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a b s t r a c t

For reservoirs with complex non-Gaussian geological characteristics, such as carbonate reservoirs or
reservoirs with sedimentary facies distribution, it is difficult to implement history matching directly,
especially for the ensemble-based data assimilation methods. In this paper, we propose a multi-source
information fused generative adversarial network (MSIGAN) model, which is used for parameteriza-
tion of the complex geologies. In MSIGAN, various information such as facies distribution, microseismic,
and inter-well connectivity, can be integrated to learn the geological features. And two major generative
models in deep learning, variational autoencoder (VAE) and generative adversarial network (GAN) are
combined in our model. Then the proposed MSIGAN model is integrated into the ensemble smoother
with multiple data assimilation (ESMDA) method to conduct history matching. We tested the proposed
method on two reservoir models with fluvial facies. The experimental results show that the proposed
MSIGAN model can effectively learn the complex geological features, which can promote the accuracy of
history matching.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The efficient development of oil and gas needs reliable reservoir
numerical model. Automatic history matching technology is one of
the most effective means to achieve reliable reservoir modeling
(Oliver and Chen, 2011). The main work of automatic history
matching is to adjust the initial reservoir models built by logging,
core analysis, and other static data according to the dynamic pro-
duction data. Ensemble-based data assimlation methods are now
one of the most successful and effective techniques for history
matching in oil and gas industry. However, the ensemble-based
data assimilation methods are difficult to be directly applied to
the reservoir model with non-Gaussian parameters.
, xiaopeng.ma.cn@gmail.com
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In last decades, a variety of parameterization methods have
been developed for non-Gaussian parameter field. The kernel
principal component analysis algorithm (K-PCA) maps the original
parameters to a high-dimensional space through a kernel function
and then uses the PCA algorithm to reduce the dimensionality
(Sarma et al., 2008). Discrete cosine transform (DCT) converts
original image information blocks into coefficient sets representing
different frequency components, thereby achieving lossy
compression of signals and images (Zhao et al., 2016). Although
these methods can transform the non-Gaussian parameters to a
low-dimensional Gaussian space, they are not accurate enough for
the preservation of original geological characteristics.

Recently, the rise of generative neural network in the deep
learning community has proposed a different solution to the
parameterization problem in history matching (Canchumuni et al.,
2021). The generative model in the deep learning is mainly used for
feature extraction and image generation (Salakhutdinov and
Application, 2015), which is similar to the dimension reduction
and reconstruction of uncertain parameters in history matching.
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Therefore, some studies have investigated the generative models to
parameterize the geological model (Chan and Elsheikh, 2017; Laloy
et al., 2017; Mosser et al., 2017). Canchumuni and Emerick (2019)
utilized the convolution variational autoencoder (CVAE) model for
history matching with complex geologies. Liu and Durlofsky (2020)
proposed a CNN-PCA model which combines the PCA and convo-
lution neural network (CNN) to perform parameterization of
complex geological facies. However, existing studies only consider
using the uncertain parameters for parameterization and themodel
parameters generated by these methods are difficult to maintain
consistency with geological features.

In fact, reservoir modeling involves a variety of data, such as the
distribution of sedimentary facies, permeability distribution,
complex fault distribution, etc. Traditional decomposition-based
methods such as PCA, SVD and DCT are difficult to make compre-
hensive use of these data, but deep learning methods provide the
possibility for comprehensive modeling and dimensionality
reduction. In this work, we propose a multi-source information
fused generative adversarial network (MSIGAN) model. This model
realizes the comprehensive parameterization of complex geological
features by sharing the latent space, and integrates them to
reconstruct the geological parameters, thus maintaining the con-
sistency of the geological features in the whole process of param-
eterization and history matching. Our inspiration comes from the
multi-view learning (Zhao et al., 2017; Li et al., 2019; Yao et al.,
2020). The idea is to build a multi-input neural network and
output a model that integrates multiple information.

