 10% of the traces from Fig. 11a to obtain the
mixed missing data, as shown in Fig. 11b. We implement the pro-
posed LDMM method to reconstruct this decimated data. In this
case, the patch size is 20 � 20, and the patch overlap is 19. The
526
reconstruction result and error are shown in Fig. 11c and d, for
which we can see that the proposed LDMM method successfully
restore the removing seismic traces, and the signal leakage is quite
small. To more vividly show the reconstruction effect, we have
drawn the FeK spectrum of Fig. 11. Fig. 12a displays the FeK
spectrum of the complete data. Fig. 12b displays the FeK spec-
trum of the decimated data and clearly shows that severe noise and
spectrum aliasing are produced in the FeK domain due to the
mixed missing. Fig. 12c displays the FeK spectrum of the recon-
struction data performed by the LDMM method. As Fig. 12c ex-
hibits, after reconstruction by the proposed LDMM method, the
noise and aliasing in FeK spectrum are well suppressed, and the
reconstructed spectrum is essentially consistent with the spectrum
of the original data. In this example, the value of SNR and ERR is
equal to 15.1765 dB and 0.1742, respectively. All the evidence
demonstrates that the proposed LDMM method has good adapt-
ability for reconstructing the mixed missing data.

The last example is employed to validate the practicality of this
method in actual processing. Fig. 13a shows an acquired pre-stack
gather, which contains 150 traces with a spatial sampling interval
of 10 m. Fig. 13c shows an enlargement of the rectangular area in
Fig. 13a. As seen in Fig. 13a and c, there is an obvious sawtooth
phenomenon in the acquired gather, which is caused by too large
spatial sampling interval. Using the presented LDMM method for
reconstruction, we obtained reconstructed gather with 300 traces
and 5 m spatial sampling interval, as shown in Fig. 13b. It can be
seen from Fig. 13b that, the sawtooth phenomenon is well allevi-
ated after reconstruction by the LDMM method, which can also be
clearly seen in Fig. 13d. Fig. 14 plots the FeK spectrum of the gather



Fig. 8. Reconstructed results of three methods on the first field data. (a) Reconstruc-
tion by LDMM, SNR ¼ 16.7316 dB. (b) Reconstruction error of LDMM. (c) Reconstruc-
tion by Curvelet, SNR ¼ 14.5530 dB. (d) Reconstruction error of Curvelet. (e)
Reconstruction by MSSA, SNR ¼ 13.7563 dB. (f) Reconstruction error of MSSA.

Fig. 9. The FeK spectrum of Fig. 7. (a) The FeK spect
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before and after reconstruction using the proposed LDMMmethod.
Fig. 14a pictures the FeK spectrum of the seismic gather before
reconstruction, in which the spatial aliasing caused by big trace
interval is visible, as shown at the arrow. Fig. 14b is the FeK spec-
trum of the seismic gather reconstructed by the LDMM method
presented in this paper. After reconstruction, trace interval is
halved so that the spatial aliasing phenomenon is effectively sup-
pressed. This result further demonstrates the effectiveness and
practicality of the proposed method for seismic data
reconstruction.

4. Discussion

The low dimensional manifold model is a patch-based regula-
rization method, thus the characteristics (patch size and overlap
degree) of the patch will directly determine the reconstruction
accuracy and efficiency of this method. Herein, wewill examine the
impact of different patch features on the reconstruction results. We
first analyze the sensitivity of the LDMM method to the patch size
parameter using Fig. 7b as the test data. Fig. 15 shows the recon-
struction accuracy and efficiency of LDMM with patch sizes from
6 � 6 to 24 � 24 (the patch overlap is set to maximum). It can be
observed from Fig. 15a that, as the patch size increases, the SNR of
the reconstruction result increases first and then decreases slightly,
and the ERR decreases rapidly and then increases slightly. This in-
dicates that when the patch size is too small, the complete struc-
tural information contained in the patch will be very scarce, which
is unfavorable for the recovery of missing data. Conversely, when
the patch size is too large, over-fitting will make the result too
smooth and lose more detail features, resulting in a slight decrease
in reconstruction quality. In Fig. 15b, we can see that the consuming
time exhibits an exponential increase with the patch size increases.
Comprehensive considering of the relationship between recon-
struction quality and computational time, we hold that the patch
size of 16 � 16 is the most appropriate in this example.

