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a b s t r a c t

A highly precise and timely diagnosis technology can help effectively monitor and adjust the sucker rod
production system (SRPS) used in oil wells to ensure a safe and efficient production. The current diag-
nosis method is pattern recognition of a dynamometer card (DC) based on feature extraction and per-
ceptron. The premise of this method is that the training and target data have the same distribution.
However, the training data are collected from a field SRPS with different system parameters designed to
adapt to production conditions, which may significantly affect the diagnostic accuracy. To address this
issue, in this study, an improved model of the sucker rod string (SRS) is derived by adding fault-
parameter dimensions, with which DCs under 16 working conditions could be generated. Subse-
quently an adaptive diagnosis method is proposed by taking simulated DCs generated near the working
point of the target SRPS as training data. Meanwhile, to further improve the accuracy of the proposed
method, the DC features are improved by relative normalization and using additional features of the DC
position to increase the distance between different types of samples. The parameters of the perceptron
are optimized to promote its discriminability. Finally, the accuracy and real-time performance of the
proposed adaptive diagnosis method are validated using field data.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The sucker rod production system (SRPS) is the most widely
used artificial lift method in the petroleum industry (Bahbahani
et al., 2016; Wilamowski and Kaynak, 2000). In production prac-
tice, because of the complex and harsh working environment, the
SRPS may work under abnormal conditions, which may lead to
reduced production or even equipment damage (Dave andMustafa,
2017). Therefore, automatically diagnosing the faults in the SRPS
has attracted research attention. The dynamometer card (DC), a
close curve representing the load versus the displacement of the
polished rod in one working cycle, is one of the firsthand dynamic
data in oilfield production. The shape of the DC can effectively
reflect the down-hole working conditions of the SRPS; thus, these
crucial data are quite useful in diagnosing the SRPS (Reges et al.,
2015; Zheng et al., 2020).

Currently, the fault diagnosis of the SRPS is done through
pattern recognition of the DC based on a classifier (Li et al., 2013a;
g).

y Elsevier B.V. on behalf of KeAi Co
Zheng et al., 2019a), the specific process of which is shown in Fig. 1.
The core of the diagnosis is the construction of the classifier. As
shown in Fig. 1, the construction process has three main parts:
labeled DC set, feature extraction method of the DC, and percep-
tron. First, the raw data of a DC {(si, Fi)} are normalized, and its
features {Tn} are extracted and combined with the label data of the
fault type {FT} to form training data. The training data are then used
for perceptron training to determine its parameters. If the per-
ceptron is an artificial neural network (ANN), its parameters are the
input and output weights and thresholds ([w, b]ih and [w, b]ho). The
ANN with the determined parameters can be considered a gener-
alized fitting function fwb($), i.e., a classifier. When diagnosing, the
features of the test DC (Tntest) are extracted and inputted to the
generalized function to calculate the label data FTtest, and then, the
fault type of the SRPS can be diagnosed by discrimination.

Given the importance of the SRPS fault diagnosis, several
advanced methods have been used to address this issue. Xu et al.,
(2007) directly adopted the data points of a DC as input to a self-
organizing competitive network for classification. Wu et al.,
(2011) used three layers of a wavelet packet to decompose DC
into eight energy eigenvectors and used radial basis function (RBF)
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http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wanghx_upc@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2021.09.012&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2021.09.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.petsci.2021.09.012
https://doi.org/10.1016/j.petsci.2021.09.012


Fig. 1. Process of current diagnosis method.

X.-X. Lv, H.-X. Wang, Z. Xin et al. Petroleum Science 19 (2022) 743e760
networks for fault classification. Li et al., (2013b) extracted the
curve moment (CM) of a typical polished rod DC as features and
adopted the improved support vector machine (SVM) to classify the
DC. Gao et al. (Gao et al., 2015) selected five appropriate features as
DC features and used the extreme learning machine (ELM) to di-
agnose the down-hole working condition. Wu et al., (2013)
extracted seven invariant moments of the DC and used SVM for
the fault diagnosis of the SRPS. Li et al., (2015) presented an auto-
matic clustering algorithm for the classification of DCs. Zhong and
Zou (2016) mapped the curve of a DC onto a gray matrix for a
gray scale analysis. Zheng and Gao (2017) adopted seven geometric
features of the DC and valve working positions as features, and
introduced a continuous hidden Markov model (HMM) for fault
diagnosis. Li et al., (2018a) used the Freeman chain codes (FCC) as
DC features and adopted the online sequential ELM for pattern
classification. Zhou et al., (2019) extracted the Fourier descriptors
(FDs) of a DC curve and applied improved RBF networks to
construct a classification model.

The above studies focused on promoting the representation
ability of the features and the classification ability of the diagnosis
744
model to obtain better diagnosis results. However, the quality of the
training data, which also significantly affect the diagnosis results,
has been ignored. Currently, the training data are DCs collected
from different SRPSs, because it is difficult for one oil well to
experience all the working conditions. The system parameters of
the SRPSs designed to adapt to various production conditions are
different, which may directly lead to different distributions of the
training and target data of the diagnosis model. Thus, the diag-
nostic accuracy is significantly affected. Only a few studies have
addressed this problem. Zhang et al. (Zhang et al. 2019) applied
dictionary-based transfer subspace learning to construct a trans-
form matrix, whereby training and target data could be transferred
into a common low-dimensional subspace. This method still re-
quires a large amount of labeled data from field DCs, which in-
creases manpower and material resources. Zheng et al., (2019b)
proposed an advanced strategy to generate DCs under six typical
working conditions. However, in industrial production, there are
nearly 20 types of fault conditions.

Hence, a method to eliminate the difference in the distributions
of the training and target data of the diagnosis model is worth
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studying. Moreover, once some faults occur, the SRPS must be
stopped, because these faults may lead to no production and high
energy consumption, or even damage the system equipment.While
other faults only affect the production efficiency and will not
damage the machinery, the index determining whether the SRPS
under these conditions could continue to work is the production
rate. Therefore, the output metering method of an oil well under
fault conditions is also useful.

Based on the above analysis, an approach to obtain the DC of a
polished rod and operating process of the SRPS under fault condi-
tions is proposed considering the influence of faults on the SRPS.
This paper presents a strategy where the simulated DC set of the
target SRPS, instead of the field DC set, is used as training data to
solve the aforementioned distribution difference problem. Addi-
tionally, the measured DC is used to identify the improved SRS
model parameters and predict the production rate of the SRPS. The
contributions of this paper are summarized as follows. (I) An
improved SRS model is derived by adding dimensions of the fault
parameters, with which DCs under 16 working conditions could be
generated. (II) An adaptive diagnosis method is proposed by taking
simulated DCs generated near the working point of the target SRPS
as training data. (III) A quantitative analysis method based on
parameter identification of the improved SRS model is presented to
predict the production rate of the SRPS under fault conditions.

2. Improved model of sucker rod production system

The operation of the SRPS is a complex process involving
multivariable coupling, and it is difficult to calculate the load of a
polished rod and output characteristics, particularly under fault
conditions. Hence, based on the influence mechanism of the fault
on sucker rod dynamics and the pump valve, an improvedmodel of
the SRPS is established to generate DC and predict the liquid pro-
duction rate.

