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a b s t r a c t

Low-field (nuclear magnetic resonance) NMR has been widely used in petroleum industry, such as well
logging and laboratory rock core analysis. However, the signal-to-noise ratio is low due to the low
magnetic field strength of NMR tools and the complex petrophysical properties of detected samples.
Suppressing the noise and highlighting the available NMR signals is very important for subsequent data
processing. Most denoising methods are normally based on fixed mathematical transformation or hand-
design feature selectors to suppress noise characteristics, which may not perform well because of their
non-adaptive performance to different noisy signals. In this paper, we proposed a “data processing
framework” to improve the quality of low field NMR echo data based on dictionary learning. Dictionary
learning is a machine learning method based on redundancy and sparse representation theory. Available
information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary
learning. The advantages and application effectiveness of the proposed method were verified with a
number of numerical simulations, NMR core data analyses, and NMR logging data processing. The results
show that dictionary learning can significantly improve the quality of NMR echo data with high noise
level and effectively improve the accuracy and reliability of inversion results.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

As a golden tool that can directly detect and reveal the dynamics
of fluid molecules in rock porous media, nuclear magnetic reso-
nance (NMR) technology can quantitatively identify the fluid
components and precisely provide petrophysical parameters, such
as pore structure, fluid saturation, permeability, wettability, vis-
cosity and so on (Coates et al., 1999; Liang et al., 2019; Liu et al.,
2019; Deng et al., 2014; Jia et al., 2016; Xiao et al., 2013). It is very
helpful for the evaluation of oil and gas reservoirs. With the
attention gradually being focused on unconventional and complex
reservoirs, the NMR wireline, LWD (Logging While Drilling) and
core analysis techniques become more and more important and
practical for complex and tight reservoirs evaluation (Xiao et al.,
2015; Luo et al., 2019, 2020), such as shale and ultra-deep tight
sandstone reservoirs (Song and Kausik, 2019).
y Elsevier B.V. on behalf of KeAi Co
However, the data signal-to-noise ratio (SNR) detected from
low-field NMR instrument is normally low, which will affect the
subsequent NMR data processing and interpretation work. Two
reasons were concluded based on the recent publications in recent
years. Firstly, the NMR instruments employ the static magnetic field
generated by the permanent magnet to polarize the formation at
certain depth of investigation (DOIs) (Liao et al., 2021). The mag-
netic field is extremely weak and varied with surrounding envi-
ronment, resulting in lower signal amplitude. Secondly,
unconventional reservoirs have a low porosity and permeability,
leading to the acquired low signal amplitude (Xie et al., 2015; Song
and Kausik, 2019). It is necessary to increase averages during the
acquisition period to meet the requirements of NMR data pro-
cessing and interpretation when SNR of data is low.

Low field NMR technology adopts CPMG pulse sequence based
on relaxation and diffusion mechanism (Carr and Purcell, 1954;
Meiboom and Gill, 1958) to accurately measure the formation. By
collecting echo data and inverting echo data with Inverse Laplace
Transformation (ILT) methods, the distribution of one-dimensional
(1D) or two-dimensional (2D) parameters such as T1, T2, T1-T2 and
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D-T2 of formation fluid can be obtained (Xie and Xiao, 2011; Song
et al., 2002; Hürlimann and Venkataramanan, 2002; Sun and
Dunn, 2002). The acquisition of these parameters is the premise
of NMR interpretation for oil and gas reservoirs. Generally, the
signal response equation of 1D or 2D NMR can be attributed to the
first kind of “Fredholm Integral Equation”, which is an ill-
conditioned problem without referable analytical solutions. At
present, the most inversion researches are based on Singular Value
Decomposition (SVD) and Butler-Reeds-Dawsons (BRD) (Prammer,
1994; Butler et al., 1981). However, a small disturbance from noise
in echo data will cause the deviation of the inversion results.
Therefore, various inversion methods constrained by penalty terms
have been developed (Zou et al., 2016), by choosing regularization
parameters and its weight, to keep the solutions smoother and
sparser simultaneously, in other words, to ensure the stability and
resolution of the inversion results (Guo et al., 2018, 2019). In
addition, using machine learning methods to directly invert the
echo data, suppress the uncertainty of numerical solution and
improve resolution of 1D or 2D distributions is a new research di-
rection of NMR data processing (Parasram et al., 2021; Wang et al.,
2017). However, the artificial network method (Parasram et al.,
2021) needs a large of label data sets (at least 400000 groups) to
train the model, which are based on the forward T2 distribution
model. In addition, the sparse Bayesian learning method (Wang
et al., 2017) requires the prior knowledge with initial inversion
result of echo data, to provide the overlapping information of 2D
distribution.