In MSIGAN, various information such as facies distribution,
microseismic, and inter-well connectivity, can be integrated to
learn the geological features. And two major generative models,
variational autoencoder (VAE) (Kingma and Welling, 2014) and
generative adversarial network (GAN) (Goodfellow et al., 2014;
Radford et al., 2015), are combined in our model. VAE and GAN are
two popular generative models in the deep learning community.
On the one hand, VAE can learn the latent features through varia-
tional inference and representation learning. However, the image
generated by VAE has few details and is not high-resolution. On the
other hand, the image generated by GAN has richer details but may
be missing some features (Lai et al., 2019). Combining the VAE and
GAN (Bao et al., 2017) can tackle the above problem. The proposed
MSIGAN model is integrated into the ensemble smoother with
multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013;
Emerick, 2017; Evensen, 2018) method to conduct history match-
ing. We tested the proposed method on two reservoir models with
complex fluvial facies. The numerical results show that ourMSIGAN
model can preserve the facies distribution features by integrating
Fig. 1. Structure diagram of th
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the boundary and permeability information. Previous studies (Ma
et al., 2020, 2021; Zhang et al., 2016, 2017, 2019) have shown that
maintaining geological features can effectively alleviate the multi-
solution of history matching.

We arrange the rest of this paper as follows. In the next two
sections, we briefly introduce the two major generative models in
deep learning, including VAE and GAN, as well as our proposed
MSIGAN model. After that, we introduce the combination of the
MSIGAN model with ES-MDA for history matching in section 4. In
section 5, we apply our model in three test cases to show the
effectiveness of our proposed method in history matching
compared with the existing parameterization methods. The last
part is a summary of our conclusions.
2. Background

2.1. Variational autoencoder

VAE is a deep generative model, which mainly includes two
parts: encoder and decoder. The two parts cooperate to complete
the modeling of prior data distribution. In the whole process, the
encoder first maps the high-level features of the data distribution
to the low-level representations of the data, which are the eigen-
vectors. Then the decoder absorbs the low-level representations of
the data and outputs the high-level representations of the same
data (Doersch, 2016). Different from autoencoder searching for a
single-valued mapping: z ¼ f ðxÞ, VAE looks for a mapping of data
distribution: pðxÞ/pðzÞ. Fig. 1 shows the basic structure of VAE
model.

Assuming thatm-dimensional data is input, the encoder outputs
two n-dimensional parameters, ðm1;m2; :::;mnÞ and ðs1;s2; :::;snÞ. At
the same time, an n-dimensional parameter ðe1; e2; :::; enÞ is
sampled from the normal distribution Nð0;1Þ and the feature
vector ðz1; z2; :::; znÞ is generated by the operation zi ¼ expðsiÞ� ei þ
mi. Finally, ðz1; z2; :::; znÞ is input into the decoder network to obtain

m-dimensional output data bX . The loss function of the whole
network is as follows:

minLVAE ¼ � EqðzjxÞ½log PðxjzÞ� þ DKLðqðzjxÞjjPðzÞÞ (1)

The first term on the right side of the equation represents the

reconstruction loss, that is, the loss of the entire process X � z � bX .
The second term behind represents the regular term, where qðzjxÞ
means a posterior distribution of z derived from x, and PðzÞmeans a
prior distribution of z.
e variational autoencoder.



Fig. 2. Structure diagram of generative adversarial network.

Fig. 3. Structure diagram of MSIGAN.
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2.2. Generative adversarial network (GAN)

GAN is also a deep generative model and it provides a way of
adversarial learning for neural networks. The main inspiration of
GAN comes from the idea of zero-sum game. It is to continuously
play the game by generating network G (Generator) and discrimi-
nating network D (Discriminator), so that G can learn the distri-
bution of data. Fig. 2 shows the structure of the network.

The optimization loss function of the whole process is:

min
G

max
D

LðD;GÞ ¼Ex�pdata ½log DðxÞ� þ Ez�pz ½logð1�DðGðzÞÞÞ� (2)

The training process first needs to keep the generator G un-
changed and train the discriminator D. Firstly, for the maxD part,
the training goal of D is to correctly distinguish between true and
false. Since the sigmoid activation function is used for the di-
chotomy problem, the output DðxÞ is a probability value in the
range [0,1]. For the first term, x~pdata represents the distribution of x
samples from real data. Since we expect DðxÞ to be close to 1, it is
better for logDðxÞ to be larger because of DðxÞ2½0;1�. The second
term represents the generated data sampled fromG. We expect it to
be better for DðGðzÞÞ to approach 0, whichmeans the second term is
bigger and better. In summary, we expect to make the overall value
of the first item plus the second item larger through training.
Through the iterative optimization of G and D, the final generated
model can achieve the purpose of being fake.
Fig. 4. Workflow of MSIGAN that integrates constraint information for
parameterization.
3. Proposed MSIGAN model