2.1. Model of sucker rod production system under normal
conditions

2.1.1. Motion equation of sucker rod element
The pumping characteristics of the SRPS mainly depend on the

longitudinal vibration of the sucker rod. According to Hooke's law
and equilibrium equation (Gibbs, 1963), the motion equation of the
rod element is derived as follows:

rA
v2u
vt2

¼ EA
v2u
vs2

þ rAg cos a� frt � frf (1)

where A, E and r represent the area, Young's modulus and density
of sucker rod, respectively; u represents the displacement field of
sucker rod; frf represents the viscous friction; frt represents the
Coulomb friction of tubing; g represents acceleration of gravity; a
represents the deviation angle; s represents the position of node; t
represents the time.

The friction of the well fluid can be expressed as:

8>>>>>>>><
>>>>>>>>:

frf ¼ crf ð1� xvÞ,ðvu=vtÞ

crf ¼
pmðAti=A� 1Þ

0:5ðAti=Aþ 1ÞlnðAti=AÞ � ðAti=A� 1Þ

xv ¼ �fd,Ap � A
�.

Af

m ¼ mHl
l m

ð1�HlÞ
g

(2)

where crf represents actual viscous damping coefficient of well
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liquid; xv represents the ratio of the velocity of the fluid column
bottom to the velocity of the plunger; m represents viscosity of well
fluid; Ati represents internal area of tubing; fd represents logic
variable of traveling valve opening; Af represents the area of fluid
column; Ap represents area of plunger; ml represents the viscosity of
liquid; mg represents the viscosity of gas; Hl represents the liquid
holdup.

The Coulomb friction force between the tubing and the sucker
rod (Lv et al., 2020a) is as follows:

8>>>>>>><
>>>>>>>:

frt ¼ �crt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
n þ N2

b

q
,signðvu=vtÞ

Nn ¼ EI
v2k

vs2
� EIkT2 � EA

vu
vs

kþ sin a

k
,
�
r� rf

�
Ag

Nb ¼ EI
vT
vs

kþ 2EI
vk
vs

T � sin 2 a
dq
ds

(3)

where crt represents the friction coefficient between the sucker rod
and the tubing; Nn and Nb represent the normal force and abnormal
force between the sucker rod and the tubing, respectively; I rep-
resents the inertia moment of the sucker rod section; k and T
represent the curvature and torsion of the well trajectory, respec-
tively; q represents the azimuthal angle; rf represents the density of
well fluid.
2.1.2. Surface boundary conditions
At the wellhead, the upper end of the SRS is connected to a

polished rod; thus, the surface boundary condition of the differ-
ential equation (Eq. (1)) can be expressed as:

uð0; tÞ¼ � SAðtÞ (4)

where SA represents the displacement of polished rod.
In an oil field, beam pumping units are commonly used to drive

the SRS and oil pump. Based on the characteristics of a four-link
mechanism, the motion law of the polished rod driven by a
beam pumping unit can be deduced (Xing and Dong, 2015) as
follows:

8>>>>>>>>>><
>>>>>>>>>>:

SAðtÞ ¼ Laðp� q0 � b� gÞ

b ¼ cos�1

 
L2b þ J2 � L2

2LbJ

!

g ¼ tan�1
�
Gþ r1 sinðu1t � f0Þ
H � r1 cosðu1t � f0Þ

�

J ¼ ½Gþ r1 sinðu1t � f0Þ�=sin g

(5)

where, La represents length of fore arm; q0 represents initial
angle between the back arm and the vertical direction; Lb rep-
resents length of back arm; J represents distance between crank
moving end and beam rotation center; L represents the length of
pitman; r1 represents crank length of beam pumping unit; H and
G represent the vertical distance and horizontal distance be-
tween crank rotation center and beam rotation center, respec-
tively; f0 represents the initial angle between the crank and the
vertical direction; u1 represents the rotation speed of crank.

Belt pumping units are also used in oil production for energy
savings. In one cycle, a belt pumping unit has two movement
states: a reversing motion near the dead points and a linear motion
(Luan et al., 2011). Hence, we have:
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_SAðtÞ¼
	
u2r2 sin f Reversing motion
u2r2 Linear motion (6)

where u2 represents the rotation speed active wheel; r2 represents
radius of active wheel; f represents the rotation angle of active
wheel.

2.1.3. Continuous conditions
To adapt to the production conditions, sucker rodswith different

diameters and materials are always used. At the junction of the
sucker rod, both the displacement and load are equal. Thus, the
continuous conditions are as follows:
8>><
>>:

u
�
L�i ; t

� ¼ u
�
Lþi ; t

�

EiAi
vu
�
L�i ; t

�
vs

¼ Eiþ1Aiþ1
vu
�
Lþi ; t

�
vs

þ pf ðLi; tÞðAiþ1 � AiÞ
i ¼ 1;2;/; c� 1 (7)
where Li represents the depth at the changing section or material of
sucker rod, Ei and Ai represent Young's modulus and area of ith-
stage sucker rod, respectively; pf represents the fluid pressure; c
represents number of sucker rod segments.
2.1.4. Pump boundary conditions under normal condition
The lower end of the SRS is a plunger, and its displacement and

load depend on the operating characteristics of the pump valve. The
pump boundary conditions consist of plunger equilibrium equa-
tion, barrel equilibrium equation, and state equation of the fluid in
the pump chamber. Assuming that the tubing expands evenly
without vibration, the pump boundary conditions can be derived as
follows:

8>>>><
>>>>:

pd
�
Ap � Ac

�� p*ðtÞAp þ Fbp � EcAc
vu
�
Lp; t

�
vs

¼ 0

at,xt
�
dFbp þ dp*Ap

�
¼ vbdt

F


u
�
Lp; t

�
; vb; p*ðtÞ � ¼ 0

(8)

where pd represents discharge pressure; p* represents pump
pressure; Fbp represents the force exerted by the pump barrel on
plunger; Lp represents pump setting depth; at represents the logical
variable of tubing anchoring; xt represents the deformation coef-
ficient of tubing string; vb represents the velocity of barrel; F
represents the state function of the fluid in the chamber, which
reflects the relationship between the fluid volume and the pres-
sure. However, in this study, F represents the relationship between
the plunger displacement, velocity of the barrel, and pump
pressure.

