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a b s t r a c t

The amplitude versus offset/angle (AVO/AVA) inversion which recovers elastic properties of subsurface
media is an essential tool in oil and gas exploration. In general, the exact Zoeppritz equation has a
relatively high accuracy in modelling the reflection coefficients. However, amplitude inversion based on
it is highly nonlinear, thus, requires nonlinear inversion techniques like the genetic algorithm (GA) which
has been widely applied in seismology. The quantum genetic algorithm (QGA) is a variant of the GA that
enjoys the advantages of quantum computing, such as qubits and superposition of states. It, however,
suffers from limitations in the areas of convergence rate and escaping local minima. To address these
shortcomings, in this study, we propose a hybrid quantum genetic algorithm (HQGA) that combines a
self-adaptive rotating strategy, and operations of quantum mutation and catastrophe. While the self-
adaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate, the oper-
ations of quantum mutation and catastrophe enhance the local and global search abilities, respectively.
Using the exact Zoeppritz equation, the HQGA was applied to both synthetic and field seismic data
inversion and the results were compared to those of the GA and QGA. A number of the synthetic tests
show that the HQGA requires fewer searches to converge to the global solution and the inversion results
have generally higher accuracy. The application to field data reveals a good agreement between the
inverted parameters and real logs.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Prestack amplitude variation with offset (AVO) inversion is one
of the commonly used techniques to estimate elastic parameters of
the subsurface (Ostrander, 1982). The recovery of the P-wave ve-
locity, S-wave velocity, and density from the PP-wave can be diffi-
cult due to a number of reasons that include the nonlinear nature of
the forward problem, large trade-offs between density and veloc-
ities, and band-limited and noisy characteristics of seismic data
(Nicolao et al., 1993; Downton, 2005; Zhang et al., 2018;Wang et al.,
2019; Zhang and Li, 2020). Several approximations of the reflection
coefficient are proposed to simplify the relationship between the
seismic response and elastic parameters assume weak contrast and
limited offset/angle (e.g., Aki and Richard, 1980; Shuey, 1985; Smith
and Gidlow, 1987; Fatti et al., 1994). Thus, to account for different
y Elsevier B.V. on behalf of KeAi Co
types of contrasts and wide range of offsets, the nonlinear Zoep-
pritz equation has been used in AVO inversion (e.g., Lu et al., 2015;
Zhi et al., 2016; Pan et al., 2017).

Varied inversion methods have been proposed to solve the
nonlinear inverse problem (Stoffa and Sen, 1991; Wei et al., 2011;
Sen and Stoffa, 2013; Yin et al., 2013; Li and Mallick, 2015; Mallick
and Adhikari, 2015; Zhang et al., 2015; Aleardi and Mazzotti, 2017;
Huang et al., 2017; Zu et al., 2017b; Aleardi et al., 2019; Liu et al.,
2020a, 2020b, 2021; Ma et al., 2020; Yao et al., 2020; Yu et al.,
2020; Zhou et al., 2020). Linear inversion schemes can solve
nonlinear inverse problems by carrying out linearization about an
initial model, and then iteratively modifying the initial model until
the convergence conditions are achieved, and these linear inversion
methods are computationally efficient and require a relatively
smaller memory (Buland and Omre, 2003; Yin et al., 2016; Zu et al.,
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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2017a; Zhang et al., 2019). However, they are heavily dependent on
the initial/starting model which may result in convergence to a
local solution (Liu et al., 2020c). Nonlinear inversion methods have
a higher likelihood of obtaining the global solution and hence, more
suitable for nonlinear seismic inverse problems based on the exact
Zoeppritz equation (Lu et al., 2015; Lehochi et al., 2015; Zhi et al.,
2016; Pan et al., 2017). Although the ideal inversion method for
such problems is the exhaustive search method, it is unrealistic as
the optimization technique requires infinite computation time
irrespective of the computing power of available resources. The
Monte Carlo method is a global optimization technique that has
found applications in different fields of study. An inherent weak-
ness of this technique is its requirement of trials in the order of
thousands or even millions to obtain acceptable precision (Gentle,
2003). With the availability of modern powerful computing re-
sources, the implementation of parallel computation has enabled
the deployment of some classic meta-heuristic algorithms based on
Monte Carlo ideas, such as simulated annealing (which originated
from statistical mechanics), and genetic algorithm (an abstraction
of biological evolution) (Stoffa and Sen, 1991; Dorigo, 1992; Mallick,
1995), in the inversion of seismic data. The genetic algorithm (GA)
is an inherently highly parallel search heuristic inspired by the
theory of natural selection. It simulates a range of solutions and has
no strict restrictions on the initial model. Since its efficiency is
mainly influenced by the population size, convergence may be
premature, reducing the likelihood of obtaining the global solution
if a small population size is used (Laboudi and Chikhi, 2012).

Quantum computing methods have been hailed as the future of
computing sciences (Moradi et al., 2018). This can be attributed to
their theoretically proven supercomputing speed, better stability
and effectiveness. Although many studies have been conducted to
examine the applicability of quantum computing in general (e.g.,
Moradi et al., 2018; Liu et al., 2018), its potential in geophysics has
received limited attention. Han and Kim (2000) proposed the
quantum genetic algorithm (QGA) which combines quantum
computing with the concept of biological evolution. Compared
with the classical GA, the QGA uses a small population size to
generate a larger and more diverse population, and a quantum
rotating gate to update the solutions. This improvement in QGA
results in improved convergence efficiency and accuracy of results
in optimization problems (Lahoz-Beltra, 2016). In spite of these
improvements, the QGA shows two major deficiencies when solv-
ing relatively more complex problems (Han et al., 2001): Firstly,
slow rate of convergence. The angle of rotation which is usually
fixed and the direction of the quantum rotating gate are obtained
from a look-up table in Han et al. (2001), making the algorithm less
flexible and resulting in a slower convergence rate in the early
stages. Secondly, high tendency of been trapped in local minima.
The QGA uses the quantum rotating gate to update genes with best
fit. This increases the population of the best fit genes but ultimately
results in loss of diversity which increases the tendency of been
trapped in local minima.