The MSIGAN model needs to fusion a dual encoder network
based on VAE and GAN to realize dual input of permeability and
facies constraint information. In this work, we use the Keras
709
(Manaswi and Kumar, 2018) to create the model. Fig. 3 shows the
overall architecture of the MSIGAN. As shown in Fig. 3, S represents
the uncertain parameter such as permeability, S0 represents the
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reconstruction model, and C represents the constraint information
such as facies boundary.

The network maps the S and the constraint information C to the
sharing latent space via two encoders. In the shared latent space,
the feature vectors z1 and z2 output by the two encoders are
combined into z ¼ ðz1 þ z2Þ=2. Then the decoder reconstructs the
input z into the uncertain parameters space, and the discriminator
of GAN determines whether it is true or false, and returns the in-
formation to the decoder and discriminator. After continuous
optimization of the performance of the decoder and discriminator,
the Nash equilibrium is finally reached and the optimal recon-
struction model is obtained.

The workflow of the entire MSIGAN architecture is shown in
Fig. 4. We use g to represent the reconstruction function of uncer-
tain parameters:

S0 ¼ gðS;CÞ (4)

And we introduce the reconstruction loss L1:

LSrecon ¼
������S0 � S

���j1 ¼
������g�S;C�� S

���j1 (5)

Besides minimizing the reconstruction loss L1, VAE also regu-
larizes the encoder by imposing a prior on the potential
Fig. 5. The workflow of auto

Fig. 6. Real permeability field and first 16 models in initial reservoir data set (mD). Circles r
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distribution pðzÞ of z � Nð0;1Þ. Therefore, we add the KL regulari-
zation loss LKL:

LKL ¼KLðqðzjS;CÞjjNð0;1ÞÞ ¼ 1
2

�
1þ log

�
s2

�
�m2 � s2

�
(6)

where z, s, and m represent ðz1 þ z2Þ=2, ðs1 þs2Þ=2 and ðm1 þ m2Þ=2.
Finally, the GAN network alternately trains the discriminator D

and the generator G by maximizing the loss function Ldis and
minimizing the loss function Lgen:

min
G

max
D

Lðgen;disÞ ¼E ½logðDðSÞÞ� þ E ½logð1�DðS0ÞÞ� (7)
4. History matching workflow combined with ES-MDA

ES-MDA shows unique advantages over other algorithms in
histroymatching problems. The basic idea of the ES-MDAmethod is
to perform data assimilation by multiplying an inflation factor a to
the error covariance matrix Cd of the observation data and then
iterating multiple times. The update of uncertain parameters in the
ES-MDA method is as follows:
matic history matching.

epresent oil production wells and triangles represent water injection wells. Test case 1.



Fig. 7. Eight templates of Kirsch operator.

Fig. 8. First 16 samples in extracted edge model data set. Test case 1.
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Fig. 9. Comparison of reconstructed permeability by different parameterization methods with reference permeability. Test case 1.

Table 1
Evaluation of reconstruction results of different parameterizationmethods. Test case
1.

Methods SNR PSNR SSIM Hash RMSE

CVAE 23.9799 25.1420 6.1310eþ25 93% 37.9210
CVAE þ Postprocessing 25.9433 27.1053 6.8837eþ24 89% 37.0270
MSIGAN 38.4070 39.5691 4.2234eþ24 96% 33.6898
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mtþ1
j ¼mt

j þ Ct
MD

�
Ct
DD þ atCd

��1�
dobs þ εj � g

�
mt

j

��
(8)

where j ¼ 1; :::;Ne represents each ensemble member; CMD is the
cross-covariance matrix between the model parameter vector and
the prediction data vector; CDD is the autocovariance matrix of the
prediction data; dobs is the dynamic response of reservoir devel-
opment and production; εj is the observation error of the produc-
tion dynamic response; gð ,Þ is the reservoir system numerical
simulation or reservoir numerical simulator; m is the reservoir
model parameter; t is the tth data assimilation. Inflation factor at is
the only auxiliary parameter that needs to be determined in the ES-
MDA and has a significant impact on the solution result. Some
people have done work on how to choose the expansion factor (Le
et al., 2020; Emerick, 2016). In this paper, the setting of the inflation
factor in the standard ES-MDA method is used, that is, at ¼ 1= Na,
Na usually takes a value of 4e10.