Based on the valve state, the state functionF can be divided into
the following three cases. Case I.When both the standing valve (SV)
and the traveling valve (TV) are closed, the plunger is stationary
relative to the pump barrel under normal conditions. Case II. When
the SV is open and TV is closed, the pump pressure is equal to the
suction pressure. Case III. When the SV is closed and the TV is open,
the pump pressure is equal to the discharge pressure. Thus, we
have:
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8<
:

F1 ¼ vp � vb fs ¼ 0; fd ¼ 0
F2 ¼ p*ðtÞ � ps þ Dps fs ¼ 1; fd ¼ 0
F3 ¼ p*ðtÞ � pd � Dpd fs ¼ 0; fd ¼ 1

(9)

where vp ¼ v(Lp,t)/vt is velocity of plunger; fs represents logic var-
iable of standing valve opening; Dpd represents the pressure drop
of traveling valve; ps represents submergence pressure; Dps rep-
resents the pressure drop of standing valve.
2.1.5. Solution technique of model

(1) Initial condition
The initial moment is when the polished rod and plunger are at
the bottom dead point. At this moment, both the SV and TV are
closed. Hence,8>>>><
>>>>:

uðs;0Þ ¼ u0ðsÞ
vuðs;0Þ=vt ¼ 0
fs ¼ fd ¼ 0
vbð0Þ ¼ 0
p*ð0Þ ¼ pd

(10)

where u0 represents the displacement of SRS due to its own floating
weight.

(2) Solving method

The finite difference method proposed by Schafer and Jennings
(1988) is adopted to solve the SRPS model. The transition condi-
tions of the valve state are required when a computer program
solves the model automatically; these can be obtained on the basis
of the specific opening and closing conditions of the valve.

8>><
>>:

fs : 0/1 p*ðtÞ< ps � Dps
fs : 1/0 vp � vb � 0
fd : 0/1 p*ðtÞ> pd þ Dpd
fd : 1/0 vp � vb � 0

(11)
2.2. Down-hole boundary conditions of fault

When a fault occurs in the SRPS, the operating characteristics of
the pump valve and the interaction between the tubing and the SRS
may affect the operation of the SRPS. Specifically, these faults will
change the state equation of the fluid in the chamber (F) and the
force of the tubing on the sucker rod (Fbp), thereby affecting the
motion of the plunger and the load acting on the polished rod.

In industrial practice, the common faults in the SRPS include
standing valve leakage (SVL), traveling valve leakage (TVL), gas
influence, insufficient liquid supply (ILS), plunger moving out of
barrel (POB), tubing leakage, top pump bumping (TPB), bottom
pump bumping (BPB), pump sticking, rod parting, and abnormal



Fig. 2. Down-hole conditions of various faults.

X.-X. Lv, H.-X. Wang, Z. Xin et al. Petroleum Science 19 (2022) 743e760
properties of well fluid. Moreover, the various down-hole working
conditions and the corresponding fault parameters are shown in
Fig. 2, where Sp represents the stroke of the plunger; sp represents
the displacement of the plunger; Ls represents the anti-impact
distance; sg represents the equivalent height of the gas in the bar-
rel; qt, qs, and qp represent the leakage rates of TV, SV, and plunger,
respectively; Sob represents the maximum distance that the
plunger can move in the pump barrel; St represents the restricted
distance of the TPB; Sb represents the restricted distance of the BPB;
Hs represents the submergence depth, reflecting the ability to
supply liquid; Ltl represents the leakage position of the tubing; Lrs
and Srs represent the location and distance of the sticking point,
respectively; Lrp represents the length of the part rod.

2.2.1. Gas influence and insufficient liquid supply
As shown in Fig. 2b, if the well fluid at the pump inlet contains

free gas, the compression and expansion of the gasmainly affect the
pump pressure in caseI of the valve states. When the gas content is
high, neither valves can be opened; this condition is called gas lock.
However, when the gas content of the discharged fluid is very low,
and the submergence is lower, the volume of the gas expands
rapidly during loading, and only a low amount of liquid enters the
pump chamber. Therefore, almost all the gas volume needs to be
compressed before discharge, and the pump pressure is almost
constant, which is the case of the ILS.

To establish the down-hole boundary condition of the gas
affected, the following assumptions aremade: (1) Compression and
expansion of the gas proceed isothermally and polytropically. (2)
The gas-liquidmixture evenly enters and leaves the pump chamber.
747
The gas in the chamber changes the characteristics of the pump
valve only in case I, and in this case, the pump chamber forms a
closed space. Based on the gas state equation, the change in the
pressure of the gas in the pump chamber can be expressed as:

dp*
�
t


¼p*

�
t

��

sg
�
t
�

sg
�
t
�þ dsg

�
t
�
k

�1
�

(12)

where k represents the polytropic exponent of gas.
As shown in Eq. (12), sg is introduced as an additional variable;

thus, an additional constraint equation is required to make the
boundary condition complete. The constraint equation corre-
sponding to a change in sg is as follows.

dsg
dt

¼
8<
:

vb � vp fs ¼ 0; fd ¼ 0�
vb � vp

�
,R
�ð1þ RÞ fs ¼ 1; fd ¼ 0�

vb � vp
�
,Rd

�ð1þ RdÞ fs ¼ 0; fd ¼ 1
(13)

R¼Rdðpd=psÞ1=k (14)

where R and Rd represent the volume ratio of gas to liquid at the
inlet and outlet of the pump, respectively.

In addition, the initial value of sg is as follows:

sgð0Þ¼ Ls,Rd = ð1þRdÞ (15)

The state equation of the well fluid containing the gas in case I
(F1) can be obtained by combining Eqs. (12)e(15).
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2.2.2. Leakage of pump valve
The valve cannot be completely closed due towear of the seat or

ball and dirt or sand in the cover. The excessive anti-impact dis-
tance and stroke length may cause the plunger to move out of the
pump barrel. Moreover, the wear and corrosion of the plunger and
pump barrel will cause the gap between them to increase. All these
cases may lead to pump valve leakage. When the standing valve
leakage is high, the state in which the TV cannot open is called the
standing valve failure (SVF). When the traveling valve leakage is
very high, the state in which the SV cannot open is called the
traveling valve failure (TVF). Since the influence of plunger leakage
is the same as that of TV, the plunger leakage due to wear and
corrosion is superimposed on the leakage of the TV. Similarly, the
leakage of the pump barrel is superimposed on that of the SV.

The instantaneous leakage of the pump under normal condi-
tions can be obtained through a theoretical analysis of the
concentric cylinder leakage (Wang et al., 2019).

qp ¼ xp½pd �p*ðtÞ�¼pDpd
3

12mlp
½pd �p*ðtÞ� (16)

where xp represents plunger leakage coefficient; Dp represents the
diameter of plunger; lp represents the length of plunger; d repre-
sents the clearance between plunger and pump barrel.

When the plunger moves out of the pump barrel, the clearance
of the plunger leakage is equal to the clearance between the
plunger and the tubing.

d¼
	�

Db � Dp
��

2 sp � Sob�
Dti � Dp

��
2 sp > Sob

(17)

where Db represents the inner diameter of pump barrel; Dti rep-
resents the inner diameter tubing.

To fully reflect the influence of pressure difference on the valve
Fbp ¼
	
TspFrA sin½pðt � t0iÞ=Tri�,rd1,sign



rd2 � 0:5

�
t2


t0i; t0i þ ðt0iþ1 � t0iÞ,rd3

�
0 t2

�
t0i þ ðt0iþ1 � t0iÞ,rd3; t0iþ1

� i ¼ 1;2;/;nr (22)
leakage rate, the leakage coefficient and leakage exponent are
introduced to characterize the valve leakage (Lv et al., 2020b).

	
qs ¼ zsxp0½ps � p*ðtÞ�es
qt ¼ ztxp0½pd � p*ðtÞ�et (18)

where zs and es represent the leakage coefficient and exponent of
standing valve, respectively; zt and et represent the leakage coef-
ficient and exponent of traveling valve, respectively; xp0 represents
the plunger leakage coefficient of specified pump.