To address these shortcomings in the QGAmethod, in this study,
we propose an improved version called the hybrid quantum genetic
algorithm (HQGA). It combines a self-adaptive search strategy and
the operations of quantum mutation and catastrophe, enjoying the
advantages of quantum computing and the GA. This positions the
HQGA as a great tool for global optimization using a small popu-
lation size. It also enjoys the advantages of the results been inde-
pendent of the initial model and high likelihood of obtaining the
global solution. We verified its reliability and stability by con-
ducting synthetic tests with a model based on actual logging data.
Similar tests were also conducted with real field data. The results
show that the HQGA is a strong candidate for global optimization
with fast convergence speed and robust stability.
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2. Methodology

2.1. Forward modeling

Based on the three-dimensional wave equation with boundary
conditions of continuous displacement and stress at the interface of
twomedia, Zoeppritz (1919) deduced expressions for the reflection
and transmission coefficients for a seismic wave that impinges on
the interface. These expressions are known as the Zoeppritz equa-
tions.We assume a solid-solid interface between two homogeneous
isotropic elastic half-spaces,where P-wave velocity, S-wave velocity
and density of the upper and lower half-spaces are denoted by VP1;

VS1;r1, and VP2;VS2;r2, respectively. The incident angle and angle of
transmission of the P-wave and S-wave are i1 and i2, and j1 and j2,
respectively. The ray parameter is constant and given as p ¼ sin i1=
VP1 ¼ sin i2=VP2 ¼ sin j1=VS1 ¼ sin j2=VS2. Aki and Richards (1980)
derived an accurate solution of the Zoeppritz equation for Rpp as

Rpp ¼
��

b
cos i1
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� c
cos i2
VP2

�
F �
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and

E ¼ b
cos i1
VP1

þ c
cos i2
VP2

F ¼ b
cos j1
VS1
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cos j2
VS2

G ¼ a� d
cos i1
VP1

cos j2
VS2

H ¼¼ a� d
cos i2
VP2

cos j1
VS1

D ¼ EF þ GHp2

(3)

As shown in Equations (1)e(3), although the Zoeppritz equa-
tions are highly nonlinear functions with respect to these proper-
ties, the formulations are explicitly valid in isotropic media, and
they use few approximations, which allows the prediction of
reflection coefficients to be accurate from near to far incident an-
gles. We deploy global optimization schemes to perform the AVO
inversion using the exact Zoeppritz equation. This combination can
improve the chances of obtaining the global solution.
2.2. Quantum genetic algorithm

Nonlinear inversions can be performed by minimizing an L2
norm objective function:

minv ¼ argmin
h
ðr � RðmÞÞTðr�RðmÞÞ

i
(4)

where r is the n�N-by-1 observed data vector consisting of seismic
amplitudes for different incidence angles at each time sample, and
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argmin returns the value of m which minimizes the function. The
number of angle traces and data samples for each trace are n and
Nþ 1, respectively, while R is the nonlinear forward operator. The
model parameter m ¼ ½VP;VS; r�T is the 3ðN þ 1Þ-by-1 vector con-
sisting of the three model parameters of interest.

Using either GA or QGA, the population of any model parameter
for each time sample for the tth generation is expressed as

mðtÞ¼
n
mt

1;…;mt
q;…mt

v

o
(5)

where mt
q represents the qth individual chromosome of a model

parameter, and v is population size. A larger v implies higher
probability for obtaining the global solution but with a longer
computation time.

GA represents each chromosome as a bit string

mt
q ¼

h
ttq1/ttqx/ttqs

i
; x¼1;2;/; s (6)

where s represents the length of each chromosome and is also the
number of genes; while ttqx takes either 0 or 1. Coding the physical
properties using genes limits the search space and defines the
resolution of each of the model parameters. A larger smeans higher
resolution but longer computation time. When bit string repre-
sentations of integers are used, Grey coding is often employed.

On the other hand, a chromosome at the tth generation in QGA
can be described as

mt
q ¼

2
4
						
atq1

btq1

						
atq2

btq2
/

						
atqx

btqx
/

						
atqs

btqs

3
5; x¼1;2;/; s (7)

A gene called qubit is the basic unit of information in quantum
computation, which can be represented by a unit vector of a two-
dimensional Hilbert space (Williams, 2010) and described by a
superposition of the basis states:

j4D¼
�
a
b

�
¼ aj0Dþ bj1D (8)

where j0D and j1D denote two basic states (Han and Kim, 2000) and
a and b are complex numbers that satisfy:

jaj2 þ jbj2 ¼ 1 (9)

jaj2 and jbj2 are called the probability amplitude of corre-
sponding states j0D and j1D of qubit, respectively. Since the appli-
cation of the quantum genetic algorithm is mostly performed by a
classical computer, the gene qubits are expressed in the sine and

cosine form: j4D ¼
�
cos q
sin q

�
, as it appears more concise and intuitive

(Silveira et al., 2017).
The quantum rotating gate is the core operator in the evolution

operation of the quantum genetic algorithm. Hence, it directly af-
fects the performance of the algorithm. Since model parameters are
in superposition states, the genetic qubits in the population should
be updated by quantum rotating gates to adjust the probability
amplitude and constitute new individuals. The rotation strategy
adopted is given by the following equation:

j40D¼UðqUÞ� j4D¼
� cos qU

sin qU

�sin qU

cos qU

��
cos q
sin q

�
¼
�
cos q0

sin q0
�

(10)

where qU is the rotation angle, j40D is the updated quantum
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superposition state, and cos q0 and sin q0 are the probability am-
plitudes of the quantum state after rotation. Generally, the rotation
angle and rotation direction of the quantum gates are empirically
determined in advance (Han and Kim, 2000; Layeb and Saidouni,
2007), while their adjustment strategy is updated in accordance
with the adjustment table.

The main challenge of optimization algorithms is its computa-
tional complexity (Laboudi and Chikhi, 2012). The genetic algo-
rithm has a computational complexity of OðwvÞ, where w is the
number of function convergence and v is the population size, while
the proposed algorithm finds a solution in Oðw log vÞ time (Nielsen
et al., 2010). We also note that unlike a classical bit in GA, a qubit is
not a value of 0 or 1, but a probability to be represented with values,
which reduce the correlation of individuals and the number of it-
erations required for the globally optimal value. These show QGA
can save much computational expense especially for large popu-
lation sizes, where traditional GA requires a larger population size
and more computational expense to reach a similar accuracy as the
new method.

We use the Rastrigin function to evaluate the GA and QGA. As
shown in Fig. 1, many local minima make it difficult to obtain the
global minimum of the Rastrigin function. The global minimum of
the function is located as indicated by the vertical line, while local
minima regularly distribute around the global solution. At any local
minima other than [0 0], the Rastrigin function is greater than 0.
The allowable parameter range is [�5, 5], the accuracy is 0.1, and
simulation tests are performed 50 times. From Table 1, we observe
that QGA outperforms GA for all model space dimensions and the
number of convergence increase with increasing dimensions of the
model space as expected. The QGA is a robust stochastic global
search method capable of handling multiple minima, but its
computational expense increases and inversion accuracy decreases
with increasing nonlinearity of the inversion problem. There are,
therefore, some potentials for QGA.

2.3. A hybrid quantum genetic algorithm

Here, we present a new hybrid quantum genetic algorithm
(HQGA) which is an improved variant of the traditional QGA to
solve the nonlinear AVO inversion problem. A self-adaptive rotation
strategy is proposed to adjust the rotation angle according to the
convergence. Quantum mutation and catastrophe are incorporated
to enhance the local search ability, and to obtain the globally
optimal model parameters, respectively. The Rastrigin function
with dimension 2 is used to test the effect of the different proposed
improvement measures on accuracy and efficiency. See Table 2 for
list of the average convergence number to reach the termination
condition and the optimal solution of the results associated with
the different improvement measures.