The integrated history matching workflow combining ES-MDA
and MSIGAN is shown in Fig. 5. At first, the initial latent vector

fz0j g
Ne

j¼1
randomly sampled from the normal distribution is sent to

the generator network to generate the realization of the uncertain

parameters fxkj g
Ne

j¼1
, which are used in the reservoir simulation to

calculate the production data. Then the ES-MDA algorithm updates

the latent variables fzkj g
Ne

j¼1
according to the simulation data and

observation date. Afterward, the updated latent variables is sent to
the generator network and starting next iteration.

5. Case study

5.1. Test case 1

In this case, we carried out the history matching study of a two-
dimensional fluvial reservoir to adjust the permeability in each
gridblock. The data set used in the test case is as the same as that
used in Canchumuni et al. (2019), more details can be found in their
work. Fig. 6(a) shows the true permeability filed. The model in-
cludes two facies, in which the permeability of the high-
permeability fluvial facies is 5000 mD, and the permeability of
the background facies is 500 mD. The model has 45� 45 gridblocks
and it contains four production wells and three water injection
wells. There are 20,000 random models in the data sets, and we
select 18,000 for training and another 2,000 for testing theMSIGAN
model. Fig. 6(b) shows the first 16 models in the data set.

5.1.1. Parameterization of permeability
Before training the MSIGAN model, we first acquire the data set
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of edge using the Kirsch operator. Kirsch operator is an edge
detection algorithm proposed by Kirsch (1971), which uses 8
templates to control the gradient magnitude and to direct the
gradient as shown in Fig. 7.

These 3 � 3 templates convolve the image, each template re-
sponds to a specific edge direction and takes the maximumvalue as
the edge of the image. Kirsch operator has a good effect in keeping
image details and anti-noise. The gradient magnitude of the kirsch
operator is:

Gðx; yÞ¼maxðjM0j; jM1j; jM2j; jM3j; jM4j; jM5j; jM6j; jM7jÞ
We use the Kirsch operator to extract the edges of the fluvial

facies model, and Fig. 8 shows the edge of first 16 initial models.
In this case, the dual encoders E1 and E2 in the MSIGAN both

contain 3 convolution layers followed by 2 fully-connected layers
(convolution layers have 64, 32, and 16 channels with the filter size
of 3 � 3 and stride 2, 2, 1; the fully-connected layers have 128, 100
neurons, respectively). The generator G consists of a full connection
layer with 128 neurons and is followed by three convolutional
layers (convolution layers have 16, 32, and 64 channels with the
filter size of 3 � 3 and stride 1, 2, 2). The discriminator D includes
three convolution layers and two fully-connected layers (convolu-
tion layers have 64, 32, and 16 channels with the filter size of 3 � 3
and stride 2, 2, 1; the fully-connected layers have 128, 1 neuron and
finally outputs a probability value).

In this section, the MSIGAN is compared with the CVAE model.
Canchumuni et al. (2019) used two channels to represent the
permeability field and then performed post-processing on the
reconstructed permeability. This post-processing method is to
compare the CVAE reconstructed permeability field data on the two
channels and return the channel number corresponding to the
larger element, i.e. 0 or 1. What this post-processing method gets is
not the real reconstruction result of CVAE, but the beautified result
by converting the result of CVAE from continuous to binary and
artificially removing fuzzy boundaries. We trained the network
model in a cluster consisting of 816 core CPU computing nodes and
24 core GPU computing nodes. CVAE took 25 min of training time.
Since the GAN network uses the training method of the generator
and the discriminator against each other to squeeze the



Fig. 10. Comparison of permeability inversion results of the first five prior models. Test case 1.

