
lable at ScienceDirect

Petroleum Science 19 (2022) 1582e1591
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
Reflection-based traveltime and waveform inversion with second-
order optimization

Teng-Fei Wang a, b, Jiu-Bing Cheng a, b, *, Jian-Hua Geng a, b

a State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
b School of Ocean and Earth Science, Tongji University, Shanghai, 200092, China
a r t i c l e i n f o

Article history:
Received 2 September 2021
Accepted 10 February 2022
Available online 16 February 2022

Edited by Jie Hao

Keywords:
Reflection waveform inversion
Reflection traveltime inversion
Gauss-Newton
Hessian
* Corresponding author.
E-mail address: cjb1206@tongji.edu.cn (J.-B. Chen

https://doi.org/10.1016/j.petsci.2022.02.003
1995-8226/© 2022 The Authors. Publishing services b
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the sub-
surface model, can be a complementary to refraction-data-driven full-waveform inversion (FWI), espe-
cially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a
typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycle-
skipping issue and have a slow convergence rate, if gradient-based first-order optimization methods
are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into
reflection traveltime inversion (RTI) and reflection waveform inversion (RWI) in the framework of
second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in
which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton
RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently
and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix
and design appropriate strategies to reduce the computational costs. The example of a real dataset from
East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to
improve velocity model building and seismic imaging, especially for the deep targets.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Complex heterogeneities naturally existing in the Earth’s
subsurface lead to the spatial variations of the elastic properties,
such as velocity, density and so on. Seismic wavefield propagates
in the subsurface and carries important elastic responses that can
be used for seismic imaging. In the exploration seismology,
seismic tomography and imaging methods are employed to esti-
mate the subsurface elastic properties, with which the type of
pore fluid or the distribution of stress field can be predicted for the
purpose of hydrocarbon reservoir exploration and geotechnical
engineering.

Exploration seismic imaging is practically applied based on a
scale separation of velocity model, i.e., a smooth background and a
rough perturbation (Claerbout, 1971). The smooth background ve-
locity is first estimated by the migration velocity analysis (MVA) or
ray-based traveltime tomography and then the rough perturbation
g).

y Elsevier B.V. on behalf of KeAi Co
is obtained by the migration process (Claerbout, 1985). Over the
past decades, one of the most important tasks for seismic imaging
is to reconstruct a background velocity model that can correctly
honor the kinematics of the wave propagation. The standard ve-
locity model building for prestack-depth-migration (PSDM) is
based on the reflection traveltime tomography with ray-tracing, in
which the migration velocity model is iteratively updated by back-
projecting the residual depth or moveout (RMO) on the common
image gathers (CIGs) along the ray path (Stork, 1992; Wang and
Pratt, 1997; Woodward, 2008). Due to the limitation of ray-based
theory, the PSDM-based reflection traveltime tomography easily
fails in the presence of complex velocity variation and lead to
inaccurate imaging of the target. Besides, the generation of CIGs
during the PSDM and the picking of RMO are quite expensive and
clumsy to support multifold iterations of velocity model building
(Alder et al., 2008; Guillum et al., 2008).

To overcome the limitation of ray-based method, wave-
equation-based migration and tomography techniques, such as
reverse-time migration (RTM) and full-waveform inversion (FWI),
have been proved quite effective to improve the accuracy of seismic
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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imaging (Virieux and Operto, 2009; Zhang et al., 2014). Neverthe-
less, FWI easily suffers from the cycle-skipping problems when
starting model is poor and/or low frequency data is unavailable.
Therefore, as a model building process, FWI only provides robust
velocity update for the shallow part of the model where turning
waves are sufficiently available. The velocity update in the deep
part remains to be improved, especially in the field data applica-
tions. Xu et al. (2012) introduced wave-equation reflection wave-
form inversion (RWI) which aims to recover the background
velocity by minimizing the waveformmisfit between synthetic and
observed reflections. In the context of wave-equation reflection
tomography or waveform inversion, sharp contrasts of the elastic
properties or reflectivity in the subsurface medium are prerequisite
(provided by seismic migration), with which the reflection wave-
fields are generated to produce the tomographic misfit kernels
(“rabbit-ear”) connecting the shots and receivers to the reflectors.
In the past few years, RWI becomes a quite promising method to
recover the low-to-intermediate wavenumber components of the
velocity model (Zhou et al., 2015; Wu and Alkhalifah, 2015; Wang
and Cheng, 2017; Yao and Wu, 2017; Xu et al., 2019; Yao et al.,
2020).