Although various inversion methods emerged, the noise in the
NMR signals still seriously affect the accuracy of the inversion re-
sults. How to improve the data quality, like suppressing noises
while highlighting signals, is the fundamental issue to obtain more
desirable NMR processing results. To this end, it is necessary to
effectively suppress the noise characteristics introduced by the
instrument and the surrounding environment and further improve
the SNR of the raw echo data. A lot of meaningful works on low-
field NMR data denoising methods have been published. In the
early stage, some researchers adopted time domain filtering
(Edwards and Chen, 1996) and SVDmethods (Lin and Hwang, 1993;
Chen et al., 1994) to suppress noise by directly filtering out the
noise and removing the smaller eigenvalues that represent the
noise in the eigenvalue matrix respectively. These methods will
lead to strong uncertainty in the inversion results. Subsequently,
the mathematical transformation method based on multi-scale
wavelet (Mallat and Hwang, 1992) began to be used in the pro-
cessing of NMR echo data with low signal-to-noise ratio. It is
feasible because the wavelet can better fit the signal distribution
under noise disturbance and extract the signal characteristics of
raw echo data. Subsequently, a lot of research works depended on
discrete wavelet (DWT) were published. Zheng and Zhang (2007)
proposed a spatial correlation threshold denoising method based
on non-decimated wavelet transformation. Wu et al. (2011) took a
wavelet domain threshold method to realize the denoising process
in digital phase signal detection period. Xie et al. (2014) compared
three denoising methods of NMR echo data based on wavelet
transformation, which proved that wavelet threshold method can
obtain higher denoised results and more accurate formation
porosity. Meng et al. (2015) proposed an adaptive wavelet packet
threshold denoising algorithm to denoise NMR logging data, and
verified the effectiveness of NMR data under the condition of low
signal-to-noise ratio. Ge et al. (2015) proposed a method based on
particle swarm optimization (PSO) algorithm to improve the per-
formance of method, combination of wavelet threshold and time-
domain exponential weighted moving average, to reduce the
noise of echo data and achieved good inversion results. Recently,
the methods based on mathematical morphology (Gao et al., 2020)
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and the combination of variable window sampling and discrete
cosine transformation (DCT) (Gu et al., 2021) have also been used in
the denoising process of the raw echo data, which can effectively
suppress the noise amplitude to some degree.

In the past decades, the sparse representation theory had been
widely used in compression, inversion, feature extraction and im-
age noise reduction (Starck et al., 2010; Ahmed and Fahmy, 2001).
The basic idea of sparse representation is to use a dictionary (a
mathematical transformation matrix) and several corresponding
non-zero coefficients to represent the signal. The noise has the
characteristics with randomness and cannot be sparsely repre-
sented so that the available signals can be highlighted. For afore-
mentioned DWT and DCT method, the noise can be directly
removed by eliminating the small coefficients containing noise
characteristics. If most of the coefficients of noise are zero, or there
are only existed several values closer to zero, better denoising re-
sults can be achieved by filtering the smaller coefficients. The co-
efficients with large absolute values will retain the most effective
information in the raw echo data. However, fixed mathematical
transformation, such as DCT (Gu et al., 2021) and DWT (Xie et al.,
2014; Meng et al., 2015), cannot effectively represent them all
due to fixed analytic formula. For different types of NMR signals, the
selection of threshold is highly subjective. When the noise is
greater than the signal, the fixed mathematical transformation
methods cannot fully represent signal characteristics. This may
result in mistaken elimination of the sparse coefficients that rep-
resenting the real echo data during denoising procedure and lead to
the reduction of the accuracy and reliability in subsequent inver-
sion process. If an appropriate transformation matrix or dictionary
can be constructed adaptively according to the characteristics of
NMR data, it could produce better denoising effects and improve
the quality of raw data by preserving the sparse characteristics of
signal and eliminating redundant noise characteristics.

Dictionary learning (DL) is a machine learning method, which
can extract signal characteristics from the raw echo data by a self-
adaptive and adjustable dictionary learned from noisy signals.
Therefore, stronger sparse representation ability than that of fixed
mathematical transformation can be established. Dictionary
learning has been widely used in seismic data (Beckouche and Ma,
2014) and noisy image recovering (Xu et al., 2017; To�si�c and
Frossard, 2011), but rarely applied to low-field NMR data process-
ing. Therefore, in this paper, we will adopt dictionary learning and
propose a “data processing framework” to adaptively learn the
signal and noise characteristics from the raw NMR echo data. The
sparse representation and dictionary updating are simultaneously
operated with Orthogonal Match Pursuit (OMP) and K-SVD
respectively. The difference of sparse characteristics between signal
and noise can be processed and finally reconstructed to improve
the quality of NMR echo data. We also applied dictionary learning
to process NMR core analysis andwell logging data, and verified the
advantages of using dictionary learning in the low-field NMR data
processing. The numerical simulations, core analysis and well log-
ging data processing results show that the dictionary learning can
further improve the inversion accuracy and reliability and spec-
trum resolution at low SNRs. It is believed that dictionary learning
can play an important and practical role in NMR core analysis and
downhole NMR data processing in the future.

2. Principle and method

2.1. Response equation for NMR measurement

We firstly consider about 1D NMR data, and conduct numerical
experiments based on dictionary learning. The 1D NMR measure-
ment usually refers to the measurement of longitudinal relaxation



S.-H. Luo, L.-Z. Xiao, Y. Jin et al. Petroleum Science 19 (2022) 581e593
time T1 and transverse relaxation time T2 of saturated fluid rocks,
which can be used to obtain important reservoir parameter infor-
mation such as pore structure, fluid saturation and permeability
(Coates et al., 1999). T1 is usually measured by “Inversion Recovery”
or “Saturation Recovery” method, and T2 is measured by CPMG
(Carr-Purcell-Meiboom-Gill) pulse sequence. When the polariza-
tion time is sufficient, the general response equation of one-
dimensional T1 or T2 measurement can be obtained:

bðtÞ ¼
ð
f ðTiÞ

�
c1 � c2,exp

�
� t
Ti

��
dTi þ ε (1)

In Equation (1), i ¼ 1, 2. When i ¼ 1, it means the measurement
of T1, if c1 ¼ 1, c2 ¼ 1, it means “Saturation Recovery” method, if
c1 ¼ 1, c2 ¼ 2, it means “Inversion Recovery”method. When i ¼ 2, it
means the measurement of T2, and c1 ¼ 0, c2 ¼ �1. The discrete
form of Equation (1) is

bk ¼
XTi;max

Ti;min

f
�
Ti;j
�"

c1 � c2,exp

 
� tk
Ti;j

!#
þ εk: (2)

In Equation (2), j ¼ 1, 2, …, n, n is the number of preselected
relaxation time components. k ¼ 1, 2, …, m, m is the number of
echo, ti is the acquisition time (usually an integral multiple of the
echo interval). bk is the echo signal amplitude, Ti;j is the j-th
relaxation time component preselected by Ti, εk is measured noise,
including instrument background noise and external electromag-
netic noise, f ðTi;jÞ is the amplitude of relaxation time Ti;j.