Here we discuss how overlap degree affects the accuracy and
computational efficiency of LDMM. Similarly, taking Fig. 7b as an
example, the relationship between patch overlap and the recon-
struction result is studied where the patch size is equal to 16 � 16.
Fig. 16a presents the variation of the number of patches with the
patch overlap degree and clearly shows that the higher patch
overlap can produce a greater number of patches. Fig. 16b portrays
the change curve between the patch overlap and the evaluation
metrics of reconstruction result, and Fig. 16c demonstrates how the
computational time changes with patch overlap. As Figs. 16b and c
rum of Fig. 7a. (b) The FeK spectrum of Fig. 7b.



Fig. 10. The FeK spectrum of Fig. 8. (a) The FeK spectrum of Fig. 8a. (b) The FeK spectrum of Fig. 8b. (c) The FeK spectrum of Fig. 8c. (d) The FeK spectrum of Fig. 8d. (e) The FeK
spectrum of Fig. 8e. (f) The FeK spectrum of Fig. 8f.

Table 2
The evaluation metrics and time cost of three methods in first field data example.

Method SNR, dB ERR Time, s

LDMM 16.7316 0.1457 254.2587
Curvelet 14.5530 0.1872 162.6423
MSSA 13.7563 0.2052 199.2294
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shown, the reconstruction accuracy and computational time both
increase as the patch overlap increases. The reason is perhaps that
the highly overlapped patches can generate more points (patches)
to approximate the manifold, thus improving the reconstruction
quality. However, using more points (patches) to approximate the
manifold also brings a huge amount of computation. In seismic data
reconstruction work, its goal is to obtain optimal reconstruction
result in order to recover the lost geophysical information as much



Fig. 11. The second field example for testing. (a) The original field gather. (b) The mixed missing data with removing 60% of traces. (c) The reconstructed result using the proposed
LDMM method. (d) The reconstructed residual.

Fig. 12. The FeK spectrum of Fig. 11. (a) The FeK spectrum of Fig. 11a. (b) The FeK spectrum of Fig. 11b. (c) The FeK spectrum of Fig. 11c.
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Fig. 13. The last field example for testing. (a) Original field gather with 10 m trace interval. (b) Reconstructed field gather using proposed LDMM method with 5 m trace interval. (c)
Enlargement of the rectangular area in Fig. 13a. (d) Enlargement of the rectangular area in Fig. 13b.
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Fig. 14. The comparisons of the FeK spectrum. (a) The FeK spectrum of Fig. 13a. (b) The FeK spectrum of Fig. 13b.

Fig. 15. The change curves of evaluation metrics (a) and the computational time (b) with patch size r � r.
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as possible. Therefore, we recommend that the overlap degree of
patch should be set to the maximum when using the LDMM
method for seismic data reconstruction.

5. Conclusions

In this paper, we have presented a novel framework for recon-
structing the under-sampled seismic data based on low dimen-
sional manifold model. In a manner, the proposed method can be
531
regarded as a generalization of conventional regularized recon-
struction method. Specifically, the proposed method replaces the
transformation or mapping operations of the conventional regu-
larized reconstruction method with a patches manifold of the
seismic data, and utilizes the dimension of the patches manifold as
the regularizer to reconstruct the under-sampled seismic data. The
crucial procedure of the proposed method is to solve the dimension
of the patches manifold. Toward this, we adopt an efficient
dimensionality calculation method based on low-rank



Fig. 16. The change curves of the number of patches (a), the evaluation metrics (b) and the computational time (c) with different patch overlap.
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approximation, which provides a reliable safeguard to enforce low
dimensionality in the reconstruction process. We use one synthetic
data set and three field gathers to test the performance of the
proposed method. Numerical experiments show that the proposed
method has good flexibility and adaptability. Meanwhile, the pro-
posed method also achieves state-of-the-art reconstruction results,
compared to the Curvelet-based sparsity-promoting L1-norm
minimization method and the multichannel singular spectrum
analysis method. In future work, we will focus on the expansion of
this method for reconstructing high-dimensional seismic data, as
well as investigate the parallelization to further speed up its
execution efficiency.
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