Fig. 11. Observed data history-matched results of ES-MDA combined MSIGAN method. Red dots represent the observed data points, gray lines represent the numerical simulation
prediction results of the initial reservoir model set, green lines represent the numerical simulation prediction results of the history matching updated model set. Test case 1.

K. Zhang, H.-Q. Yu, X.-P. Ma et al. Petroleum Science 19 (2022) 707e719

713



Fig. 12. Real permeability and randomly selected reservoir model data set (mD). Circles represent oil production wells and triangles represent water injection wells. Test case 2.

Fig. 13. Comparison of reconstructed permeability by different parameterization methods with reference permeability. Test case 2.
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performance of the network, the training time is longer while
generating a clear model. An important direction of GAN research
at this stage is how to improve the training stability of GAN and
shorten the training time (Yazıcı et al., 2018). The MSIGAN spent
116 min to train. After training, we randomly select a permeability
field in the initial reservoir test data set to analyze the recon-
struction results, as shown in Fig. 9(a). Fig. 9(b) shows the recon-
struction result of permeability field output by CVAE. Fig. 9(c)
Fig. 14. Frequency distribution histograms of reconstru
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shows the result of the CVAE with post-processing reconstructed
permeability field. Fig. 9(d) shows the reconstruction result of
MSIGAN. The results in the figure show that the reconstructed
phase boundary of the MSIGAN we designed is closest to the
reference model.

Table 1 evaluates the accuracy of reconstruction of different
methods. The evaluation parameters include signal-to-noise ratio
(SNR) (Sim and Kamel, 2010), peak signal-to-noise ratio (PSNR)
cted permeability for different models. Test case 2.



Fig. 15. Comparison of permeability inversion results of the first five prior models. Test case 2.

Fig. 16. Observed data history-matched results of ES-MDA combined MSIGAN method. Red dots represent the observed data points, gray lines represent the numerical simulation
prediction results of the initial reservoir model set, green lines represent the numerical simulation prediction results of the history matching updated model set. Test case 2.
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Fig. 17. Real permeability (mD). Circles represent oil production wells and triangles
represent water injection wells. Test case 3.
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(Hor�e and Ziou, 2010), structural similarity index (SSIM) (Brunet
et al., 2011), hash similarity (Masci et al., 2014) and root mean
square error (RMSE). The larger the value of each parameter except
RMSE, the more accurate the reconstruction of the permeability
field.

Compared with the CVAE model, SNR, PSNR, SSIN increased and
Hash decreased after adding post-processing. This result shows
that although this post-processing method can make the boundary
Fig. 18. Comparison of permeability inversion results
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of the permeability field clear, it reduces the accuracy of the
permeability. MSIGAN achieved the best results in the four evalu-
ation indicators, indicating that the method can reconstruct the
phase boundary more clearly and accurately.

5.1.2. History matching results
This section tests the automatic history matching of the pro-

posed ES-MDA combined with the MSIGAN method to assimilate
production observation data and compares it with the CVAE
method. Fig. 10(a) shows the prediction model of CVAE combined
with the ES-MDA method for history matching. The results show
that although the CVAE method can roughly capture the distribu-
tion of fluvial facies, it cannot accurately restore the permeability
distribution at the boundary. As shown in Fig. 10(b), the ES-MDA
combined with MSIGAN can better predict the distribution and
shape of the high permeability facies, and the boundary is clear.

Fig. 11 shows the history matching results of daily oil production
of 2 production wells. The red dots represent the observed data
points, the gray lines represent the numerical simulation results of
the initial reservoir models, and the green lines represent the nu-
merical simulation results of the history matched models.
Compared with the initial reservoir models, the reservoir models
updated by the ES-MDA combined with the MSIGAN method can
well reflect the changes of observation data.

5.2. Test case 2

The model used in the second test case is the same as the article
(Emerick, 2017). This model has 100 � 100 gridblocks. As shown in
Fig. 12(a), there are 5 production wells and 2 water injection wells.
The model consists of a low-permeability phase with 500mD and a
of each layer of the reference model. Test case 3.
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high-permeability phase with 5,000 mD. For this case, the neural
network architecture we used is basically the same as the case 1,
with only some hyperparameter modifications to adapt to different
sizes of permeability field models. In this case, 18,000 models are
used for training, the remaining 2,000 models are used for testing.
The permeability field and extracted edge of the first 16 samples are
shown in Fig. 12(b) and (c).