Since T2 measurement is mainly used in practical application,
this paper only considers obtaining the spin echo data constructed
by T2 distribution.
2.2. Dictionary learning

Dictionary learning (DL) is a machine learning method, which is
based on sparse representation theory to obtain the over complete
dictionary and sparse representation of the signal through a given
training sets. Assuming the signals can be sparsely represented by
several atoms in an over complete dictionary (as shown in Fig. 1),
DL allows us to get rid of the limitation of selecting the corre-
sponding methods for establishing fixed mathematical trans-
formed basis matrix (fixed dictionary), and to adaptively and
accurately capture the characteristics of the current data.

Dictionary learning mainly contains two procedures: sparse
representation and dictionary atoms updating. With sufficient it-
erations of these two procedures, we can adaptively obtain the
redundant dictionaries representing data characteristics. The
Fig. 1. Schematic of sparse representation with a dictionary for signals. Signals can be
approximately represented by using a dictionary and corresponding sparse co-
efficients. The procedure for obtaining coefficients is sparse representation and for
updating atoms is dictionary update. Dictionary learning is consisted of above two
procedures.
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general procedure is as described below:

Step 1. Inputting training signal data x, initial dictionary D0,
number of iterations N, error standard ε.

Step 2. Initializing residual error r0 ¼ x, and giving initial dictio-
nary D0, which is composed of signal or fixed transformation basis,
and setting the number of iterations t ¼ 0.

Step 3. For the given initial dictionary D0, obtaining the sparse
representation ak of the training signal x (Sparse representation).

Step 4. For the training signal x and its sparse representation ak,
updating each atom dk in dictionary D column by column to obtain
the updated dictionary Dt (Dictionary updating).

Step 5. Judging whether the number of iterations t is greater than
N and whether D meets the requirements of the final conditions. If
yes, stop the iteration and output the final dictionary D, otherwise,
return to Step 3.
2.2.1. Sparse representation
According to the sparse representation theory, the sparse rep-

resentation of a signal can be expressed as an optimization problem
with constraints (Starck et al., 2010; Elad and Aharon, 2006) as
followed:

ba2arg min k ak0; s:t: k x� Dak22 � ε (3)

or

ba2arg min k x� Dak22; s:t: k ak0 � T (4)

Equation (3) is an optimization problem based on error
constraint, and Equation (4) is an optimization problem based on
sparsity constraint, which are equivalent to each other; D is the
dictionary, a is the sparsity coefficient, x is the original signal, ε is
the error threshold, and T is the sparsity or the number of non-zero
sparse coefficients. The sparse representation is a NP hard problem,
which can be solved by algorithms such as basis pursuit (BP) (Chen
et al., 2001), orthogonal matching pursuit (OMP) (Pati et al., 1993).
OMP algorithm is widely used in sparse representation, data
compression and reconstruction because of its good reconstruction
efficiency and fast running speed. OMP algorithm is a typical greedy
algorithm (Pati et al., 1993). Its general process is as followed:

Step 1. Inputting training signal x, dictionary D, sparsity T, error
constraint ε.

Step 2. Initializing parameters, initial residual error r0 ¼ x, num-
ber of iterations t ¼ 0, location index set I ¼ F;

Step 3. Selecting the atom dk that best matching with the current
residual error rt, that means the largest projection on the atom dk,

where bk2arg max
k

n
dTk ; rt

o
, and save its corresponding position.

Step 4. Updating index set I ¼ ðI;bkÞ.
Step 5. The least square method is used to solve the sparse coef-

ficient aI ¼ ðDT
I DIÞ�1

DT
I x.

Step 6. Updating residual error rtþ1 ¼ x� DIaI.

Step 7. If rtþ1
2
2 > ε, t þ 1 < T , repeating step from 3 to 6 until the

requirements are met, and the sparsity coefficient a is output.

In Step 5, the operation speed is slow due to the inverse process.
Therefore, the “Improved Batch OMP” method (Rubinstein et al.,
2008) can be adopted to replace the least squares inversion pro-
cess by using Cholesky decomposition in the conventional OMP
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algorithm, which will largely accelerate the running speed of the
algorithm and ensure the solution accuracy.

2.2.2. Dictionary updating
The dictionary updating starts after the sparse representation.

The sparse vector a or sparse matrix A obtained from sparse rep-
resentation is used to update the atoms dk in dictionary D. The
objective function of dictionary updating is:

k X � DAk22 ¼
�����
�����X �

Xj
k¼1

dka
T
k

�����
�����
2

2

¼
�����
�����
0@X �

X
ksj

dka
T
k

1A� dja
T
j

�����
�����
2

2

¼
������Ej � dja

T
j

������2
2
:

(5)

where X is the signal vector or matrix to be processed, dk and dj are
the j-th and k-th atoms in dictionary D, and ak and aj are the j-th
and k-th elements in sparse coefficient matrix A, respectively. E is
the corresponding error matrix, and Ej represents the error matrix
except for dj atom.