The state function F1 of the well fluid in the chamber under
leakage conditions can be obtained based on the fact that the space
released by the plunger movement is equal to the volume of the
leaked fluid. Thus, we have:

F1 ¼
�
vb � vp

�
Ap � qs � qt � qp (19)
2.2.3. Pump bump and sand production
When the anti-impact distance is too small or if sand, mud,

rubber, or other solid foreign bodies are deposited in the pump
barrel, the plunger may bump against the pump barrel during
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processing. In the TPB state, the standing valve will close imme-
diately, and the load of the SRS will increase dramatically. In
comparison, in the BPB state, the traveling valve will close at once,
and the load of the SRS will be sharply reduced. Except during the
impact period, the working process of the SRPS is consistent with
that under normal conditions. Assuming that the plunger is
temporarily fixed with the pump barrel when bumping occurs, the
state function of the fluid in the chamber F can be updated as
follows.

F0 ¼
8<
:

vb � vp sp � Sb
F Sb < sp < St � lp
vb � vp sp � St � lp

(20)

When there is no pump bumping, the force Fbp is the Coulomb
friction, which is known. However, when bumping occurs, Fbp is a
variable. Consequently, an additional equation is required to form a
complete constraint. However, when the plunger bumps against
the barrel at the top, the pump pressure is equal to the discharge
pressure, whereas at the bottom, the pump pressure is equal to the
submergence pressure. Thus, we have,

Fbp ¼
8<
:

EcAc,vu
�
Lp; t

��
vs� pd

�
Ap � Ac

�þ psAp sp � Sb
FC,sign

�
vb � vp

�
Sb < sp < St � lp

EcAc,vu
�
Lp; t

��
vsþ pdAc sp � St � lp

(21)

where FC represents the Coulomb friction between plunger and
pump barrel.

Under conditions of sand production, an additional random
high-frequency load may be generated between the pump barrel
and the plunger. Based on the random function, an additional im-
pulse load is defined as follows.
where nr represents the number of random impulse loads and is a
random integer; rd1, rd2 and rd3 represent random real numbers
between 0 and 1; FrA represents the maximum amplitude of pulse
load; t0i represents the initial time of pulse load selected randomly;
Tsp represent the logical variable of sand production occurrence.

2.2.4. Tubing leakage
When the tubing is damaged due to abrasion or corrosion, the

fluid in the tubing will flow back into the casing, resulting in no
production and low discharge pressure.

p0d ¼pd � rfgL
v
tl (23)

where Lv tl represents the vertical depth at the tubing leakage
location.

2.2.5. Pump sticking
Pump sticking is the state in which the sundries in the pump

barrel or tubing almost completely limit themovement of the lower
part of the SRS. When the SRS moves to the sticking point
[u(Lrs,t) � u0(Lrs) � �Srs], the SRS is stationary relative to the tubing
at the sticking point, and the tubing is stretched and compressed by
the varying tension of the SRS. In this working state, the pump does
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not work, so the pump boundary conditions of the SRPS model are
changed as follows:

(
ðvu=vtÞjs�Lp�Lrs � vts ¼ 0
at,xtEAvðu� u0Þ=vsjs¼Lp�Lrs ¼ vtsdt

(24)

where vts represents the velocity of the tubing at the sticking point.
2.2.6. Rod parting
The parting rod is a common type of fault due to mechanical

wear, fatigue damage, and corrosion damage. Under this fault
condition, only the broken sucker rod reciprocates in the well,
without production. For the model of the SRPS, the spatial range of
the SRS displacement field u(s,t) is reduced from [0, Lp] to [0, Lrp],
and the pump boundary condition is changed as follows:

EA
vu
vs
js¼Lrp ¼ � Apf

�
Lrp
�

(25)
2.3. Result of improved model of SRPS

Based on the improved model of the SRS established above, the
working conditions of the SRPS can be characterized using the
following fault parameter X.

X¼
�
Hs;Rd; Ls; zt; et; zs; es; Sob; St; :::
Sb; Tps; Lrs; Srs; Trp; Lrp; Ttl; Ltl;m; Tsp

�T
(26)

where Tps, Trp and Ttl represent the logical variables of occurrence of
pump sticking, rod parting and tubing leakage, respectively.

For a given SRPS, the working process and the output perfor-
mance of the SRPS can be obtained.

Pe ¼MISðX;YÞ (27)

where Y represents the system parameter of the SRPS, including
system structure parameters (configurations of the SRS, tubing,
pump, well trajectory, and surface equipment model) and pro-
duction parameters (stroke of the polished rod, pumping speed,
and submergence depth); Pe represents a set of variables that
characterize the working process and the output performance of
the SRPS.

The two crucial elements of Pe are the polished rod load and
liquid production rate, and the calculation formulae are as follows.

LPRsðX; tÞ¼
E1A1

Ds

�
3
2
uð2Ds; tÞ�uðDs; tÞþ1

2
uð0; tÞ

�
(28)

QlðXÞ¼

� 1440
�
1� Tps

��
1� Trp

�ð1� TtlÞBlAfb

ð60=N
0

xv
�
Lp
�
vpðtÞ

ð1þ RdÞ
dt

(29)

where LPRs represents simulated polished-rod load; Ds represents
the length step; Ql represents liquid production rate; Bl represents
the compressibility coefficient of well liquid; N represents the
pumping speed; Afb represents the area of bottom fluid column.
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3. Adaptive diagnostic method of rod pump system

3.1. Construction of diagnosis models

Based on the existing perceptron, including the back propaga-
tion neural network (BPNN), ELM, and SVM, diagnosis models of
the SRPS are constructed. In addition, DCs under various working
conditions generated using the improved SRPS model are adopted
to replace the field DC set and train the diagnosis models. To further
improve the diagnosis accuracy, the feature extraction method of
the DC is modified, and the parameters of the perceptron are
optimized as well. The details are as follows.

3.1.1. Feature extraction based on relative normalized data
The purpose of feature extraction is to reduce the number of

features as far as possible on the premise of retaining the working-
condition information, so as to reduce the dimension of the training
input and improve the training and recognition efficiency of the
diagnosis model. Currently, many features of the DC have been
proven to be effective, such as FD, FCC, and CM. However, before
extracting the features, the data of the DC should be normalized to
avoid affecting the calculation due to the different dimensions
between the load and the displacement.

Supposing each DC composes a set of discrete points {(si, Fi)}, the
direct normalization formulae are as follows:

s1i ¼
si � smin

smax � smin
(30)

F1i ¼ Fi � Fmin
Fmax � Fmin

(31)

where, s1i and F1i represent the normalized displacement and load
of polished rod, respectively; smin and smax represent the minimum
and maximum displacement of polished rod, respectively; Fmin and
Fmax represent the minimum and maximum load of polished rod,
respectively.