However, RWI still faces many challenges in practice. As a
waveform fitting process, it is very likely to fall into the local
minima when the initial model is far from the true one. A common
strategy is to reformulate the inverse problem using traveltime-
based objective function (Ma and Hale, 2013; Wang et al., 2015).
Many recent works have shown that wave equation reflection
traveltime inversion (RTI) can robustly recover the background
velocity and thus allow the RWI starting from a better initial model
(Brossier et al., 2015; Wang et al., 2018). The information content of
the traveltimes and amplitudes are complementary, being sensitive
to different features of themodel (Wang and Pratt, 1997). Therefore,
it is necessary to unite RTI and RWI to improve the reconstruction
of the low-to-intermediate wavenumber features of the subsurface
velocitymodel, e.g., Xu et al. (2019). Besides, all the aforementioned
RTI and RWI approaches possess the issue of slow convergence
because they only use the gradient-based first-order optimization
methods. The second-order derivative of the objective function, i.e.
the Hessian, implies the information of acquisition geometry,
parameter trade-offs and the resolution ability of the observed data
(Pratt et al., 1998; Operto et al., 2013; Pan et al., 2016; Wang and
Cheng, 2017); therefore, it is a key point to improve the conver-
gence of RWI. In the context of FWI, people use the diagonal or band
diagonal Hessian to compensate the spherical divergence/geo-
metric spreading and mitigate parameter trade-offs (Innanen,
2014; Shin et al., 2001; Wang et al., 2016). With full or approxi-
mate Hessian matrix, the quasi-Newton, Gauss-Newton or Newton
method leads to better convergence (Brossier et al., 2009 Metivier
et al. 2014, 2017; Liu et al., 2015; Pan et al., 2017). However, the
studies of Hessian-based reflection tomography or waveform
inversion are very insufficient. Recently, Wang et al. (2020) intro-
duced the Hessian-based Gauss-Newton method to solve the RWI
problem in acoustic media. Their attempt shows promising results
for the reconstruction of the deep part velocity model.

In this paper, we will propose a practical workflow by cascading
Hessian-based RTI and RWI, and provide some computational
strategies to support large-scale applications. This paper is orga-
nized as follows: First, we will briefly review the Fr�echet de-
rivatives, functional gradient and Hessian matrix for reflection-
based inversion based on the Born approximation. Then, we will
introduce some practical strategies to precondition the Hessian-
based inversion and deal with the computational challenges. Af-
terwards, we will demonstrate the two-stage Gauss-Newton RTI/
RWI workflow with a real dataset from East China Sea. Finally, we
draw some conclusions.
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2. Reflection-based wave equation inversion

In the subsurface medium, the traveltime and waveform of
seismic waves relate differently to the velocity perturbations. To
better understand the reflection-based inverse problems, we first
describe the forward problem in the framework of first-order Born
approximation, and then review the Fr�echet derivatives of reflec-
tionwaveform and reflection traveltime. Accordingly, we derive the
corresponding functional gradient and approximate Hessian
matrices for RWI and RTI, which will be involved in the second-
order optimization methods.
2.1. The reflection waveform sensitivity kernel

The constant-density acoustic wave equation in frequency
domain can be written as:

Aðm;uÞUðuÞ ¼ f ðuÞ; (1)

where A ¼ � u2

v2ðxÞ � V2, u is the frequency, v is the velocity, f is the

source wavelet and U is the acoustic wavefield. For simplicity, the
wavefield for a single source receiver pair can be expressed as:

U0ðrjsÞ ¼ G0ðrjsÞf ðsÞ; (2)

where r and s indicate the location of source and receiver, respec-
tively, and G0 ¼ A�1 is the impulsive response for the background
medium, i.e. Green’s function. In seismic imaging, the velocity
model can be split into a smooth background model and a rough
perturbation model:

v ¼ v0 þ dv: (3)

Then, for a given velocity perturbation, the Born approximation
establishes a linear relation to the perturbation of wavefield:

DUðrjsÞ ¼
ð
2k20ðxÞ

dvðxÞ
v0ðxÞ

G0ðrjxÞU0ðxjsÞdx; (4)

with the background wavenumber k0 ¼ u
v0ðxÞ. The above equation

indicates that the wavefield perturbation at a certain receiver is the
superposition of the wavefields emitting from the scatterers where
the secondary source is scaled by the background wavefield.
Particularly, if the scatterers in the subsurface are continuously
distributed, they can be regarded as the rough perturbations or
reflectivity. Then, the reflection wavefield satisfies:

JðrjsÞ ¼
ð
4ðrjsÞf ðsÞdx; (5)

where 4ðrjsÞ is the Born “wavepath” (Woodword, 1992):

4ðrjsÞ ¼ 2k20ðxÞG0ðrjxÞRðxÞG0ðxjsÞ (6)

and RðxÞ is the reflectivity:

RðxÞ ¼ dvðxÞ
vðxÞ : (7)

For the RTI and RWI problems, we hope to create the linear
relation between the background velocity and reflection wavefield
perturbations. Taking the partial derivative of J with respect to v0
and making some rearrangements, we have the Fr�echet derivative
of reflection data:
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vJðrjsÞ
vv0ðx

0 Þ ¼
ð
2k20ðx

0 Þ
v0ðx

0 Þ ð4ðrjx0 ÞG0ðx
0 jsÞ þ G0ðrjx

0 Þ4ðx0 jsÞ Þf ðsÞdx0
;

(8)

which explains the sensitivity of the reflection data to the change of
the background model located at x0. Note that, on the right-hand
side of equation (8), there two terms in the bracket of the inte-
gration, representing the different branches of the reflection wave-
paths. As shown in Fig. 1a, the first term denotes the wavefield
emitting from the source is first disturbed by a background velocity
perturbation, and then reflected by the reflector. The second term
denotes the wavefield is first reflected by the reflectivity and then
disturbed by the background velocity perturbation (Fig. 1b). For
abbreviation, we define the waveform Fr�echet kernel as:

J ¼ vJ
vv0

: (9)

2.2. The reflection traveltime sensitivity kernel

It is well known that the traveltime is more linearly related to
the background velocity structure than waveform. Usually, the
traveltime misfit is estimated by the cross-correlation between the
observed and synthetic data:

tðrjsÞ ¼ argmax
Dt

ð
wiðtÞdoðrjs; t þ DtÞJðrjs; tÞdt; (10)

where do is the observed data and wiðtÞ is the i-th time window to
locally capture the traveltime for a specific event in case of multiple
arrivals. The partial derivative of twith respect to the change of the
background velocity can be expressed as:

vt

vv0
¼ 1

E

ð
wi

_d
oðrjs; t þ tÞ vJðrjs; tÞ

vv0
dt; (11)

where E ¼ R
wiðtÞJ€d

o
dt is a normalization factor and the hat dot

denotes the time derivative. Assuming that the background model
perturbation is very small, then the perturbed data can be taken as
a time-shifted version of the true reflection data (Luo and Schuster,
1991), i.e. doðrjs; t þ DtÞzJðrjs; tÞ. Therefore, equation (11) can be
rewritten as:
Fig. 1. The schematic illustration of two reflection branch
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Jt ¼ vt

vv0
¼

ð
SiðtÞJdt; (12)

where SiðtÞ is the weighting factor:

Siðrjs; tÞ ¼
wiðtÞ _Jðrjs; tÞð

wiðtÞJðrjs; tÞ €Jðrjs; tÞdt
: (13)

In this way, we can link the traveltime perturbation to the
background velocity perturbations. For a given time window, the
time integration in equation (11) or (12) is included during the
cross-correlation. Accordingly, the frequency bands of the data will
not affect the size of Fr�echet derivative because of the cross-
correlation. Thus, the size of Jt will be greatly reduced by folding
the time or frequency axis, which allows the explicit storage of
traveltime Fr�echet derivatives if the number of time window is
small.
2.3. The inverse problems solved with second-order optimization