Generally, the SVD method is used to decompose the error
matrix, and its corresponding function expression is:

Ek¼ULVT : (6)

The first column of matrix U obtained after decomposition is
selected as the new dj atom. The first row of matrix V is multiplied
by first eigenvalue of positive semi-definite diagonal matrix L,
which is calculated to update the sparse coefficient aj corre-
sponding to the dj column. Until all atoms are updated once, it is
indicated that one iteration is completed.

Repeating the sparse representation and the dictionary update
procedures until the number of iterations K is reached or the iter-
ation error meets the pre-selected value ε, the final dictionary and
sparse coefficients are obtained. Because SVD decomposition with
K iterations is required, this method is also called K-SVD dictionary
learning (Aharon et al., 2006).

2.3. Denoising with dictionary learning

The NMR echo data can be regarded as an aperiodic and uni-
lateral signal in time-domain, which is subjected to the law of
multi-exponential decay. The energy of the NMR signal is mainly
concentrated in the front part of the signal. The faster the signal
decays, the more the short relaxation components are indicated,
and the long decay part indicate the long relaxation components, as
shown in Fig. 2. Fig. 2(b) and (c) show the sparse representation of
NMR echo data in DCT domain and DWT domain (taking “db4”
wavelet as an example). It can be seen that the DCT coefficients of
echo signal are mainly concentrated within low frequency range,
and the coefficients with high-frequency range mainly represent
noise. DWT coefficients are calculated and spliced according to
wavelet decomposition order. The noise may not be sparsely rep-
resented in both DCT domain and DWT domain, as shown in Fig. 2
(d). Therefore, the NMR echo data has good sparsity, and the co-
efficients of noise can be eliminated by using soft and hard
thresholds to achieve the noise suppression of echo data (Gu et al.,
2021; Xie et al., 2014; Meng et al., 2015). However, the denoising
method based on the fixed mathematical transformation methods
will not meet the adaptivity for different types of NMR echo data
detected from different samples, because it uses a fixed base matrix
to conduct the sparse representation. It can suppress the noise to a
certain extent but its ability to improve the quality of data and
corresponding inversion accuracy may be limited.
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The NMR echo data with random noise can be expressed as:

y¼ xþ n (7)

where, y is the noisy echo data with noise, x is the noiseless echo
data, n is the random noise which is generally thermal noise with
standard deviation of s.

The 1D NMR echo data are normally acquired by CPMG pulse
sequence, and each adjacent echoes are correlated. In order to fully
extract the characteristics of NMR signal and ensure high-quality
redundant dictionary and sufficient sparse representation, the
noisy data y can be sampled into patches. Directly obtaining 1D
patch data from y (as shown in Fig. 3(a)), or firstly building the raw
data y into an l� k matrix and then using a 2D patch operation
scheme (as shown in Fig. 3(b)), are alternative. After selecting a
patch size of n�m (n;m≪l; k), the 1D patch data can be directly
used to construct the training set. The 2D patch data should be
firstly transformed into a column vector like 1D patch data and then
used to construct the training set. It is noted that the overlapping
area of each patches should be the maximum to achieve the best
applications. Optionally, 70% of the patches or the entire patches
can be employed as the training set for dictionary learning.

If the denoised data X can be fully described through the sparse
representation of each patch, the denoising problem of a complete
natural signal can be expressed as (Elad and Aharon, 2006):�baij; bX ; bD� ¼ argmin

aij ;X;D
l k X � Yk22 þ

X
ij

mij

k aijk0 þ
X

k
ij

Daij � RijXk22 (8)

here, l is a constraint factor and related to the standard deviation s

of noise. mij is a control factor of residual errors and is related to

local patch data. It obeys constraint Daij � xij22 � T , and can be
processed implicitly in the process of sparse representation, which
can be neglected. Rij indicates the operation of patch selection. The
first term of Equation (8) constrains the proximity between noisy
data Y and denoised data X. The second term of Equation (8) en-
sures the continuous optimization of sparse coefficients when
solving the objective function. The third term constrains the
proximity between patch data RijX and its sparse representation
Daij. The latter two terms jointly ensure that there is only limited
error resulted from the sparse representation of each patch RijX in
the denoised results.

The three unknowns fbaij; bX ; bDg in Equation (8) need to be solved
in three steps. Firstly, the initial dictionary D can be initialized with
samples selected from training set S. The sparse dictionary D is
trained by performing K-SVD algorithm. When dictionary D is
known, let the denoised data X ¼ Y , and Equation (8) can be
rewritten as Equation (9):

baij ¼ arg min
aij

X
ij

mij k aijk0 þ
X

k
ij

Daij � RijXk22 (9)

The sparse representation of Equation (9) can be performed by
employing orthogonal matching pursuit algorithm (OMP) to obtain
the sparse coefficient aij of local patches.

Finally, when dictionary D and sparsity coefficient aij of local
patches are well learned and calculated respectively, Equation (8)
can be rewritten as Equation (10)

bX ¼ arg min
aij ;X

l k X � Yk22 þ
X

k
ij

Daij � RijXk22 (10)



Fig. 2. Sparsity of NMR echo data in DCT domain and DWT domain. (a) The demonstration of noisy echo data and noiseless data which is acquired by low-field NMR tools; (b) the
DWT and DCT coefficient distribution of noiseless echo data; (c) the DWT and DCT coefficient distribution of noisy echo data; (d) the DWT and DCT coefficient distribution of noise.
The DWT and DCT coefficient distribution of noise.