Fig. 3 shows the direct normalized DC under several typical fault
conditions. As shown in Fig. 3 a, the shape of the DCs under ILS and
SVL conditions can fully reflect the fault type; thus, the data directly
normalized can be accurately classified. However, the direct
normalized DCs under the conditions of SVF, TVF, and rod parting
are too similar to be identified, as shown in Fig. 3b. Similarly, it is
also difficult to distinguish between normal DC and DC under the
tubing leakage condition. This is because some faults not only affect
the shape of the DC but also change the load range of the polished
rod.

Therefore, to retain the quantitative characteristics of the DC,
relative normalization is adopted to process the original DC data.
The relative normalization formulae are as follows:

F1ri ¼
Fi � ðFsmin � 0:5DFÞ

2DF
(32)

8>>>>>>>>>><
>>>>>>>>>>:

DF ¼ Apðpd � psÞ þ 2Frt
Fsmin ¼ FR � Frt

FR ¼
ðLp
0

h
rðsÞ � rf

i
AðsÞgcosads

Frt ¼
ðLp
0

frtds

(33)



Fig. 3. Improvement in feature extraction method.

X.-X. Lv, H.-X. Wang, Z. Xin et al. Petroleum Science 19 (2022) 743e760
where F1ri represents the relative normalized load of polished rod;
Fsmin represents the minimum static load of polished rod; DF rep-
resents load of the fluid column; FR represents the floating weight
of SRS; Frt represents the total Coulomb friction between sucker rod
and tubing.

The following formula is used to ensure that the relative
normalized data are in the range of [0, 1].

F1i ¼

8>>><
>>>:

F1ri �min
�
F1ri
�

min
�
F1ri
�
<0

F1ri min
�
F1ri
�
� 0;max

�
F1ri
�
� 1

F1ri �max
�
F1ri
�
þ 1 max

�
F1ri
�
>1

(34)

Based on the proposed relative normalization method, the
relative normalized data of the DC under several typical fault
conditions are obtained, as shown in Fig. 3. As shown in Fig. 3a,
under SVL and ILS conditions, the shape information of the DCs is
retained. Nevertheless, under SVF, TVF, and rod parting conditions,
the positions of the relative normalized DCs are evidently different,
as shown in Fig. 3b, though with more similar shapes. As shown in
Fig. 3c, the relative normalization can preserve the fault charac-
teristics of the maximum load line reduction under the tubing
leakage condition, based on which this fault can be distinguished
from that under the normal condition. To enhance the quantitative
information of the load (ordinate), the following features are added
on the basis of the relative normalized DC features {Tr n}, as shown
in Fig. 3d.

	
K1 ¼ la=lc
K2 ¼ lb=lc

(35)

where lc represents the total length of DC curve; la represents the

length of DC curve with F1i value greater than 0.5; lb represents the

length of DC curve with F1i value greater than 0.25.
The features of FD, CM, and FCC improved by the relative

normalization and additional features are denoted by IFD, ICM, and
IFCC, respectively.
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3.1.2. Perceptron training and discrimination of working condition

(1) Training data

To eliminate the difference in the distributions between training
data (DCs under various system parameters of the field SRPS) and
target data (DC of the SRPS to be diagnosed), the DCs under various
working conditions generated near the working point of the target
SRPS are used as training data.

The training input is a matrix (n � Ns) composed of a feature-
parameter vector (n � 1) of the DC training set, and the output is
a matrix (m � Ns) composed of a fault-indication vector (m � 1),
where n is the number of features, m is the number of working
conditions, and Ns is the number of training samples. The working
conditions are numbered on the basis of the following sequence:
normal conditions, gas influence, gas lock, ILS, SVL, SVF, TVL, TVF,
TPB, BPB, pump sticking, rod parting, tubing leakage, POB, heavy oil
effect, and sand production.

(2) Discrimination of working condition

For the BPNN and ELM, theworking condition of the SRPS can be
identified by analyzing the distance between the diagnostic fault-
indication vector and the standard fault-indication vector.

FTS ¼ ½FTS1;FTS2;/; FTSm� ¼ Im�m (36)

FDðjÞ¼ argmin
i

��FTj � FTSi
�� (37)

where FTS represents the standard fault matrix composed of fault-
indication vectors of m types of working conditions; Im�m repre-
sents the m-order identity matrix; FD represents the code number
of the diagnostic working condition; FTj represents the diagnostic
fault-indication vector of the jth test well; FTSi represents the
standard fault-indication vector of the No. I working condition, i.e.,
the ith column vector of Im�m.

For the SVM, theworking condition of the SRPS can be identified



X.-X. Lv, H.-X. Wang, Z. Xin et al. Petroleum Science 19 (2022) 743e760
by comparing the values of m hyperplane functions.

FDðjÞ¼ argmax
i

Gi
�
Tnj
�

(38)

where Gi($) represents the hyperplane function with the data of
class i as positive samples and other data as negative samples; Tnj
represents the DC features.

The diagnostic results are verified using Eq. (39).

hðjÞ¼
	
1 if FDðjÞ ¼ FAðjÞ
0 else

(39)

where h represents the logical variable of correctness of diagnosis
results; FA represents the code number of actual working condition.

Thus, the diagnostic accuracy Da is as follows:

Da ¼
XNt

j¼1

hðjÞ=Nt � 100% (40)

where Nt represents number of test samples.
3.1.3. Parameter optimization of perceptron
To avoid overfitting, the structure of the network (BPNN and

ELM) should not be too complex. Thus, the number of hidden layers
of the network is set to 1, and the number of neurons in the hidden
layer is set to 30. Based on the selection criteria of the loss function
and the characteristics of the label data and problems addressed in
this paper, the cross entropy is selected as the loss function of the
BP algorithm (Dong et al., 2020). Furthermore, because the SVM is a
binary classifier, m classifiers are required to construct a diagnostic
model.

Noticeably, the current perceptron learning algorithm has
shortcomings that affect the diagnosis accuracy. An inappropriate
initial value of the weight matrix will make the result of the BP
algorithm be trapped in the local optimal region. For the ELM,
although the least-squares (LS) algorithm can obtain the optimal
weights and biases of the output layer, the input layer weights and
variable biases of the hidden layer are given randomly, bringing
significant uncertainty in the ELM result. The sequential minimum
optimization (SMO) algorithm (Huang et al., 2015) can find the
optimal classification hyperplane of the SVM; however, the type
and parameters of the kernel function have no corresponding se-
lection criteria. Therefore, to improve the adaptability of these
perceptrons to the diagnosis problem, optimization is necessary.

Clearly, the objective of optimization is to minimize the error
between the final training output and the expected output. Based
on the discriminant formula (Eq. (37)), the optimization objective
functions of the BPNN and ELM are defined as follows:

fit¼
1
Ns

XNs

i¼1

kFTi � FTAik (41)

where Ns represents the number of test samples, FTA represents the
actual fault-indication vector.

Moreover, the optimization objective function of the SVM is
defined as follows.

fit¼
1

Nsðm� 1Þ
XNs

j¼1

Xm
i¼1;isCj

h
Gi
�
Tnj
��GCj

�
Tnj
�i

(42)

where Cj represents the working condition category of the jth
training sample.