The reflection-based inversion aims to retrieve the subsurface
model through minimizing the misfit between the observed and
simulated reflection data. For instance, RWI updates the back-
ground model by solving the following nonlinear optimization
problem in a least-squares manner:

cðv0Þ ¼
1
2

X
r;s

ðrjsÞ � doðrjsÞ22: (14)

From a numerical point of view, RWI is a large-scale nonlinear
inverse problem. We choose the local optimization methods that
involve first- and second-order derivatives of the objective function
to iteratively solve it. Hence a sequence is vk0 computed from an
initial guess, i.e.,

vkþ1
0 ¼ vk0 þ akðdv0Þk; (15)

where ðdv0Þk represents the model update direction, and ak is a
step-length that can be computed through a line-search procedure.

The first-order derivative of the objective function (i.e., the
gradient) can be expressed as:
es: (a) s/dv0ðx0Þ/RðxÞ/r, (b).s/RðxÞ/dv0ðx0Þ/r
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Vc ¼ vc

vv0
¼ Jydd; (16)

where dd ¼ JðrjsÞ � doðrjsÞ represents the data residuals. The
waveform data are nonlinearly related to the low-to-intermediate
wavenumber of the velocity model. In the framework of Born
modelling, the accuracy of the simulated data depends on the
appropriacy of the background and perturbation models. If there is
an obvious lack of low wavenumbers in the starting model, the
estimated perturbation model will be far away from the true one,
and the simulated reflection data have evident kinematic errors. In
this setting, RWI tends to converge to a local minimum due to cycle
skipping problem. To tackle this challenge, a common strategy is to
start with the traveltime inversion because traveltime is more
linearly related to the background velocity (Ma and Hale, 2013; Chi
et al., 2015; Brossier et al., 2015; Xu et al., 2019).

In the context of RTI, we build the objective function with
reflection traveltime difference, namely:

ctðv0Þ ¼
1
2

X
r;s

tðrjsÞ22: (17)

Accordingly, the gradient with respect to the background model
is changed as:

Vct ¼
vct
vv0

¼ JTt t; (18)

where T denotes the transpose. The widely used first-order opti-
mization methods, such as the steep-descent and nonlinear CG
methods, only involves the calculation of the gradient. In the
context of RWI or RTI, this can be efficiently implemented by using
the adjoint-state method (e.g., Xu et al., 2012; Ma and Hale, 2013).

Taking into account the second-order derivative of the objective
function (namely the Hessian) and only keeping the linear term, we
have the Gauss-Newton equation for RWI and RTI:

Hdv0 ¼ �Vc; Htdv0 ¼ �Vct ; (19)

in which the approximate Hessian matrices are constructed by
cross-correlation of the Fr�echet derivative wavefields:

H ¼ JyJ; Ht ¼ JTt Jt : (20)

At each nonlinear RWI or RTI iteration, either the second-order
adjoint-state method or the improved scattering-integral method
is used to solve the linear system 18, as in the context of Gauss-
Newton FWI (Clement et al., 2001; Plessix, 2006; Metivier et al.,
2014; Liu et al., 2015; Pan et al., 2016). These matrix-free CG
methods avoid to explicitly form the Hessian matrix and only the
Hessian-vector product is required at each iteration of the CG al-
gorithm. The readers are referred to literature, e.g., Metivier et al.
(2014); Liu et al. (2015), for the technical details.
3. Practical strategy for large-scale applications

The application of the second-order optimization method to
large-scale RTI or RWI problem faces great challenges. First, the
inversion generally requires careful preconditioning to get a
reasonable model update due to the ill-posedness of this kind of
inverse problem. Second, extensive computational resources are
required even for a 2-D real data case. The appropriate strategies,
such as the decimation in the data or model domain, have to be
taken into consideration to make the Gauss-Newton method
feasible for the real data applications, although it may sometimes
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sacrifice the accuracy. Here, we will design some appropriate pre-
conditioning and computational strategies to balance the accuracy
and efficiency for the reflection-based inversion.
3.1. Precondition the Hessian matrix

In a layeredmediumwithmany interfaces at different depths, the
Hessian matrix of RWI may behave very complicated. First, the re-
flections at different depths and of different offsets experience
different geometric spreading duringwavefield propagation. Second,
the magnitudes of the reflectivity in Born modeling significantly
affects the synthetic reflection amplitudes. Therefore, the magni-
tudes of the Fr�echet kernels for different reflection events could
varies in a very wide range. As a result, the elements of Hessian
matrix corresponding to the deep locations generally have very small
magnitudes. To illustrate this, we use a toymodel with two reflectors
for the RWI Hessian calculation, which is shown in Fig. 2.