Fig. 3. Schematic of local patch operation for dictionary learning.
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The numerical solution of Equation (10) can be written as
Equation (11). The purpose of Equation (11) is to average the
overlappinge data pointss, and finally reconstruct the data to obtain
denoised results (Elad and Aharon, 2006). The scalar l is a regula-
rization parameter to give a weighted average which will work on
the local patches that are less overlapped. If l ¼ 0, there is no noisy
signal will be averaged into denoised result. However, it is not
possible for the noiseless reconstruction. In the 1D case for ours,
Equation (11) represents the averages of each point on the NMR
signal because the overlapped 1D patches are operated for dictio-
nary learning. For reconstruction of denoised NMR signals in
Equation (11), we select l ¼ Maxðecho dataÞ=ð10*sÞ which is self-
adaptive for denoising NMR echo data rather than a fixed value.
This choice is depended on the consideration that different types of
NMR echo data have different noise level and signal amplitude.
With the increment of noise level, small l is better for the denoised
results and vice versa.
585
bX ¼
0@lI þ

X
i;j

RTi;jRi;j

1A�10@lY þ
X
i;j

RTi;jDbai;j

1A (11)

The framework of improving denoising NMR data quality with
dictionary learning is shown in Fig. 4.
3. Numerical simulations

3.1. Forward model

In order to verify the advantages of dictionary learning for
improving NMR echo data, we constructed a bimodal T2 distribu-
tion, as shown in Fig. 5(a). The micro/nano pores are mainly
developed in shale or tight sandstone reservoir rocks. NMR needs
to measure fluid properties and effectively distinguish fluid



Fig. 4. Schematic of data processing framework for improving NMR data quality with using dictionary learning.

Fig. 5. Simulation echo data and corresponding inverted T2 distributions with SNR of
6, 10, 15 and 20 respectively.
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components, such as high viscosity organic matter, bound water,
movable oil and so on. Therefore, the T2 values of the fluid com-
ponents are assumed to be 10 ms and 150 ms respectively. Under
the noiseless condition, we set the total porosity as 10 and the
586
proportion of each component as 6.5 and 3.5, respectively.
Considering that the shortest echo spacing of downhole NMR in-
struments employed in tight and complex shale/sandstone reser-
voir evaluation is 0.2 ms (Song and Kausik, 2019), the number of
echoes is set as 2500 and the total acquisition time is 500 ms to
ensure sufficient decay of NMR echo data.

In the numerical simulation, the Gaussian white noise is added
to the noiseless echo data of the above model, and the SNR of the
noisy echo data is set as 6, 10, 15 and 20 respectively. The BRD
inversion method is used to obtain T2 distribution (Butler et al.,
1981), and the S-curve method (Zou et al., 2016) is used to select
the regularization factor. In order to conduct comparison, we fixed
the regularization factor within the range from 0.01 to 10, and
adaptively obtained a satisfactory smoothing factor with the S-
curve algorithm. Fig. 5 demonstrates the echo data and corre-
sponding inversion results with different noise levels. The porosity
values are 11.62 p.u. (SNR ¼ 6), 10.26 p.u. (SNR ¼ 10), 10.42 p.u.
(SNR ¼ 15), and 9.89 p.u. (SNR ¼ 20) respectively. The root mean
square error (RMSE) betweenT2 distribution and forwardmodel are
0.057 p.u. (SNR ¼ 6), 0.039 p.u. (SNR ¼ 10), 0.040 p.u. (SNR ¼ 15),
and 0.027 p.u. (SNR ¼ 20) respectively. It can be seen that the
inversion results are deviated from the desirable values under low
SNR condition. Next, we use dictionary learning method to process
synthetic noisy echo data. The first step is to adaptively obtain the
most suitable dictionary, which can characterize NMR data with
different noise levels. Subsequently, well-learned dictionary is used
to achieve noise suppression and improve the resolution of the T2
spectrum and the accuracy of porosity estimation.

3.2. Parameters setting for DL

Prior to dictionary learning, we need to build a training set. The
training set can be composed of noiseless NMR echo data or noisy
one. However, we cannot previously know the characteristics of
noiseless NMR data in practice. Therefore, we directly use noisy
NMR echo data for training dictionary. As mentioned above, in or-
der to fully extract the characteristics of NMR echo data, we directly
extract maximum overlapped 2D patches from the NMR echo data.
The size of each patch is n� n and the sampling step-size is 1. If the
NMR signal can be transformed into a 2D sampling matrix with N �



Fig. 6. Simulation results of denoised results after dictionary learning processing. (a-1) to (a-5) demonstrate addressed echo data with SNR ¼ 6; (b-1) to (b-5) demonstrate
addressed echo data with SNR ¼ 10; (c-1) to (c-5) demonstrate addressed echo data with SNR ¼ 15; (d-1) to (d-5) demonstrate addressed echo data with SNR ¼ 20. The panels of
third and fourth row are demonstrated by 50 � 50 image from echo data, which is convenient for contrast.