2.3.1. Self-adaptive rotating strategy
A fixed rotation angle of the quantum rotating gate makes the

QGA less flexible. It does not maximize the full potentials of
quantum computing (Han and Kim, 2000). For the HQGA, we
propose a self-adaptive rotating strategy which takes care of this
shortcoming inherent in the QGA.

The angles of qubits ½aB; bB�T and ½ai; bi�T are denoted as qb and qi
in a unit circle. Then, we use the new representation:

A¼
				aB ai
bB bi

				¼
				 cos qb cos qi
sin qb sin qi

				¼ sinðqi � qbÞ (11)

When As0, if 0< jqi � qbj<p, sgnðDqÞ ¼ � sgnðqi � qbÞ ¼ �
sgnðsinðqi � qbÞÞ ¼ � sgnðAÞ, while if p< jqi � qbj<2p, sgnðDqÞ ¼



Fig. 1. 2D Rastrigin function. The vertical line indicates the position of the global minimum.

Table 1
The average number of model convergence required to converge to the global
minimum using the GA and QGA for different model space dimensions.

An average convergence generation

Model space dimension 2 4 6 8

GA 587 1865 9830 19,957
QGA 301 828 1230 3560
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� sgnðqi � qbÞ ¼ � sgnðsinðqi � qbÞÞ ¼ � sgnðAÞ. When A ¼ 0,
jqi �qbj ¼ 0 or p. At this time, the positive and negative rotating
effects are the same, so that the direction of the rotation angle, q,
can be either positive or negative.

We applied a dynamic rotation method to adjust the rotation
angle of the quantum rotating gate based on the evolutionary
process (Li et al., 2005). When the difference in fitness between the
current best individual and the individual in the current generation
is large, the current individual is updated at a large angle to facil-
itate the speed of convergence. On the other hand, when this dif-
ference is small, the individual in the current generation is fine-
tuned to obtain the best individual. The rotation angle is defined as:
Table 2
The average number of model convergence required to converge to the global
minimum and the optimal result after improvements.

The average convergence
generation

The optimal result

QGA 301 [�0.0929, �0.0733]
QGA þ SARS 228 [�0.0273, �0.0244]
QGA þ SARS þ QM 157 [0.0050, 0.0029]
QGA þ SARS þ QM þ QC 197 [�0.0011, �0.0014]
(HQGA)

SARS: Self adaptive rotation strategy; QM: Quantum mutation; QC: Quantum
catastrophe.
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Dq ¼ �sgnðAÞ � ðqmax � qminÞ �
				FCur � Fmin

C

				 (12)

where q2½0:001p;0:05p�. qmax and qmin represent the maximum
and minimum values in the interval, respectively. Fmin represents
the fitness of the best individual while FCur represents the fitness of
the current individual, and C is a positive integer constant. C is a
trade-off constant to adjust the rotation angle. When C is large, the
rotation angle will start with a relatively small value and converge
with slow speed, while for small C, the rotation angle become too
large and convergence to the global minimum becomes more un-
likely. Accordingly, extreme care should be taken in assigning
a value to C which should be informed by the requirements of the
experiments. Our improved method has simplified the determi-
nation of the rotation direction by dynamically adjusting the
rotation angle, thereby improving the convergence rate without
losing accuracy. Results listed in Table 2 show that the average
convergence number required for the global minimum reduces
from 301 to 228 with the application of the self-adaptive rotation
strategy, and the optimal solution is closer to the global minimum.

2.3.2. Quantum mutation
Quantum mutation is an assistant operation whose aim is to

avoid the loss of important information on the population and
enhance the local search ability of the quantum genetic algorithm
(Han and Kim, 2000). It is required because the diversity main-
tained by the superposition state in practical applications is not
sufficient to reflect the superiority of the genetic algorithm which
could lead to a premature convergence aided by the effect of noise.

The quantum NOT gate (Pauli-X gate) is commonly adopted to
perform quantum mutation (Suo, 2020). The probability amplitude
of each gene j0D or j1D after measurement is exchanged, and it ro-
tates the angle of the gene by p

2 � 2q each time. The rotation angle is
slightly increased and the convergence speed of the algorithm is
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accelerated in the early stages. This may cause a premature phe-
nomenon in later stages. The matrix representation of the Hada-

mard gate is: H ¼ 1ffiffiffi
2

p
�
1 1
1 �1

�
(Djordjevic, 2012), and the gene

mutation is given as:

Hðj4DÞ ¼ 1ffiffiffi
2

p
�
1 1
1 �1

��
cos q
sin q

�
¼

2
64
cos

�p
4
� q

�

sin
�p
4
� q

�
3
75

¼

2
64
cos

�
qþ p

4
� 2q

�

sin
�
qþ p

4
� 2q

�
3
75 (13)

From Equation (13), we find that the angle of the qubit is rotated
by p

4� 2q. It is clear that the Hadamard gate is more suitable as a
mutation operator when the convergence is in the later stages
which prevents the information for the current optimal individual
from disappearing. The rotation processes of Pauli-X and Hadamard
gates are shown in Fig. 2.

Based on the value of the threshold K , the quantum mutation
strategy can be described as follows: 1. For K < FCur � Fmin, the al-
gorithm is said to be in the primary stage, where only a small
number of individuals are having optimal fitness values, and others
requiring significant update. In this case or stage, the quantum NOT
gate is used as the mutation operator, and the large rotation angle
of quantum mutation increases the rate of convergence of the al-
gorithm. 2. For K > FCur � Fmin, the algorithm is considered to be in
the middle and late stages. The high-fitness individuals in the
population are in the majority and only a small number of in-
dividuals are required to adjust the rotation angle of quantum
mutation, ensuring that the information for the current optimal
Fig. 2. Rotation process of Pauli-
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individual in the population remain unaffected bymutation and the
population is stable. It is, therefore, appropriate to use the Hada-
mard gate as the mutation operator at this stage. Table 2 shows that
using quantum mutation leads to higher efficiency, decreases the
average calculation number to 157, higher accuracy, and the
optimal solution closes to zero.
2.3.3. Quantum Catastrophe
Quantum catastrophe is an essential operation that ensures that

the search is not trapped in local minima, especially for algorithms
having strong likelihood of convergence to local minima (Sen,
2010). When solving for functions like the Zoeppritz equation
with multiple peaks and high nonlinearity, the quantum genetic
algorithmmay be trapped in a local optimal solution. In such cases,
the quantum catastrophe strategy ensures the search escapes the
current local solution space and continues to the global space. The
quantum catastrophe pseudocode program is called Algorithm 1.