In this study, the genetic algorithm (GA) is adopted for the
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optimization (Li et al., 2018b; Zhang et al., 2020; Gokul and
Sowmya, 2019), and the optimization process is shown in Fig. 4,
where ip represents the iteration times of the BP algorithm; Ip
represents the maximum number of iterations of the BP algorithm;
ig represents the iteration times of the GA; Ig represents the
maximum number of iterations of the GA; LF represents the loss
function; εL represents the permissible loss function of the BP al-
gorithm; εfit represents the permissible fitness. Moreover, the initial
values of the optimization parameters of the BPNN, ELM, and SVM
are the weights and biases, input layer weights and hidden layer
biases, and kernel function parameters, respectively.
3.2. Quantification of SRPS performance

According to Eq. (27), the SRPS performance depends on system
and fault parameters, where the system parameters are known for a
given SRPS. The optimization inversion method is applied to
identify the fault parameters (Lv et al., 2020b). The fault parameter
X that minimizes the difference between the simulated DC gener-
ated by the improved model of the SRS and the measured DC is
taken to characterize the actual SRPS.
3.2.1. Optimization model for identifying fault parameters

(1) Optimization objective function

For the convenience of setting the unified allowable error, the
difference between the measured DC and simulated DC is defined
as follows:

f ðXÞ¼

ð60=N
0

jFðtÞ � LPRsðX; tÞj,jdSAj
2SðFmax � FminÞ

(43)

where S represents the stroke length of polished rod.

(2) Constraint condition

The constraint condition is the limitation of the fault parameter
range. Additionally, the feasible region XD can be reduced to a
specific fault parameter space XDs by the diagnosis results obtained
under the SRPS working conditions. In summary, the optimization
model can be expressed as follows:

min
X

f ðXÞ
s:t: X2XDs

(44)
3.2.2. Solution method of the optimization model
The optimization objective function is the result of a complex

model rather than an analytical formula. Thus, if the optimization
search is carried out directly, the high number of iterations will
dramatically increase the optimization time. Generally, the influ-
ence of fault degree of a single fault on the error is monotonous.
Therefore, a method to obtain the approximate analytic expression
of the objective function is proposed, and the specific steps are
shown in Fig. 5. First, the feasible region is discretized roughly, and
the objective function value of the discrete point is calculated.
Subsequently, the analytic expression of the objective function
instead of the simulation model is obtained by fitting the discrete
point data.



Fig. 4. Optimization process of perceptron parameter based on genetic algorithm.

Fig. 5. Calculation process of quantification of SRPS performance.
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3.3. Framework of adaptive diagnosis method

Based on the above analysis, an adaptive diagnosis framework is
proposed, as shown in Fig. 6. The method is divided into online and
offline parts. The task of the offline part is to generate sufficient DCs
under various working conditions based on the system parameters
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of the target SRPS using the improved SRPS model for training the
diagnosis model. In contrast, the task of the online part is to di-
agnose the working condition of the SRPS based on the measured
DC and to quantify the system performance using the improved
SRPS model and inversion algorithm.



Fig. 6. Framework of adaptive diagnosis method.

Table 1
System parameters and production rates of actual SRPSs

Well
No.

Well name Submergence
Depth, m

Pump
Unit
Type

Plunger diameter, mm �
Stroke length, m � pump speed,
min�1

Configuration of SRS
Type � Di, mm � Li, m

Measured Ql, m3/
d

Working condition of field
inspection

1# DXX11X179 300 Belt 63 � 5.8 � 2.1 CR � 22 � 1100þSR � 22 � 830 11.65 Normal
6# LNXI72-X4 426 Beam 38 � 4.68 � 1.37 SR � 25 � 1200þSR � 22 � 800 5.18 Gas affected
20# DXX6X56 15 Belt 56 � 5.89 � 2.13 CR � 22 � 1100þSR � 22 � 650 17.02 ILS
21# LPP40-X902 1100 Belt 44 � 5.58 � 1.89 CR � 19 � 1750þSR � 22 � 950 6.56 SVF
31# DXX31X14 200 Beam 44 � 5.93 � 1.6 CR � 19 � 1800þSR � 22 � 950 3.12 TVF
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4. Results and discussions

4.1. Data collection of actual wells

To verify the effectiveness of the method proposed in this paper,
1104 DCs under various working conditions were collected from
Shengli Oilfield in China. Among them, 1024 DCs were used as the
training set compared with the simulation data. The other 80 DCs
were used as test samples for verification. The system parameters
of the SRPS corresponding to the part test DCs are shown in Table 1,
where SR represents the steel sucker rods, and CR presents carbon
fiber sucker rods.
4.2. Simulation results of improved model of SRPS

Based on the system parameters of 1# SRPS, shown in Table 1,
and improved model of the SRPS, the polished rod DCs under 16
working conditions are acquired, as shown in Fig. 7, where Spe
represents the effective stroke of the plunger.

In Fig. 7a, the curve of the normal DC consists of four parts:
loading, suction, unloading and discharge. Moreover, the suction
and discharge curves fluctuate near the maximum and minimum
static load lines (Fsmax and Fsmin lines), respectively. The overall
shape of the normal DC is like a parallelogram, and there are
fluctuations in the upper and lower sides due to the vibration of the
SRS, consistent with the actual process.

When both the valves are closed, the compression and expan-
sion of the gas in the pump chamber slow down the change in the
pump pressure, particularly in the unloading section, because of
the high initial gas volume. Therefore, the loading and unloading
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lines of the DC affected by the gas are elongated, particularly the
unloading line. Moreover, according to Eq. (12), the change in the
pump pressure decreases during loadingwhereas it increases in the
unloading section, resulting in a convex loading line and a concave
unloading line. As a result, the lower right corner of the DC under
conditions of gas influence is missing, as shown in Fig. 7b. In
addition, the DC of the ILS is similar to the DC affected by the gas,
because the two faults have the same action mechanism on the
SRPS. However, the gas content in the pump chamber is low under
ILS conditions; thus, the loading process is unaffected, whereas the
unloading process can be divided into two stages. In the first stage,
the gas in the pump chamber is compressed, and the pump pres-
sure remains unchanged. In the second stage, the gas compression
is low, and the pump pressure decreases rapidly. Therefore, as
shown in Fig. 7c, the bottom-right part of the DC under the ILS
condition is a polyline. Although the effective stroke of the plunger
will be reduced, the components of the SRPS will not be damaged
under the conditions of ILS and gas influence. Hence, if the output
and energy consumption are within the acceptable range, the SRPS
can continue to work. However, under a gas lock condition, the
huge amount of gas in the pump chamber will significantly prolong
the loading and unloading processes so that there are no suction
and discharge sections in the entire working cycle. Therefore, the
DC of the gas lock shown in Fig. 7c appears like a curved bar.