We observe that the elements for the first layer are much larger
than those of the second layer in the RWI Hessian matrix (Fig. 2b).
This kind of imbalance increases the ill-conditioning and may lead
to unreasonable model updating in the deeper part, since the very
small values in the Hessian matrix are truncated during the inner
iterations of the Gauss-Newton method. As M�etivier et al. (2017)
discussed in the context of FWI, the truncated Gauss-Newton
method will benefit from introducing an appropriate precondi-
tioner for the inner linear system. Here we choose to precondition
the Hessian in the presence of many interfaces through normalizing
the forward modeled data as well as the reflectivity to balance the
Fr�echet derivative wavefields at different depths (see Fig. 2c). In the
numerical examples, we find that this preconditioning improves
the Gauss-Newton RTI and RWI algorithms, although it may
sometimes sacrifice the resolving power a little bit.
3.2. The computational optimization

The second-order methods using the Gauss-Newton Hessian can
achieve a locally super-linear convergence rate. However, the
significantly increased computational burden to solve the inner
linear systemusing the CGmethod is amajor challenge inpractice. In
the context of FWI, gradients and Hessian-vector products that
usually calculated through the adjoint-state method (Metivier et al.,
2014) or the scattering integral (SI) method (Chen et al., 2007),
require to perform a huge number of forwardmodeling. The number
is linearly proportional to the number of receivers or sources in the
data. In the context of RWI, if using the SI method to solve the Gauss-
Newton equation, the Fr�echet derivative should be calculated and
stored explicitly for each source-receiver pair. As indicated by
equation (8), we need two wavefields of the source side (G0ðx0jsÞ;
4ðx0jsÞ) and two wavefields of the receiver side (G0ðx0jrÞ; 4ðx0jrÞ),
making the total number of forward modeling 2Ns þ 2Nr for each
outer loop, where Ns and Nr are the number of source and receiver,
respectively. And the size of J will be as large as Nsr �M for a single
frequency, with Nsr the total number of source-receiver pairs and M
the model size for each shot. Accordingly, the Gauss Newton RWI
using SImethod requires the huge amount of computational cost and
storage consumption, even for the 2D problems.

In order to make the SI-based Gauss Newton RWI feasible, we
introduce the following strategies to lower the computational
burden. First, we choose to use the coarse grids to store the Fr�echet
derivative wavefields, because RTI and RWI aim to recover the low-
to-intermediate wavenumbers and thus a coarse-grid discretiza-
tion is sufficient to represent the model. With the frequencies
increasing, we synthesize the reflection wavefield with finer grids
but still store the Fr�echet kernels with the coarse grids. Second, we



Fig. 2. Precondition the RWI Hessian: (a) the modified toy model with two interfaces of the same reflectivity at the depth of 1.8 km and 2.3 km; (b) the original and (c) pre-
conditioned Hessian matrices.
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decimate the receivers to calculate and save the Fr�echet kernels. In
a certain shot gather, the neighboring receivers possess quite
similar reflection wave-paths, which actually implies the redun-
dant information for the inversion. By sharing a same kernel for
neighboring traces within a receiver group, we can significantly
reduce the number of wave equation solving and also save the disk
overhead to store the Fr�echet derivatives. As shown in Fig. 3, if we
change from standard grid dx � dz to the coarse grid Dx� Dz and
group the neighboring receivers as one trace (the receiver number

inside the group isN
0
r), then the storagewill reduce DxDzN

0
r

dxdz
times, and

the total number of forward modeling will reduce N
0
r times. In

addition, the frequencies are also redundant to satisfy the wave-
number coverage and can be decimated into several discrete groups
(Sirgue and Pratt, 2004; Brenders and Pratt, 2007). Accordingly, for
the RWI problem, we can further reduce the size of Fr�echet deriv-
ative by only storing several frequency slices during the hierar-
chical inversion from low to high frequencies. Note that, the sizes of
coarse-grid and receiver group should be in accordance with the
frequency used in the certain stage.
Fig. 3. Schematic illustration of the computational strategies. The Fr�echet kernel will
be stored in the coarse grid (Dx � Dz), while the forward modeling is applied on the
fine grid (dx � dzÞ. In the meantime, the neighboring receivers will share one Frechet
kernel to save the computational and storage overburden.
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Fig. 4. One common-shot gather of the East China Sea dataset.
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4. Field data example