The Rastrigin function is used to illustrate the advances of the
HQGA. We set model space dimension 2, and the global solution of
the function is [0, 0]. The average number of model convergence
required to obtain the minimum value and the optimal results after
improvements to the QGA are recorded in Table 2. The result shows
that the optimal solution using the HQGA is approximately equal to
the global solution and has highest accuracy among the three
different improved variants. Although the average convergence
generation of HQGA is larger than that of the case without catas-
trophe operation, it is much smaller compared to other improved
cases. The catastrophe operation always happens late in the
convergence and inevitably increases the speed of convergence,
making the HQGA a promising global optimization algorithm with
high efficiency. Therefore, the HQGA is a promising global optimi-
zation algorithm with high efficiency.
X gate and Hadamard gate.
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Algorithm 1. Quantum Catastrophe.

2.3.4. Procedure for nonlinear inversion based on the hybrid
quantum genetic algorithm

The procedure for a nonlinear inversion using the HQGA is
displayed in brief in Table 3 and described as follows:

(i) Initialization. This entails the initialization of the inversion
parameters according to the number and complexity of
inverted attributes. Using the application to real data
Table 3
Procedure for nonlinear inversion using HQGA.
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implemented in this study as an example, we set the
maximum generation to 3000, population size (v) to 40,
chromosomes of length (s) to 10, the range of rotation angle
(Dq) to ½0:001p;0:05p�, initial probability amplitude of qubits
(a and b) to 1=

ffiffiffi
2

p
, the stopping criterion to 10�5, the prob-

ability of mutation (pm) to 0.2, the threshold of mutation
gate (K) to 0.01, the condition of catastrophe to 10% of the
maximum generation. Once catastrophe occurs, 3/4 popu-
lation and 2/3 chromosome will be initialized. With these
parameters an initial population mðtÞ ¼ fmt

1;…;mt
q;…mt

vg is
randomly generated.

(ii) Measurement. Make m2bitðtÞ by observing mðtÞ states and a
number between 0 and 1 is randomly generated. If the
number is greater than the probability amplitude, the bit is
taken as 1, otherwise, it is 0.

(iii) Evaluation. The measured binary string is then decoded to a
decimal value according to the constraints of the parameter.
The group model parameters are used for forward modeling.



Fig. 3. Real well logs are used to generate the synthetic data. P-wave velocity, S-wave velocity and density are shown from left to right.
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We calculate the fitness value from the objective or fitness
function, which is defined as follows:

minv ¼ argmin
h
ðr � RðmÞÞTðr�RðmÞÞ

i

(iv) Select and update memory. The best solution b in the cur-
rent generation is located and recorded before updating the
memory by saving other individual solutions.

(v) Update quantum gate. The current population associated
with the conventional quantum rotating gate

UðqUÞ ¼
� cos qU

sin qU

�sin qU

cos qU

�
is updated using the proposed
Fig. 4. Synthetic angle gathers with different levels of noise: (a) without
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rotation strategy Dq ¼ �sgnðAÞ � ðqmax � qminÞ �
			FCur�Fmin

C

			 in
consonance with the difference in fitness between the cur-
rent solution and the best solution.

(vi) Quantum mutation. The quantum mutation is performed
using the Quantum NOTor Hadamard gate depending on the
performance of the algorithm.

(vii) Quantum catastrophe. The best individuals in the current
population are saved. One-tenth of this population is used for
re-initialization in order to preserve the diversity of the
population.
noise, (b) signal-to-noise ratio ¼ 4, and (c) signal-to-noise ratio ¼ 2.



Fig. 5. Comparison between the real logs (black solid) and inversion results for a noise-free angle gather using the (a) HQGA (red), (b) QGA (blue), and (c) GA (green) with 2000
generations. The upper and lower bounds of search windows are denoted by grey curves. (d) The differences between inversion results using the three methods and the true values.
(e) The errors distribution of predicted P-wave velocity (left), S-wave velocity (middle), and density (right) for a noise-free angle gather with 2000 generations using the GA (top),
QGA (middle) and HQGA (bottom), respectively.

Table 4
Relative Errors (REs) and Correlation Coefficients (CCs) between the inversion re-
sults and the true models using GA, QGA and HQGA with 2000 generations.

2000 Relative Errors Correlation Coefficients

Vp Vs r Vp Vs r

GA 0.0262 0.0446 0.0233 0.9649 0.9378 0.6421
QGA 0.0091 0.0111 0.0087 0.9918 0.9894 0.8338
HQGA 0.0045 0.0067 0.0042 0.9966 0.9960 0.9164

J.-W. Cheng, F. Zhang and X.-Y. Li Petroleum Science 19 (2022) 1048e1064
3. Experiments with synthetic and field data sets

3.1. Synthetic test

The real well logs in Fig. 3 are used to construct synthetic PP-
wave angle gathers displayed in Fig. 4 based on the exact Zoep-
pritz equation. Two different levels of random noise (SNR¼2 and 4)
1055



Fig. 6. Comparison between real logs (black solid) and inversion results for noise-free angle gather using the (a) HQGA (red), (b) QGA (blue), and (c) GA (green) with 8000
generations. The upper and lower bounds of search windows are denoted by grey curves. (d) The differences between inversion results using the three methods and the true values.
(e) The errors distribution of predicted P-wave velocity (left), S-wave velocity (middle), and density (right) for a noise-free angle gather with 8000 generations using the GA (top),
QGA (middle) and HQGA (bottom), respectively.

Table 5
REs and CCs between inversion results and the true models using GA, QGA and
HQGA with 8000 generations.

8000 Relative Errors Correlation Coefficients

Vp Vs r Vp Vs r

GA 0.0177 0.0268 0.0155 0.9840 0.9714 0.7682
QGA 0.0042 0.0096 0.0038 0.9972 0.9896 0.9332
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are added to the synthetic gathers as shown in Fig. 4(b) and (c).
In order to evaluate the convergence performance of different

algorithms, we set the number of generations as 2000. The corre-
sponding inversion results for the GA, QGA, and HQGA are shown in
Fig. 5(a)-(c). The errors captured as the difference between the
predicted and real properties are plotted in Fig. 5(d). In general, the
HQGA 0.0013 0.0019 0.0013 0.9993 0.9993 0.9836
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Fig. 7. Comparison between real logs (black solid) and inversion results for a noise-free angle gather using the (a) HQGA (red), (b) QGA (blue), and (c) GA (green) with 3000
generations. P-wave velocity, S-wave velocity and density are shown from left to right in each subfigure. The upper and lower bounds of search windows are denoted by grey curves.
(d) The differences between inversion results using the three methods and the true values. (e) The errors distribution of predicted P-wave velocity (left), S-wave velocity (middle),
and density (right) for a noise-free angle gather with 3000 generations using the GA (top), QGA (middle) and HQGA (bottom), respectively.
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Fig. 8. Comparison between real logs (black solid) and inversion results of a SNR¼4 angle gather using the (a) HQGA (red), (b) QGA (blue), and (c) GA (green) with 3000 generations.
P-wave velocity, S-wave velocity and density are shown from left to right in each subfigure. The upper and lower bounds of search windows are denoted by grey curves. (d) The
differences between inversion results using the three methods and the true values. (e) The errors distribution of predicted P-wave velocity (left), S-wave velocity (middle), and
density (right) for a SNR¼4 angle gather with 3000 generations using the GA (top), QGA (middle) and HQGA (bottom), respectively.
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Fig. 9. Comparison between real logs (black solid) and inversion results of a SNR¼2 angle gather using the (a) HQGA (red), (b) QGA (blue), and (c) GA (green) with 3000 generations.
P-wave velocity, S-wave velocity and density are shown from left to right in each subfigure. The upper and lower bounds of search windows are denoted by grey curves. (d) The
differences between inversion results using the three methods and the true values. (e) The errors distribution of predicted P-wave velocity (left), S-wave velocity (middle), and
density (right) for a SNR¼2 angle gather with 3000 generations using the GA (top), QGA (middle) and HQGA (bottom), respectively.
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Table 7
REs and CCs between the inversion results and the true models using QGA with
different SNR.