Under the valve leakage conditions, in the loading section, the
fluid leaking into the chamber through the TV will slow down the
decrease in the pump pressure, i.e., reduce the loading speed of the
polished rod. With the decrease in the pump pressure, the leakage
rate of the TV increases, leading to a lower loading speed of the
polished rod. In the unloading section, the TV leakage will



Fig. 7. Simulated DCs of polished rod under various fault conditions.
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accelerate the increase in the pump pressure, and the acceleration
effect gradually decreases. Therefore, the loading line of the TVL DC
shown in Fig. 7g is elongated whereas the unloading line is short-
ened, and both the lines are convex. In contrast to the TVL, the
loading line of the SVL DC, shown in Fig. 7e, is shortened whereas
the unloading line is elongated. Compared with the normal DC, the
upper left part of the TVL DC is missing, whereas the lower right
part of the SVL DC is missing. Additionally, valve leakage not only
reduces the effective displacement of the plunger but also reduces
the liquid discharge during the effective stroke according to Eq.
(18). Therefore, the production rate of the SRPS will significantly
decrease under valve leakage conditions.

If the TV is damaged, the pump pressure will be maintained at
the discharge pressure; under this condition, the polished rod load
will remain near Fsmin. Therefore, the DC is a horizontal bar near the
Fsmin line shown in Fig. 7h. However, the failure of the SV will cause
the pump pressure to remain at the submergence pressure. Hence,
as shown in Fig. 7f, the DC of the SVF is a horizontal bar near the
Fsmax line. If the sucker rod string breaks, the polished rod load will
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be a floating weight of the broken sucker rod. Thus, as shown in
Fig. 7l, the DC of the rod parting is a horizontal bar below the Fsmin
line. Moreover, when the fault of pump sticking occurs, the
movement of the lower end of the SRS is completely limited. The
polished rodwill bear the load due to the large-strain tension of the
SRS. Consequently, the DC of pump sticking is a straight bar whose
slope is the stiffness of the SRS shown in Fig. 7k. Under these four
conditions, the SRPS is no longer in production, and the oil pump
will be or is seriously damaged. Thus, the SRPS should be over-
hauled immediately when these faults occur.

Under the pump bumping conditions, the SRPS operates nor-
mally except during the bumping; thus, the DC is consistent with
the normal DC. However, the plunger load will change sharply
during the bumping. Specifically, if the plunger hits the upper part
of the barrel, the load of the polished rod will increase rapidly near
the upper dead point; this results in a bugle in the upper right part
of the DC, as shown in Fig. 7i. Similarly, the lower left part of the DC
under BPB conditions will bulge, as shown in Fig. 7j. Pump bumping
will not only reduce the effective stroke of the plunger but also



Table 2
Typical faults and corresponding characteristics of DC

No. Fault Types Characteristics of DC

1 Normal state Almost like a parallelogram
2 Gas influence Lack the right-bottom corner with smooth changes
3 Gas lock Shape of curve is a curve bar
4 ILS Lack the right-bottom corner with rapid changes
5 SVL Lack the right-bottom partition of curve
6 SVF Curve is a flat bar and located near the Fsmax line
7 TVL Lack the left-upper partition of curve
8 TVF Curve is a flat bar and located near the Fsmin line
9 TPB Bulge at the left-bottom dead point
10 BPB Bulge at the right-top dead point
11 Pump sticking Lost the area and shape of curve is near oblique and straight
12 Rod parting Lost the area and shape of curve is near flat
13 Tubing leakage Almost like a parallelogram and is below the Fsmax line
14 POB Lack the right-upper partition of curve
15 Heavy oil effect Shape of curve is fat with round and bulge
16 Sand production Zigzag edge of the curve with burr
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damage the plunger and pump barrel. Therefore, once these faults
are detected, the SRPS should be stopped immediately and then
readjusted.
Fig. 8. Comparison of d
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As shown in Fig. 7m, the DC of the tubing leakage is similar to
that under the normal condition. However, because of the leakage
of the fluid in the tubing above the leakage position, the pump
iagnostic accuracy.



Fig. 9. Comparison of improved feature diagnosis results.

Fig. 10. Change in the fitness in the optimization process.
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outlet pressure, i.e., the discharge pressure, is reduced. Therefore,
the suction curve of the DC is lower than the Fsmax line, and no fluid
is lifted to the surface. Moreover, as shown in Fig. 7n, when the
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plunger moves upward and comes out of the pump barrel, the
leakage clearance of the plungerwill increase suddenly, leading to a
rapid decrease in the polished rod load. As a result, the upper right



Fig. 11. Accuracy results of optimized diagnostic model.
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part of the DC is missing, and the effective stroke of the plunger is
reduced.

The higher viscous resistance of the heavy oil to the SRS will
attenuate the resonance amplitude of the SRS rapidly and increase
the stroke loss, causing the DC to become round and plump, as
shown in Fig. 7o. The shape of the DC indicates that the power of
the polished rod increases while the liquid production rate de-
creases when heavy oil is recovered, implying an increase in the
energy consumption. In addition, any sand in the pump barrel will
add additional random loads to the plunger. These loads will
propagate to the polished rod, resulting in significant burrs on the
DC curve, as shown in Fig. 7p.

The above analysis results show that the DC corresponding to
each working condition has unique characteristics. Hence, the
Fig. 12. Accuracy comparison between adaptive diagnosis and current diagnosis
methods.
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working conditions of the SRPS can be easily identified by experi-
enced engineers based on the DC. Comparing the characteristics of
the measured DCs under the various working conditions summa-
rized in Table 2 (Zhou et al., 2019) and the characteristics of the
simulated DCs analyzed above, a good agreement is found. The
comparison results show that the established model of the SRPS
can effectively simulate the operation process of the SRPS under
fault conditions. In addition, the DCs generated by the improved
model of the SRPS can replace the DCs collected from the oilfield as
training data for the diagnosis model.
4.3. Diagnosis results and discussion

4.3.1. Effect of diagnosis model type
Based on the system parameters of the SRPS corresponding to

the 80 test DCs, 1024 DCs (16 working conditions, 64 DCs under
each working condition) for each SRPS were generated to train the
diagnostic model. The accuracy of the diagnosis models composed
of three perceptrons (BPNN, ELM, and SVM) combined with six
features (FD, CM, FCC, IFD, ICM, and IFCC) is shown in Fig. 8.

As shown in the three sub-graphs of Fig. 8, with the increase in
the number of samples, the accuracy of the diagnostic models in-
creases but with a decreasing rate. Among them, the BPNN has the
greatest increase, because the increase in the number of training
samples can quickly improve the generalization ability of the BPNN.
However, the increase in the SVM is the lowest, because its diag-
nostic accuracy is only related to a small number of key samples
(support vectors).

The ELM and BPNN, with Fourier descriptors as features, have
the highest accuracy, because the Fourier inversion results are
continuous characteristics of the DC; moreover, they have superior
fitting ability for continuous parameters. The SVM with the FCC as
the feature has the highest diagnostic accuracy, because the FCC is a
discrete and standardized feature (an eight-direction FCC has only
eight integer-level values), and the SVM has better classification
ability for these types of data.