Based on the above strategies, we propose a practical two-stage
workflow of reflection-based inversion using the Gauss-Newton
method to reconstruct the velocity model. First, we apply Gauss-
Newton RTI to reconstruct the low-wavenumber parts of the ve-
locity structures. Then, Gauss-Newton RWI is followed to gradually
supplement more intermediate wavenumbers to the model. We
test the proposed workflow with a real data from East China Sea.

The 2D dataset of 851 shots was acquired by using air guns and
Fig. 5. Migration results with initial model: (a) the initial vel
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towed streamers in East China Sea. The shot interval is 37.5 m. The
spacing of the hydrophones is 12.5 m and the maximum offset is
4 km. Fig. 4 displays one common-shot profile. Conventional data
processing, including noise attenuation, designature, deghost and
demultiple, have been applied before the inversion. The legacy
model for migration is converted from the time-domain root mean
square (RMS) velocity, which roughly represents the background
features of the target area. However, it is inadequate to correctly
honor the kinematics for RTM to provide well-focused migration
image and flatten common-image gathers (CIGs) (see Fig. 5).

We apply the proposed two-stage reflection-based inversion to
improve the velocity model. The hierarchical strategy with fre-
quency continuation is implemented for both GN-RTI and GN-RWI.
In the RTI stage, the resolution of traveltime estimation will be
greatly affected by the frequency bands. Therefore, we select three
frequency bands, namely 4e8 Hz, 4e12 Hz and 4e16 Hz, to grad-
ually increase the resolution of traveltime estimation along with
adaptively designed sliding windows. While in the RWI stage, three
frequency groups, 4e8 Hz, 8e12 Hz and 8e16 Hz with an incre-
ment of 1 Hz for each group, are used for inversion. For both RTI and
RWI, we set 10 outer loops with a maximum 5 iterations in the
inner loop for each frequency groups. In the inner loop of Gauss-
Newton algorithm, we precondition the Hessian to guarantee a
robust convergence of inversion. For comparison, we also perform
the conventional workflow based on RTI and RWI with CG method
(i.e., CG-RTI and CG-RWI) to show the effectiveness of the proposed
Gauss-Newton algorithm. In addition, the structure-oriented reg-
ularization (Yu et al., 2020) are utilized in the aforementioned
inversion process to make velocity update geologically consistent.

First, we apply the conventional workflow based on CG-RTI and
CG-RWI, whose results are shown in Fig. 6. We observe that the
velocity update from CG-RTI mainly relates to the strong interfaces,
which is not able to flat the CIGs. Starting from CG-RTI model, the
velocity is improved after the CG-RWI and thus CIGs are signifi-
cantly flattened. However, we still observe some residual moveouts
ocity model, (b) RTM image and (c) Offset-domain CIGs.



Fig. 6. The results from conventional workflow with CG-RTI and CG-RWI. (a) and (b): the CG-RTI and CG-RWI velocity model. (c) and (d): the RTM image using (a) and (b) overlaid
by the total velocity update. (e) and (f): the offset-domain CIGs using (a) and (b).
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on the CIGs, which implies that although the conventional RTI and
RWI can provide reasonable migration velocity model, the accuracy
of velocity still remains to be improved. For comparison, we use the
proposed Gauss-Newton based workflow to update the velocity.
After the Gauss-Newton RTI, the velocity is obviously updated for
both the shallow and the deep parts (Fig. 7c). The basement im-
aging of the sedimentary basin is greatly improved with better
continuity. The deep faults at the position of 20 km becomes
clearer. However, since the multi-window cross-correlation may
fail to accurately measure the relatively small traveltime residuals
in the latter iterations of this stage, there are still some high-
wavenumber image footprints on the velocity and the CIGs also
exhibit some residual moveouts. Then, starting from the RTI model,
we apply the Gauss-Newton RWI, which is sensitive to the wave-
form misfit, to further improve the recovery of intermediate
wavenumbers of the velocity model. As shown in Fig. 7b, after the
GN-RWI, the velocity anomaly along the strong reflection interface
disappears. Some adjustments of velocity model can be observed
1588
below the depth of 1.5 km (Fig. 7d), which essentially honors the
correct kinematics to flatten the CIGs. The final migrated image
based on GN-RWI model shows more continuous sequence
boundaries and clear stratigraphic textures.
5. Discussion