QGA Relative Errors Correlation Coefficients

Vp Vs r Vp Vs r

Without noise 0.0088 0.0102 0.0080 0.9925 0.9895 0.8798
SNR¼4 0.0238 0.0332 0.0121 0.9550 0.9446 0.7922
SNR¼2 0.0273 0.0433 0.0170 0.9443 0.9183 0.6547

Table 6
REs and CCs between the inversion results and the true models using GA with
different SNR.

GA Relative Errors Correlation Coefficients

Vp Vs r Vp Vs r

Without noise 0.0211 0.0299 0.0187 0.9723 0.9691 0.7346
SNR¼4 0.0319 0.0451 0.0166 0.9258 0.9102 0.6908
SNR¼2 0.0381 0.0618 0.0245 0.9176 0.8770 0.5209

Table 8
REs and CCs between the inversion results and the true models using HQGA with
different SNR.

HQGA Relative Errors Correlation Coefficients

Vp Vs r Vp Vs r

Without noise 0.0037 0.0048 0.0036 0.9984 0.9983 0.9809
SNR¼4 0.0132 0.0197 0.0107 0.9839 0.9772 0.8064
SNR¼2 0.0177 0.0292 0.0168 0.9807 0.9667 0.6768
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HQGA shows smaller errors compared with the QGA and GA. A
larger number of these errors are near zero as seen in the calculated
distribution of errors shown in Fig. 5(e). Dynamic search windows
are constructed by smoothing the calibrated well logs. They are
applied in all three methods to improve the computational effi-

ciency and resolution. The relative errors (REs ¼ PN
k¼1

			minvðkÞ�mrealðkÞ
mrealðkÞ

			)
and correlation coefficients (CCs ¼ Covðminv;mrealÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½minv �Var½mreal�
p ) of results are

calculated and shown in Table 4.
The inversion results and absolute errors using 8000 genera-

tions are shown in Fig. 6, and their REs and CCs are calculated and
displayed in Table 5. Inversion using the HQGA, QGA and GA ran for
a period of approximately 25 h 25 min, 25 h 11 min and 30 h
35 min, respectively. Further analysis showed that although the
inversion results of the QGA and GA can be improved by increasing
the generation number, their associated errors remained larger
Fig. 10. Convergence performance of the GA (green), QGA (blue) and HQGA (red) are com
calculated with objective function to assess how close a solution is to achieve the set aims
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than those of HQGA, which gives optimal solutions with 2000
generations (Fig. 6(d)e(e)). The QGA and GA needmore generations
to achieve a similarly accurate result of the HQGA, thus, present a
huge computation cost.

Then three methods are further tested using data contaminated
with different amount of noise (no noise, SNR¼4 and 2). The iter-
ation number is set as 3000. The inversion results and errors using
the GA, QGA, and HQGA are shown in Figs. 7e9, respectively. The
results of noise-free data using the HQGA are closely consistent
with real model parameters, i.e., the global solutions, when the
number of generation is 3000. For the two other noise levels, using
the three algorithms, the differences between the observed and
predicted models are proportional to the magnitude of the noise.
The errors are smallest for the HQGA and largest for the GA. The
errors associated with the HQGA are closer to zero compared with
those of the other two methods. It is also deduced from the results
that P-wave can be accurately inverted for in the noise-free case
and the errors of inverted parameters significantly increase with
increase in the amount of noise. The REs and CCs of the results are
calculated and displayed in Tables 6e8. In the case of SNR¼2, the
relative errors become larger while correlation coefficients become
smaller.

The convergence performance graphs are used to show the
average error performance over all runs. Convergence performance
of the GA, QGA and HQGA are investigated by plotting a graph of
fitness (the square of the data residual) varied with generation. For
the case of noise-free data, although HQGA has higher convergence
compared with QGA, the fitness of both QGA and HQGA can reach a
small value after 2000 generations. On the other hand, the fitness of
GA remains quite large even after 8000 generations (Fig. 10a). The
differences in the results of the GA, QGA and HQGA increase with
decrease in SNR. As shown in Fig. 10(b) and (c), the fitness using
HQGA can reach a small value after 3500 and 5000 generations for
SNR¼4 and 2, respectively. Even after 8000 generations, the QGA
and GA do not achieve this small fitness value. These results clearly
rank the HQGA higher than the QGA and GA on the basis of
convergence performance and accuracy. In summary, the HQGA has
performed better in terms of accuracy, efficiency, and robustness
compared with the other two algorithms, and in practice, we
recommend the Bayesian inference to ensure stability of the den-
sity inversion.
3.2. Field seismic data application

We applied the new improved algorithm to real seismic dataset
from the Sichuan Basin in southwest China. The constant-angle
seismic profiles (10o to 50o) are used as the input data for the
pared under different noise levels ((a) no noise, (b) SNR¼4 and (c) SNR¼2). Fitness is
.



Fig. 11. Constant-angle seismic profile of (a) 10� , (b) 20� , (c) 30� , (d) 40� and (e) 50� , and well location. (f) The angle gather near the well location at CDP 400. (g) Five wavelets
extracted from the constant-angle seismic profiles.