Fig. 7. Calculated SNR of denoised echo data and RMSE with different patches for different SNR data. (a) SNR ¼ 9; (b) SNR ¼ 15; (c) SNR ¼ 20.
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K (as demonstrated in Fig. 3(b)), the maximum number of patches
is:

number of patches ¼ ðN � nþ 1Þ � ðK � nþ 1Þ (12)
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The training set can be randomly selected from the extracted
patches. According to Equation (12), all samples in the training set
are selected for dictionary learning. The initial dictionary (a matrix)
can be constructed by any fixed analytical transformed base, or it



Fig. 8. Frequency statistics of calculated porosity and root-mean-square error (RMSE) from T2 distribution. Echo data with three types of noise level was synthesized, inverted and
calculated under 1000 numerical simulations for repeated tests.

Table 1
Averaged value of porosity and RMSE from noisy echo data and denoised echo data
with dictionary learning after 1000 numerical simulations, which is corresponding
to Fig. 8.

Distorted Echo Data Echo Data Improved by DL

Porosity (p.u.) RMSE (p.u.) Porosity (p.u.) RMSE (p.u.)

SNR ¼ 9 10.27 0.0205 10.12 0.0146
SNR ¼ 15 10.20 0.0176 10.09 0.0151
SNR ¼ 20 10.17 0.0150 10.06 0.0144
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can also be built from the randomly selected training signals. Since
the dictionary is redundant, the number of atoms (the number of
columns in the dictionary) must be greater than the dimension of
atom (the number of rows in the dictionary), and the dimension of
atom must be the same as the dimension of column vectors con-
verted from patches. Therefore, the size of the dictionary is n� ðq �
nÞ, where q>1.

OMP algorithm can be used for both sparse representation and
noise suppression, since noise is not sparse and will be filtered in
the process of calculating residual. Therefore, we can use the sparse
representation with sparsity constraint when learning noiseless
data, where sparsity T ¼ 10 and calculation error ε ¼ 1� 10�6.
When learning noisy data, we can use error constraint for sparse
representation, and the calculation error needs to meet (Beckouche
and Ma, 2014):

k Daij � RijXk22 � ðC,s,nÞ2 (13)

C ¼ 1.15 is the noise gain factor, which is an important empirical
value estimation derived from a large number of image tests, which
can make the sparse representation more stable (Elad and Aharon,
2006); s is the noise standard deviation of NMR echo data, and the
noise standard deviation of each patch is assumed approximately
the same; n is the dimension of each patch; Equation (13) represents
a sparse representation of each local patch data of the noisy signal.

In the simulation work, we directly use the NMR echo data with
different noise levels (SNR ¼ 20, 15, 10, 6) for dictionary learning.
However, for NMR data with different noise levels, different patch
dimensions can better ensure the effectiveness and reliability of
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learning. For NMR data with different SNR, we select the corre-
sponding patch dimensions as 5 � 5, 6 � 6, 6 � 6 and 7 � 7
respectively, and set the dimensions of the dictionary as 25 � 100,
36 � 144, 36 � 144 and 49 � 196, respectively. The number of
iterations of the dictionary learning is 30. The details will be
introduced in the simulation part.
3.3. Simulation results

Fig. 6 demonstrates the echo data processing results at different
SNRs. After respective dictionary learning and denoising process,
the BRD inversion processing is conducted to obtain the T2 distri-
bution. The panels of first row in Fig. 6 illustrate the echo data and
residual signal before and after noise suppression
(residual signal ¼ y originaley denoised, where y original rep-
resents noiseless signal and y denoised represents denoised
signal). The second row demonstrates the dictionaries of different
sizes corresponding to different noisy data obtained by dictionary
learning; the third row demonstrates noisy data (converted into 50
� 50 maps for comparison); the fourth row is the data after
denoising, and the fifth row is the inversion result of the echo data
after denoising. It can be seen from Fig. 6 that the characteristics of
NMR echo data with different noise levels can be extracted adap-
tively, indicated by different atomic components. After denoising,
NMR data SNR is increased by 3 times at least.

However, the noise is very difficult to be suppressed in the first
few echoes because the energy of NMR echo data is mainly
concentrated in first few echoes. As can be seen from the first row
of Fig. 6, with the increment of noise level, the fluctuation of re-
sidual signal gets more stronger within the first 100 ms of NMR
echo data, as well as described in Gu et al. (2021). Instead of setting
first few echoes into zeros to avoid the energy loss of first few
echoes during denoising, we directly use well-trained dictionary to
suppress noise. The T2 distribution of denoised echo data has higher
resolution and accuracy than that before denoised. It is owed to the
sufficient learning from local patches of signal, which provides a
more robust dictionary to achieve amore reliable noise suppression
and signal reconstruction.

The selection of patch size is very important for dictionary
learning, as demonstrated in Fig. 7. The blue curve in Fig. 7



Fig. 9. Comparisons of T2 distributions at different repetitions for six tight core samples. Echo data with TR ¼ 256 and 512 is adopted for the standard T2 inversion as comparison.
Dictionary learning is employed on the NMR echo data with TR ¼ 16, 32, 64.
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Table 2
Amplitude calculated from data of NMR core analysis before and after employing DL, which are compared with results by performing higher repetitions.

Distorted Echo Data (mV) Echo Data Improved by DL (mV)

TR ¼ 16 TR ¼ 32 TR ¼ 64 TR ¼ 256 TR ¼ 512 DL (TR ¼ 16) DL (TR ¼ 32) DL (TR ¼ 64)

Core 1 0.9268 1.1593 1.2033 1.2657 1.4903 1.1150 1.2417 1.3264
Core 2 1.724 1.8981 2.1390 2.2024 2.2917 1.8801 2.0589 2.2210
Core 3 0.9572 0.9885 0.9865 1.0055 1.0056 0.9667 0.9959 1.0057
Core 4 0.8655 0.9294 0.9989 1.1348 1.1321 0.9693 1.0123 1.0617
Core 5 1.6141 1.6521 1.6619 1.6658 1.6629 1.6001 1.6545 1.6641
Core 6 0.2120 0.3807 0.3977 0.5669 0.5968 0.4301 0.0548 0.5874

Table 3
Parameters of dictionary learning for different repetitions.