Moreover, with improved features, the accuracy of the diagnosis
model constructed by all the perceptrons is improved. The average
improvement in the diagnosis accuracy (1024 training samples) of
the nine diagnostic models was 10.2%, of which the highest was
18.8% (SVM-FCC) and the lowest was 4.8% (BPNN-FCC). Eventually,
with the improved features, the highest diagnostic accuracy of the
BPNN, ELM, and SVM could reach 82.5%, 85%, and 90%, respectively.

Taking the diagnostic model of the IFCC-SVM with the highest
accuracy as an example, the specific diagnosis results of the 80 test
samples are shown in Fig. 9. With the original feature (FCC), 23
samples were diagnosed incorrectly. Four of them are under sand
production (No. 16) conditions, because the FCC is obtained from
the contour of the discrete points on the DC, and it could not fully
include the features of the high-frequency load. In addition, 13 of
them are under conditions of SVF (No. 6), TVF (No. 8), and rod
parting (No. 12), because the DCs under these working conditions
are horizontal bars with different positions, and a direct normali-
zation eliminates the position information. Nevertheless, the
improved features retain the quantitative information of the posi-
tion, and the relative normalization weakens the influence of the
pulse load on the discrete point contours of the DC. Therefore, the
diagnosis accuracy of the samples under the conditions of SVF, TVF,
and rod parting is 100%, and the number of diagnosis error samples
under sand production conditions is reduced by 2. Referring to the
samples of the diagnostic errors under the other conditions, the
main reason is that the fault of the SRPS is minor and has less effect
on the features of the DC.



Fig. 13. Difference function of DC.

Table 3
Calculation results of quantification

Working condition Normal Gas influence ILS SVL TVL Average

Error of Ql, % 3.8 5.3 4.6 3.7 6.6 4.8
Computational time, s 11.4 56.3 49.2 90.8 86.5 58.8
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4.3.2. Effect of optimization
Taking 21# SRPS as an example, the optimization results of the

three perceptrons with the IFD as input are shown in Fig. 10. The
fitness of the BPNN and ELM is reduced by nearly 10 times, and the
fitness of the SVM is also reduced by 50%, which shows that the
optimization can improve the recognition accuracy of the
perceptrons.

Furthermore, the accuracy of the diagnosis model after param-
eter optimization for actual SRPSs is shown in Fig. 11.

As shown in Fig. 11, the accuracy of the optimized diagnostic
models is increased by 3.7%e16.3%, with the highest increase ob-
tained by the BPNN-IFCC and the lowest by the SVM-IFD. Moreover,
the BPNN has the maximum average increase in the diagnostic
accuracy (13.8%), because the optimization could help the BPNN to
obtain the global optimal solution, and the optimization of all the
weights and biases of the neural network could improve the fitting
ability of the BPNN to the greatest extent. The ELM comes second,
because the error of the ELM is feed-forward, and the optimization
results of the input weights and biases of the hidden layers are not
necessarily the global optimal solution. The SVM could obtain the
optimal plane and support vectors according to the KKT condition;
only the parameters and relaxation factors of the kernel function
can be optimized. Thus, the average increase in the SVM diagnostic
accuracy is lowest (5%). More importantly, after optimization, the
highest diagnostic conditions of the BPNN, ELM, and SVM are 96.3%
(BPNN-IFD), 95% (ELM-IFD), and 95% (SVM-IFCC), respectively.
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4.3.3. Accuracy comparison between current method and adaptive
method

Fig. 12 shows the diagnostic accuracy comparison between the
current diagnosis method based on the DC set collected from the
oilfield and the adaptive diagnosis method proposed in this paper
based on the simulated DC data. Here, all the nine diagnostic
models are composed of improved feature extraction methods and
optimized perceptrons.

As shown in Fig. 12, under the 16 working conditions mentioned
above, the average accuracy of the adaptive diagnosis method is
15.6% higher than that of the current method. In addition, the
highest accuracy of the current diagnosis method is 82.5%, which is
13.8% lower than that of the adaptive diagnosis method. The above
results show that the simulated data of the DC can replace the DC
collected from the field as the training data for the diagnosis model,
and the adaptive diagnosis method is superior to the current
method in terms of the diagnostic accuracy.
4.3.4. Quantitative results of SRPS performance
The faults, including the gas influence, ILS, SVL, and TVL, only

slightly affect the production efficiency and will not damage the
machinery. Therefore, the index to judge whether the SRPS could
continue to work is whether the production rate is acceptable un-
der these fault conditions. Thus, it is necessary to obtain the
quantitative performance of the SRPS, particularly the liquid pro-
duction rate, from the measured DC.

Taking 6# SRPS as an example, the difference function (f) be-
tween the simulated DC and the measured DC is shown in Fig. 13.
The working condition of the SRPS is gas influence, so the main
fault parameter is R, and the corresponding element in the fault
parameter (X) is Rd. As shown in Fig. 13, with the increase in Rd, the
value of the difference function first drops and then rises, and there
is only one minimum point on the curve. The abscissa (Rdo) of the
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minimum point is the key fault parameter that characterizes the
fault degree of the 6# SRPS. As shown in the sub-graph of Fig. 13,
when Rd is equal to Rdo, the simulated DC has a good consistency
with the measured DC.

Based on the method presented in Section 3.2, the quantitative
performances of 25 test SRPSs under normal or minor fault con-
ditions (gas influence, ILS, SVL, and TVL) were obtained as shown in
Table 3. Table 3 gives the average error of the liquid production rate
(Ql) and the average calculation time under each working
condition.

The highest error of the liquid production rate is 6.6%, and the
average is 4.8%, which meets the requirements of industrial output
metering for the SRPS. Meanwhile, it also proves the validity of the
improvedmodel of SRPS model. The experiment was performed on
an industrial computer equipped with Intel Core i5-4460 and a 64-
bit operating system. The code of the quantitative analysis method
and these diagnosis models were run on MATLAB 2017b. The
diagnostic procedures required less than 1 s to complete, whereas
the computational time for the quantitative analysis was longer
with the highest value of 90.8 s. Nevertheless, the computational
time was no more than 10 times of the operation cycle. Hence, the
method proposed in this paper could realize a timely high-
precision diagnosis of the working condition and output metering
for the SRPS.

5. Conclusions

To improve the diagnostic accuracy for faults, an adaptive
diagnosis method for a rod pump system was developed. First, an
improved model of the sucker rod dynamics was derived, with
which DCs under 16 working conditions could be generated. Sub-
sequently, taking a set of simulated fault DCs generated near the
working point of the target SRPS as training data, a novel frame-
work based on an improved feature extraction method and an
optimized perceptron was constructed to diagnose the down-hole
working conditions. Moreover, a quantitative method for the
SRPS performance, particularly the liquid production rate, was
presented on the basis of the parameter identification of the
improved SRPS model. The accuracy of the adaptive diagnosis
method and quantization method was demonstrated through field
data collected from 80 oil wells. Compared with the current diag-
nosis methods, the accuracy of the adaptive diagnosis method
could be improved by 13.8%, because the distributions of the
simulated training data and target data were highly consistent.
Finally, the real-time performance of the proposed method was
verified through computational efficiency experiments.
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