Fig. 12. Inversion results of field data using the HQGA: (a) P-wave velocity, (b) S-wave velocity, and (c) density.
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inversion as shown in Fig.11(a)-(e). The angle gather at CDP400near
well location is displayed in Fig. 11(f). It consists of five traces cor-
responding to 10o to 50o. Five seismic wavelets are extracted from
the constant-angle seismic profiles and are used in the inversion
(Fig. 11(g)). Similar as the synthetic test, a dynamic search window
acting as an initial model is constructed using the interpreted ho-
rizons and smoothedwell logs calibratedwith the seismicdata.With
the assistance of dynamic timewindows, the global solutions can be
determined with higher resolution and faster convergence speed.
Seismic inversion results using HQGA with 3000 generations are
shown in Fig. 12(a)-(c). The results are consistent with the real logs
(Fig 13(a)). REs of HQGA are 0.0104, 0.0476 and 0.0466 for P-wave
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velocity, S-wave velocity and density, respectively, and the CCs are
0.9267, 0.9199 and 0.7237, respectively. In order to validate the su-
periority of HQGA in field data application, the real well logs are also
compared with the inversion results of QGA and GA with 3000
generations as shown in Fig. 13(d)e(f) and 13(g)-(i). The REs of QGA
are 0.0214, 0.0740 and 0.0861 for P-wave velocity, S-wave velocity
and density, respectively, and the CCs of QGA are 0.8222, 0.7569 and
0.5178, respectively. The REs of GA are 0.0416, 0.1040 and 0.1245 for
P-wave velocity, S-wave velocity and density, respectively, and the
CCs of GA are 0.8195, 0.7464 and 0.5060, respectively. The inverted
results using the HQGA have the highest accuracy, while those of GA
have the lowest accuracy. The inverted P-wave velocity using QGA



Fig. 13. Comparison between real logs (black solid) and inversion results using HQGA (red solid), QGA (blue solid) and GA (green solid). The upper and lower bounds of search
windows are denoted by grey curves. (a), (d), (g) P-wave velocity, (b), (e), (h) S-wave velocity and (c), (f), (i) density are shown from left to right in each inversion result.

Fig. 14. (a) The real seismic angle gather at CDP 400. (b) Synthetic angle gather generated using the inverted parameters. (c) Difference between the real seismic angle gather and
synthetic angle gather.
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and GA have acceptable accuracy, while the corresponding inverted
density have great disagreement with the real log. Finally, the
1062
inverted parameters of HQGA are used to generate synthetic angle
gathers for comparisonwith the real seismic gathers (Fig. 14(a)-(c)).
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The results suggest that HQGA is a suitable method for the real data
application. Nonlinear inversionusingHQGAbasedon the Zoeppritz
equation can effectively characterize the variation of complex for-
mations and responses. To improve the practical applicability of the
HQGA, extreme care must be taken in setting up the objective
function as the objective loss is closely related to noise. The stop
condition is also very important, considering its role in determining
the trade-off between total computation time and accuracy. In
general, robust data processing procedures preserving the ampli-
tude information play an important role in improving the accuracy
of inversion.

4. Discussion and conclusion

In this paper, we propose the HQGA for nonlinear AVO inversion
method based on the exact Zoeppritz equation. To demonstrate its
improvements over other similar algorithms, we applied it to
synthetic and real field data. The results have clearly established
the superiority of the new inversion method which can be broadly
attributed to the relatively high accuracy of the exact Zoeppritz
equation and, strong global search ability and high efficiency of the
HQGA. The self-adaptive strategy helps the HQGA to achieve the
optimum solution efficiently by updating the search step, and the
quantummutation and quantum catastrophe further improved the
local and global search capabilities. Dynamic search windows are
used in all of the inversions and can be constructed by combining
the interpreted horizons and smoothed well log data calibrated
with seismic data. The inversion using the dynamic search win-
dows have higher efficiency than that of the static search windows.
Even though it is advised to set the range of the search window
with extreme care, in general, a large search window requires more
population and has a better likelihood of obtaining the global so-
lution, while a small search window may miss the true solution. In
this study, the minimum and maximum values of the dynamic
search window were set to ±20%, according to the measured well
logs. With fewer searches, nonlinear inversion using HQGA can
efficiently achieve higher accuracy than the GA and QGA. The
proposed HQGA inversion method can be also useful in other
geophysics problems and disciplines. Relevant studies considering
anisotropy and complex wave propagation effects will be consid-
ered in the future work.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (U19B6003, 42122029) and the Strategic
Cooperation Technology Projects of CNPC and CUPB (ZLZX 2020-
03). Jiwei Cheng is partially supported by SEG/WesternGeco
Scholarship, SEG Foundation/Chevron Scholarship, and SEG/Nor-
man and Shirley Domenico Scholarship.We gratefully acknowledge
the helpful comments from the editors and anonymous reviewers,
which greatly improved this manuscript.

References

Aleardi, M., Mazzotti, A., 2016. 1D elastic full-waveform inversion and uncertainty
estimation by means of a hybrid genetic algorithmeGibbs sampler approach.
Geophys. Prospect. 65 (1), 64e85. https://doi.org/10.1111/1365-2478.12397.

Aleardi, M., Pierini, S., Sajeva, A., 2019. Assessing the performances of recent global
search algorithms using analytic objective functions and seismic optimization
problems. Geophysics 84 (5), R767eR781. https://doi.org/10.1190/geo2019-
0111.1.

Buland, A., Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics 68 (1),
185e198. https://doi.org/10.1190/1.1543206.

Djordjevic, I., 2012. Quantum Information Processing and Quantum Error Correc-
tion: an Engineering Approach. Academic press, p. 37.

Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Politecnico di,
Milano, Italy [Ph. D. thesis].
1063
Downton, J.E., 2005. Seismic Parameter Estimation from AVO Inversion. Department
of Geology and Geophysics, University of Calgary. PhD thesis.

Fatti, J.L., Smith, G.C., Vail, P.J., et al., 1994. Detection of gas in sandstone reservoirs
using AVO analysis: a 3-D seismic case history using the Geostack technique.
Geophysics 59 (9), 1362e1376. https://doi.org/10.1190/1.1443695.

Gentle, J.E., 2003. Random Number Generation and Monte Carlo Methods. springer,
New York.

Han, K.H., Kim, J.H., 2000. Genetic quantum algorithm and its application to
combinatorial optimization problem. In: Proceedings of the 2000 Congress on
Evolutionary Computation. CEC00, 2. IEEE, pp. 1354e1360. https://doi.org/
10.1109/CEC.2000.870809 (Cat. No. 00TH8512).

Han, K.H., Park, K.H., Lee, C.H., et al., 2001. Parallel quantum-inspired genetic al-
gorithm for combinatorial optimization problem. In: Proceedings of the 2001
Congress on Evolutionary Computation, 2. IEEE, pp. 1422e1429. https://doi.org/
10.1109/CEC.2001.934358. IEEE Cat. No. 01TH8546.

Huang, W.L., Wang, R.Q., Yuan, Y.M., et al., 2017. Signal extraction using
randomized-order multichannel singular spectrum analysis. Geophysics 82 (2),
V59eV74. https://doi.org/10.1190/geo2015-0708.1.

Laboudi, Z., Chikhi, S., 2012. Comparison of genetic algorithm and quantum genetic
algorithm. Int. Arab J. Inf. Technol. 9 (3), 243e249.

Lahoz-Beltra, R., 2016. Quantum genetic algorithms for computer scientists. Com-
puters 5 (4), 24.

Layeb, A., Saidouni, D.E., 2007. Quantum genetic algorithm for binary decision di-
agram ordering problem. Intern. J. Comp. Sci. Net. Sec. 7 (9), 130e135.

Lehochi, I., Avseth, P., Hadziavidic, V., 2015. Probabilistic estimation of density and
shear information from Zeoppritz's equation. Lead. Edge 34 (9), 1036e1047.
https://doi.org/10.1190/tle34091036.1.