We set Ne ¼ 100 and Na ¼ 10 in the ES-MDA to conduct the
history matching. As it was proved in test case 1 that the recon-
struction result of CVAE þ Postprocessing was the result of beau-
tification rather than the real output result of CVAE, we only used
CVAE to compare our MSIGAN in test case 2. The network training
was carried out in the same cluster as test case 1. CVAE spent
43 min and MSIGAN spent 128 min. Fig. 13 shows the reconstruc-
tion result of a randomly selected model from the test data set. The
RMSE values of CVAE and MSIGAN were 39.1918 and 36.5097,
respectively. Fig. 14 compares the frequency distribution histo-
grams of the reconstructed permeability. As shown in Fig. 14(a), the
permeability of each grid of the initial model is significantly
concentrated in the high-permeability phase and the low-
permeability facies, while the reconstructed model has interme-
diate transitions. In Fig.14(b), the reconstructionmodel of CVAE has
more grid permeability distributed between the high-permeability
Fig. 19. Observed data history-matched results of ES-MDA combined MSIGAN method. Red
prediction results of the initial reservoir model set, green lines represent the numerical sim
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and low-permeability values. In Fig. 14(c), the grid permeability of
the reconstructed model of MSIGAN is more concentrated on the
high-permeability and low-permeability ends. Fig. 15 shows the
histroy matching result of the permeability filed. The test results
show that, compared with CVAE, MSIGAN reconstructs the facies
boundary clearly. Fig. 16 shows the history matching results of oil
production for 2 production wells. It can be seen that the MSIGAN
combined with ES-MDA can well fit the observation data.
5.3. Test case 3

In this test case, we used SNESIM algorithm (single normal
equation simulation) to generate a 3D fluvial facies model data set
describing the permeability distribution through sequential
Gaussian simulation (Strebelle, 2002). The reservoir model has four
production wells and two injection wells, and the permeability
distribution is shown in Fig. 17. The model has 60 � 60 � 5 grid-
blocks, which are composed of 500mD low permeability phase and
5,000 mD high permeability phase. In this test case, we also trained
the network with 18,000 models and tested it with 2,000 models.
In the same cluster as the previous test cases, the CVAE training
took 186 min and the MSIGAN took 206 min.

We also set Ne ¼ 100 and Na ¼ 10 in the ES-MDA to conduct the
dots represent the observed data points, gray lines represent the numerical simulation
ulation prediction results of the history matching updated model set. Test case 3.
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historymatching. Fig.18 shows the inversion results of each layer of
the reference permeability field. The results show that for 3D res-
ervoirs, our MSIGAN model can still reverse clear phases in the
history matching process. Fig. 19 shows the history matching re-
sults of oil production for 2 productionwells. It can be seen that the
combination of MSIGAN and ES-MDA can also fit the observed data
well for 3D reservoirs.

For ensemble-based data assimilation methods, localization can
effectively decrease the sampling error and minimize the negative
impact of limited degrees of freedom. However, as with CVAE, our
MSIGAN model faces the same question during parameterization
that distance-based localization cannot be applied to update the
latent vector z (Houtekamer and Mitchell, 2001). None of the
known localization methods for the parameterization of deep
generation models is as effective as the distance-based approach
(Canchumuni et al., 2019, 2021). For this reason, we have not used
any type of localization in test cases. Localization is an issue worthy
of further study, and we will continue to pay attention to and
explore the latest solutions to this question.

6. Conclusion

In this paper, we propose a multi-source information fused
generative adversarial network model (MSIGAN) to parameterize
the complex geological features in history matching, and combined
with ES-MDA for dynamic inversion modeling. In MSIGAN, various
information such as facies distribution, microseismic, and inter-
well connectivity, can be integrated to learn the geological fea-
tures and parameterization. We tested the proposed parameteri-
zation method on two history matching problems and compared it
with the other deep learning methods. The numerical results show
that the MSIGAN model can integrate the advantages of the two
generative models of VAE and GAN, and through integrating facies
distribution information and permeability distribution, to better
maintain the geological characteristics during the parameterization
and history matching process.
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