In the stage of RTI, the cross-correlation only estimate the
traveltime residuals of the dominant event inside the selected time
window. In the presence of multi-events with various intensities,
the cross-correlation associated with running windows may fail to
provide high-resolution measurement of the traveltime misfits.
Other methods, such as dynamic image warping (Hale, 2013),
frequency-dependent traveltimemeasurement (Laske andMasters,
1996), and instantaneous phase (Bozdag et al., 2011; Choi et al.,
2013) and so on, all have their own disadvantages in this situa-
tion. This means that the reflection traveltime or phase inversion
has limitation in spatial resolution. That is why the waveform



Fig. 7. The results from proposed workflow with GN-RTI and GN-RWI. (a) and (b): the GN-RTI and GN-RWI velocity model. (c) and (d): the RTM image using (a) and (b) overlaid by
the total velocity update. (e) and (f): the offset-domain CIGs using (a) and (b).
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inversion is followed to recover the model intermediate-
wavenumbers. However, waveform fitting highly depends on the
accuracy of the estimated reflectivity (or high-wavenumber model
perturbations) and seismic wave propagation physics. According to
the radiation pattern, e.g., Wang and Cheng (2017), the density
perturbation has a remarkable coupling effect with the P-wave
velocity perturbation at small scattering angles. This implies that
the effect of density needs to be taken into account in estimation of
the high-wavenumber model perturbations to improve the
amplitude accuracy of the simulated reflection data. For instance,
least-squares RTM based on the variable-density acoustic wave
propagator (Yang et al., 2016) could be used for this purpose.

The adjoint-state method plays an important role in the seismic
waveform tomography, through which the functional gradient can
be efficiently calculated by cross-correlating the forward propa-
gated wavefields with the back-propagated adjoint wavefields
(Plessix, 2006; Virieux and Operto, 2009; Fichtner and Trampert,
2011). In the context of FWI, both the first- and second-order
adjoint-state method are closely related to the scattering-integral
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method (Tromp et al., 2005; Chen et al., 2007; Epanomeritakis
et al., 2008; Liu et al., 2015), but which one is better relies on the
acquisition geometry, particularly on the ratio of sources to re-
ceivers, as well as the trade-offs between computing cost and file
input/output operations (Chen et al., 2007). In this paper, we
employ the scattering-integral to calculate the Hessian-vector
product in the nested inner loops of Gauss-Newton RWI or RTI.
However, for the modern marine and land acquisition system in
seismic exploration, the number of receivers is far more than the
number of sources, whichmeans that the calculation and storage of
Fr�echet derivatives will be extremely resource-demanding without
proper computational strategies as aforementioned in the previous
sections. Therefore, the second-order adjoint-state method for
Gauss-Newton RWI or RTI, which can calculate the Hessian-vector
product without explicitly storing the Fr�echet derivatives (Fichtner
and Tramper, 2011; Metivier et al., 2017), will be an appropriate
alternative in the real data applications (Wang et al., 2021).
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6. Conclusions

To improve velocity model building using precritical seismic
reflection data, we have reviewed the reflection waveform and
traveltime Fr�echet derivatives, and demonstrated Hessian-based
second-order optimization methods in the context of RWI and
RTI. Accordingly, we have proposed a practical workflow cascading
Gauss-Newton RTI and Gauss-Newton RWI, in which Hessian pre-
conditioning and computational strategies, such as coarse grid
sampling, receiver decimation and frequency grouping are sug-
gested to make the workflow robust and efficient. The application
to a towed-streamer data set with limited offsets has demonstrated
that the two-stage workflow is qualified to improve the velocity
model and structural imaging in the deep part of the sedimentary
basin.
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