Li, T., Mallick, S., 2015. Multicomponent, multi-azimuth pre-stack seismic waveform
inversion for azimuthally anisotropic media using a parallel and computa-
tionally efficient non-dominated sorting genetic algorithm. Geophys. J. Int. 200
(2), 1136e1154. https://doi.org/10.1093/gji/ggu445.

Li, Y., Zhang, Y., Cheng, Y., et al., 2005. A novel immune quantum-inspired genetic
algorithm. In: International Conference on Natural Computation. Springer,
Berlin, Heidelberg, pp. 215e218.

Liu, X.Y., Chen, X., et al., 2020. Nonlinear prestack inversion using the reflectivity
method and quantum particle swarm optimization. J. Seismic Explor. 29,
305e326.

Liu, X.Y., Li, J.Y., Chen, X.H., et al., 2018. Stochastic inversion of facies and reservoir
properties based on multi-point geostatistics. J. Geophys. Eng. 15 (6),
2455e2468. https://doi.org/10.1088/1742-2140/aac694.

Liu, X.Y., Zhou, L., Chen, X.H., et al., 2020a. Lithofacies identification using support
vector machine based on local deep multi-kernel learning. Petrol. Sci. 17,
954e966. https://doi.org/10.1007/s12182-020-00474-6.

Liu, X.Y., Chen, X.H., Li, J.Y., et al., 2020b. Facies identification based on multikernel
relevance vector machine. IEEE Trans. Geosci. Rem. Sens. 58 (10), 7269e7282.
https://doi.org/10.1109/TGRS.2020.2981687.

Liu, X.Y., Ge, Q., Chen, X., et al., 2021. Extreme learning machine for multivariate
reservoir characterization. J. Petrol. Sci. Eng. 205, 108869. https://doi.org/
10.1016/j.petrol.2021.108869.

Lu, J., Yang, Z., Wang, Y., et al., 2015. Joint PP and PS AVA seismic inversion using
exact Zoeppritz equations. Geophysics 80 (5), R239eR250. https://doi.org/
10.1190/geo2014-0490.1.

Ma, X., Li, G.F., Li, H., et al., 2020. Multichannel absorption compensation with a
data-driven structural regularization. Geophysics 85, V71eV80. https://doi.org/
10.1190/geo2019-0132.1.

Mallick, S., 1995. Model-based inversion of amplitude-variations-with-offset data
using a genetic algorithm. Geophysics 60 (4), 939e954. https://doi.org/10.1190/
1.1443860.

Mallick, S., Adhikari, S., 2015. Amplitude-variation-with-offset and prestack-
waveform inversion: a direct comparison using a real data example from the
Rock Springs Uplift, Wyoming, USA. Geophysics 80 (2), B45eB59. https://
doi.org/10.1190/geo2014-0233.1.

Moradi, S., Trad, D., Innanen, K.A., 2018. Quantum Computing in Geophysics: Al-
gorithms, Computational Costs, and Future Applications. SEG Technical Program
Expanded Abstracts 2018, pp. 4649e4653.

Nicolao, A.de, Drufuca, G., Rocca, F., 1993. Eigenvalues and eigenvectors of linearized
elastic inversion. Geophysics 58 (5), 670e679. https://doi.org/10.1190/
1.1443451.

Nielsen, M.A., Chuang, I., 2002. Quantum Computation and Quantum Information.
Ostrander, W., 1984. Plane-wave reflection coefficients for gas sands at nonnormal

angles of incidence. Geophysics 49 (10), 1637e1648. https://doi.org/10.1190/
1.1441571.

Pan, X.P., Zhang, G.Z., Zhang, J., et al., 2017. Zoeppritz-based AVO inversion using an
improved Markov chain Monte Carlo method. Petrol. Sci. 14, 75e83. https://
doi.org/10.1007/s12182-016-0131-4.

Richards, P.G., Aki, K., 1980. Quantitative Seismology: Theory and Methods.
Freeman, p. 13.

Sen, O.Y., 2010. An improved catastrophic genetic algorithm and its application in
reactive power optimization. Energy Power Eng. 2 (4), 306e312. https://doi.org/
10.4236/epe.2010.24043.

Sen, M.K., Stoffa, P.L., 2013. Global Optimization Methods in Geophysical Inversion.
Cambridge University Press.

Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics 50 (4),
609e614. https://doi.org/10.1190/1.1441936.

Silveira, L.R.da, Tanscheit, R., Vellasco, M.M.B.R., 2017. Quantum inspired

https://doi.org/10.1111/1365-2478.12397
https://doi.org/10.1190/geo2019-0111.1
https://doi.org/10.1190/geo2019-0111.1
https://doi.org/10.1190/1.1543206
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref4
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref4
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref5
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref5
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref6
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref6
https://doi.org/10.1190/1.1443695
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref8
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref8
https://doi.org/10.1109/CEC.2000.870809
https://doi.org/10.1109/CEC.2000.870809
https://doi.org/10.1109/CEC.2001.934358
https://doi.org/10.1109/CEC.2001.934358
https://doi.org/10.1190/geo2015-0708.1
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref12
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref12
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref12
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref13
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref13
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref14
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref14
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref14
https://doi.org/10.1190/tle34091036.1
https://doi.org/10.1093/gji/ggu445
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref17
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref17
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref17
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref17
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref18
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref18
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref18
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref18
https://doi.org/10.1088/1742-2140/aac694
https://doi.org/10.1007/s12182-020-00474-6
https://doi.org/10.1109/TGRS.2020.2981687
https://doi.org/10.1016/j.petrol.2021.108869
https://doi.org/10.1016/j.petrol.2021.108869
https://doi.org/10.1190/geo2014-0490.1
https://doi.org/10.1190/geo2014-0490.1
https://doi.org/10.1190/geo2019-0132.1
https://doi.org/10.1190/geo2019-0132.1
https://doi.org/10.1190/1.1443860
https://doi.org/10.1190/1.1443860
https://doi.org/10.1190/geo2014-0233.1
https://doi.org/10.1190/geo2014-0233.1
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref27
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref27
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref27
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref27
https://doi.org/10.1190/1.1443451
https://doi.org/10.1190/1.1443451
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref29
https://doi.org/10.1190/1.1441571
https://doi.org/10.1190/1.1441571
https://doi.org/10.1007/s12182-016-0131-4
https://doi.org/10.1007/s12182-016-0131-4
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref32
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref32
https://doi.org/10.4236/epe.2010.24043
https://doi.org/10.4236/epe.2010.24043
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref34
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref34
https://doi.org/10.1190/1.1441936


J.-W. Cheng, F. Zhang and X.-Y. Li Petroleum Science 19 (2022) 1048e1064
evolutionary algorithm for ordering problems. Expert Syst. Appl. 67, 71e83.
https://doi.org/10.1016/j.eswa.2016.08.067.