DL (TR ¼ 16) DL (TR ¼ 32) DL (TR ¼ 64)

Patch Size 6 � 6 5 � 5 4 � 4
Dictionary Size 36 � 144 25 � 100 16 � 96
Sparsity (T) 15 15 15
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represents the improved SNRs of denoised echo data after dictio-
nary learning and denoising process. The orange curve is RMSE (the
expression of RMES is described in Equation (15)) representing the
inversion accuracy and estimating the similarity between inversion
results inverted from denoised echo data and forward model. It is
very interesting that denoised echo data with the higher SNR will
not increase the accuracy of inversion results. If the higher SNRs is
pursued, the larger patch size will result in the elimination of
available echo signals and produce over-smoothing denoised re-
sults. This conclusion indicates that reasonable selection of patches
will give a more accurate solution. In addition, the patch size is not
more than 6when SNR is larger than 9. The patch size optimized for
SNR lower than 9 is fluctuated (the range may be from 5 to 13)
because of the strong randomness of noise, which is not demon-
strated here. In the later applications, we select patch size of 7 as a
compromise to perform dictionary learning when SNR is lower
than 9.

Next, we will consider the effects of the randomness of noise for
inversion results. Dictionary learning ensures the stability of NMR
data processing under different noise levels, which can be indicated
by obtaining T2 distributionwith BRD inversion. Therefore, we have
conducted 1000 repeated tests and recorded on the echo data with
random noise before and after dictionary learning processing, and
we conduct three steps at each test: dictionary learning, denoising
and inversion. We use the total porosity 4 ¼ 10 and the forward T2
distribution as comparison. The deviation and the RMSE with the
standard T2 distribution are estimated.

Total porosity 4 and RMSE are respectively:

4¼
Xi¼N

i¼1

f ðbT 2iÞ (14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N

i¼1 ðf ðbT 2iÞ � f ðT2iÞ Þ2
N

s
(15)

where, N is the number of pre-distribution points when BRD

inversion is used, N ¼128; f ðbT 2iÞ is the amplitude of T2 value of pre-
distribution points obtained by inversion; f ðT2iÞ is the amplitude of
T2 value corresponding to forward bimodal model.

Fig. 8 shows that the inversion results of echo data at different
noise levels (blue histogram marks represent the original noisy
echo data, and orange histogram represents the echo data after
dictionary learning processing). A total of 1000 repeated tests and
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statistics were conducted. The statistical results show that the
porosity calculated from the noisy echo data and denoised echo
data after the dictionary learning obey the Normal Distribution.
However, the porosity distribution meets the standard porosity
(4 ¼ 10) Normal Distribution for the echo data processed by dic-
tionary learning. It can be found that the porosity is still random
due to the noise effects on the first few echoes and accurately ob-
tained with the increment of SNR. Whereas, the T2 distributions are
closer to the model under low SNR. It is indicated that more
effective information can be retained adaptively after dictionary
learning. The overall statistical results are shown in Table 1, and the
porosity values 4 and RMSE values are the average of 1000 repeated
tests.

4. Application of DL on NMR rock core analysis and well
logging data

In practice, the raw NMR echo data contains several types of
noise, such as antenna noise, electronic circuit noise and possible
external electromagnetic harmonic noise. Generally, it is necessary
to increase the repetition to reduce the noise level. Firstly, we
conduct core experiments to verify the advantages of dictionary
learning in noise suppression. The 2 MHz NMR Core Analyzer
(Magritek, NZ) is adopted to obtain NMR echo data of different
types of tight rock cores. The echo spacing is 0.2 ms, the number of
echoes is 2500, and the acquisition time is 500 ms for each scan.
NMRmeasurements were conducted on three shale and three tight
sandstone samples. As shown in Fig. 9, core 1e3 are shale samples,
and core 3e6 are tight sandstone samples. Shale samples are dry
samples with some residual oil in the pores, while tight sandstone
samples are saturated with brine water and centrifuged. In the core
analysis experiment, we do not pay attention to the porosity of rock
core, but the improvement of the quality of echo data with low
SNRs by using dictionary learning. We compared the calculated
area of T2 distribution inverted from noisy echo data and denoised
echo data. The unit demonstrated is the amplitude of measured
voltage (mV), as shown in Table 2. The parameters of dictionary
learning are demonstrated in Table 3. For all the experiments, the
SNRs of 16 repetitions is larger than 8 so that we select the patch
size of 6 according to instruction from simulations.