Smith, G.C., Gidlow, P.M., 1987. Weighted stacking for rock property estimation and
detection of gas. Geophys. Prospect. 35 (9), 993e1014. https://doi.org/10.1111/
j.1365-2478.1987.tb00856.x.

Stoffa, P.L., Sen, M.K., 1991. Nonlinear multiparameter optimization using genetic
algorithms: inversion of plane-wave seismograms. Geophysics 56 (11),
1794e1810. https://doi.org/10.1190/1.1442992.

Suo, J., Gu, L., Pan, Y., et al., 2020. Quantum inspired genetic algorithm for double
digest problem. IEEE Access 8, 72910e72916. https://doi.org/10.1109/
ACCESS.2020.2988117.

Wang, L., Zhou, H., Yu, B., et al., 2019. Inversion for geofluid discrimination based on
poroelasticity and AVO inversion. Geofluids 2019 (2), 1e17. https://doi.org/
10.1155/2019/2656747.

Wei, C., Zheng, X.D., Li, J.S., 2011. A study on nonlinear AVO inverse method. Chin. J.
Geophys. 54 (8), 2110e2116. https://doi.org/10.3969/j.issn.0001-
5733.2011.08.018 (in Chinese).

Williams, C.P., 2010. Explorations in Quantum Computing. Springer, New York.
Yao, G., Wu, D., Wang, S., 2020. A review on reflection-waveform inversion. Petrol.

Sci. 17, 334e351. https://doi.org/10.1007/s12182-020-00431-3.
Yin, X.Y., Zong, Z.Y., Wu, G., 2013. Improving seismic interpretation: a high-contrast

approximation to the reflection coefficient of a plane longitudinal wave. Petrol.
Sci. 10, 466e476. https://doi.org/10.1007/s12182-013-0297-y.

Yin, X.Y., Deng, We, Zong, Z.Y., 2016. AVO inversion based on inverse operator
estimation in trust region. J. Geophys. Eng. 13 (Issue 2), 194e206. https://
doi.org/10.1088/1742-2132/13/2/194. April.

Yu, B., Zhou, H., Wang, L.Q., et al., 2020. Prestack Bayesian statistical inversion
constrained by reflection features. Geophysics 85 (4), R349eR363. https://
1064
doi.org/10.1190/geo2019-0810.1.
Zhang, F., Li, X.Y., 2020. Inversion of the reflected SV-wave for density and S-wave

velocity structures. Geophys. J. Int. 221, 1635e1639. https://doi.org/10.1093/gji/
ggaa096.

Zhang, G.Z., Pan, X.P., Li, Z.Z., et al., 2015. Seismic fluid identification using a
nonlinear elastic impedance inversion method based on a fast Markov chain
Monte Carlo method. Petrol. Sci. 12, 406e416. https://doi.org/10.1007/s12182-
015-0046-5.

Zhang, Y., Jin, Z., Chen, Y., et al., 2018. Pre-stack seismic density inversion in marine
shale reservoirs in the southern Jiaoshiba area, Sichuan Basin, China. Petrol. Sci.
15, 484e497. https://doi.org/10.1007/s12182-018-0242-1.

Zhang, F., Zhang, T., Li, X.Y., 2019. Seismic amplitude inversion for the transversely
isotropic media with vertical axis of symmetry. Geophys. Prospect. 67 (9),
2368e2385. https://doi.org/10.1111/1365-2478.12842.

Zhi, L., Chen, S., Li, X., 2016. Amplitude variation with angle inversion using the
exact Zoeppritz equations d theory and methodology. Geophysics 81, N1eN15.
https://doi.org/10.1190/geo2014-0582.1.

Zhou, L., Chen, Z., Li, J., et al., 2020. Nonlinear amplitude versus angle inversion for
transversely isotropic media with vertical symmetry axis using new weak
anisotropy approximation equations. Petrol. Sci. 17, 628e644. https://doi.org/
10.1007/s12182-020-00445-x.

Zoeppritz, K., 1919. On reflection and propagation of seismic waves. Gottinger
Nachrichten 1, 66e84.

Zu, S., Zhou, H., Chen, Y., et al., 2017a. Interpolating big gaps using inversion with
slope constraint. Geosci. Rem. Sens. Lett. IEEE 13 (9), 1369e1373. https://
doi.org/10.1109/LGRS.2016.2587301.

Zu, S., Zhou, H., Li, Q., et al., 2017b. Shot-domain deblending using least-squares
inversion. Geophysics 1e96. https://doi.org/10.1190/geo2016-0413.1.

https://doi.org/10.1016/j.eswa.2016.08.067
https://doi.org/10.1111/j.1365-2478.1987.tb00856.x
https://doi.org/10.1111/j.1365-2478.1987.tb00856.x
https://doi.org/10.1190/1.1442992
https://doi.org/10.1109/ACCESS.2020.2988117
https://doi.org/10.1109/ACCESS.2020.2988117
https://doi.org/10.1155/2019/2656747
https://doi.org/10.1155/2019/2656747
https://doi.org/10.3969/j.issn.0001-5733.2011.08.018
https://doi.org/10.3969/j.issn.0001-5733.2011.08.018
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref42
https://doi.org/10.1007/s12182-020-00431-3
https://doi.org/10.1007/s12182-013-0297-y
https://doi.org/10.1088/1742-2132/13/2/194
https://doi.org/10.1088/1742-2132/13/2/194
https://doi.org/10.1190/geo2019-0810.1
https://doi.org/10.1190/geo2019-0810.1
https://doi.org/10.1093/gji/ggaa096
https://doi.org/10.1093/gji/ggaa096
https://doi.org/10.1007/s12182-015-0046-5
https://doi.org/10.1007/s12182-015-0046-5
https://doi.org/10.1007/s12182-018-0242-1
https://doi.org/10.1111/1365-2478.12842
https://doi.org/10.1190/geo2014-0582.1
https://doi.org/10.1007/s12182-020-00445-x
https://doi.org/10.1007/s12182-020-00445-x
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref53
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref53
http://refhub.elsevier.com/S1995-8226(21)00181-3/sref53
https://doi.org/10.1109/LGRS.2016.2587301
https://doi.org/10.1109/LGRS.2016.2587301
https://doi.org/10.1190/geo2016-0413.1

	Nonlinear amplitude inversion using a hybrid quantum genetic algorithm and the exact zoeppritz equation
	1. Introduction
	2. Methodology
	2.1. Forward modeling
	2.2. Quantum genetic algorithm
	2.3. A hybrid quantum genetic algorithm
	2.3.1. Self-adaptive rotating strategy
	2.3.2. Quantum mutation
	2.3.3. Quantum Catastrophe
	2.3.4. Procedure for nonlinear inversion based on the hybrid quantum genetic algorithm


	3. Experiments with synthetic and field data sets
	3.1. Synthetic test
	3.2. Field seismic data application

	4. Discussion and conclusion
	Acknowledgements
	References