Fig. 9 shows the T2 distribution results obtained from core
samples by NMR experiments. For each core, CPMG measurements
with 16, 32 and 64 repetitions are conducted respectively. Dictio-
nary learning and denoising processing are conducted after each
measurement, and then BRD method is used for inversion. The
range of regularization parameters used in inversion is 0.01e10,
and the regularization parameter with the smallest inversion re-
sidual norm is adaptively selected. In order to reveal the
improvement, we use the echo data acquired with 256 and 512
repetitions as comparison group to verify the inverted results after
dictionary learning processing. The high repetitions will produce
echo data with high quality leading to more precise inversion re-
sults. It can be seen from Fig. 9 that the echo data of shale and



Fig. 10. Processed results of NMR logging data using the proposed denoised method for Well 1. The T2 distributions through DL denoising exhibit more obvious bimodal peaks.
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sandstone samples measured by using 16, 32 and 64 repetitions can
be well improved after dictionary learning and denoising, indi-
cating that the characteristics of the echo data are represented by
the well-trained dictionary and the noise is greatly suppressed.
After inversion, the T2 distribution inverted by using the recon-
structed echo data has better resolution. The peak positions
become more accurate, and the estimations of T2 distribution area
are effectively improved, as shown in Table 2 (when signal
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amplitude is calibrated into porosity, the area under T2 distribution
is the total porosity). However, it should be noted that due to the
randomness of noise, the noise level of each measurement is
different. Even if it can be suppressed by dictionary learning, the
sparse representation of dictionary learning is still an approximate
representation of the original signal, and the echo data disturbed by
noise cannot be completely restored, which leads to a certain de-
viation in the inversion result compared to echo data acquired with
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higher repetitions. Furthermore, the small characterizations of
signal could be eliminated during denoising process with tolerated
errors, leading to certain components with small amplitude van-
ished. It is an interesting issue which will be studied in the future.
In general, dictionary learning has a good ability to improve the
quality of echo data under different noise conditions, as well as to
improve the accuracy and resolution of inversion results by using
commonly used inversion methods.

We also apply the dictionary learning to improve the quality of
NMR logging data, as demonstrated in Fig. 10. Well 1 is one of in-
tervals in an oil tight sandstone reservoir, which is investigated by
employing CMR instrument (Schlumberger Technology). The first
track is the depth and formation interval of 30 m is selected as an
example. The second track includes gamma ray (GR), spontaneous
potential (SP) and caliper (CAL) curve. The formation interval is full
of brine water mud and can be indicated by the SP curve. The third
track demonstrates the raw echo data of NMR logging. The echo
number is 1800 per depth point and the echo data is calibrated into
porosity unit. The fourth track is the denoised echo data processed
by employing dictionary learning. The fifth and sixth track is T2
distribution inverted from raw data and denoised data by using the
BRD method, respectively. The seventh track represents the
porosity calculated from different methods. In this track, the black
porosity curve is obtained from the raw echo data in second track;
the red porosity curve is obtained from the echo data after dictio-
nary learning and denoising processing in third track; the bottle
green curve is obtained from conventional neutron-density log-
ging, the blue dots represent the core porosity with gas measure-
ment. The last track is the averaged atoms, which are used for the
sparse representation of NMR echo data. The larger the averaged
atom is, the more coefficients need to be used to represent NMR
echo data. The SNR of the NMR measurements is ranged from 6 to
12 even though common depth points (CDP) stacking of 7 times is
conducted. We conduct a variable scheme for the selection of patch
size to meet the requirement of echo data with different SNR. For
patch operation parameter, the patch size of 7 is selected for NMR
data with SNR lower than 9, and of 6 is selected for NMR data larger
than 9. The sparsity T of 15 and iteration of 30 are set as dictionary
learning parameters. Only few seconds are cost for dictionary
learning and denoising for each echo data. During inversion period,
the regularization factor is also set within the range from 0.01 to 10.
From T2 distributions, it can be seen that the NMR echo data after
dictionary learning shows good resolution. The porosity calculated
from noisy and denoised echo data are almost the same, which
indicates that there is no available signal eliminated during
denoising process. The energy of first few echoes are maintained
well and noise are suppressed through all the echo data. The trend
of NMR porosity curve is similar and closed to the neutron-density
porosity curvewithin tolerated error. The good agreement between
the neutron-density porosity curve and core porosity dots indicates
the accuracy of well logging. At last, the variation of averaged atoms
demonstrated the adaptivity of dictionary learning for different
types of NMR echo signals. The small atoms indicate the effective
suppression of noise.

5. Conclusions

In this paper, we explored feasibility of employing dictionary
learning and proposed a “data processing framework” to improve
the quality of low-field NMR echo data. Dictionary learning is a
machine learning method based on sparse representation theory.
With dictionary learning, useful information in noisy NMR echo
data can be adaptively extracted and reconstructed, and further
improve the quality of raw echo data and the accuracy and stability
of inversion results. We have verified the advantages and
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application effects of dictionary learning method with numerical
simulations and applied it on NMR core analysis data and well
logging data. Some conclusions can be drawn:

1) Dictionary learning has good adaptability to echo data at
different noise levels, which can be reflected by adaptively
learned dictionaries and varied averaged atoms.

2) The quality of raw echo data with low SNR can be improved by
employing dictionary learning, which will further improve the
accuracy and reliability of inversion results when common
inversion methods are used. It is meaningful to the requirement
of rapid NMR logging and laboratory analysis, since more ac-
curate petrophysical parameters can be obtained with fewer
averages of raw echo data.

3) The selection of patch size is very important and its effect is
valuable to be studied, since it will affect the quality of signal
reconstruction. For NMR echo data, small signal eliminationwill
also result in the inaccuracy of inversion results.

Although the quality of NMR echo data after dictionary learning
processing has been greatly improved, the conventional inversion
method is essentially dependent on noisy signal and the uncer-
tainty of numerical solution is still existed, which cannot be elim-
inated totally. How to infuse the response equation of NMR echo
data into dictionary learning to further reduce the uncertainty of
inversion results caused by noise disturbance, is our next research
topic.
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